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Abstract

Many disordered proteins function via binding to a structured partner and undergo a disorder-to-order transition. The
coupled folding and binding can confer several functional advantages such as the precise control of binding specificity
without increased affinity. Additionally, the inherent flexibility allows the binding site to adopt various conformations and to
bind to multiple partners. These features explain the prevalence of such binding elements in signaling and regulatory
processes. In this work, we report ANCHOR, a method for the prediction of disordered binding regions. ANCHOR relies on
the pairwise energy estimation approach that is the basis of IUPred, a previous general disorder prediction method. In order
to predict disordered binding regions, we seek to identify segments that are in disordered regions, cannot form enough
favorable intrachain interactions to fold on their own, and are likely to gain stabilizing energy by interacting with a globular
protein partner. The performance of ANCHOR was found to be largely independent from the amino acid composition and
adopted secondary structure. Longer binding sites generally were predicted to be segmented, in agreement with available
experimentally characterized examples. Scanning several hundred proteomes showed that the occurrence of disordered
binding sites increased with the complexity of the organisms even compared to disordered regions in general. Furthermore,
the length distribution of binding sites was different from disordered protein regions in general and was dominated by
shorter segments. These results underline the importance of disordered proteins and protein segments in establishing new
binding regions. Due to their specific biophysical properties, disordered binding sites generally carry a robust sequence
signal, and this signal is efficiently captured by our method. Through its generality, ANCHOR opens new ways to study the
essential functional sites of disordered proteins.
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Introduction

The classical point of view on protein function claims that the

functionality of a protein requires the presence of a well-defined

three dimensional structure. However, as the amount of

experimental evidence against the generality of this concept grew,

this paradigm had to be reassessed [1]. It has become evident that

there is a large number of proteins that do not require a stable

structure even under physiological conditions in order to fulfill

their biological role [2–4]. These intrinsically unstructured/

disordered proteins (IUPs/IDPs) lack a well defined tertiary

structure and exhibit a multitude of conformations that dynam-

ically change over time and population. The importance of protein

disorder is underlined by the abundance of partially or fully

disordered proteins encoded in higher eukaryotic genomes [5,6].

Disordered proteins are involved in many important biological

functions [2,7], which complement the functional repertoire of

globular proteins [7]. Recent characterization of IUPs based on

their functions shows that disorder can help these proteins to fulfill

their functions in various ways [8,9]. In the case of entropic chains,

the biological function is directly mediated by disorder (e.g. MAP2

projection domain [10], titin’s PEVK domain [11], NF-M and

NF-H between neurofilaments [12,13], nucleoporin complex

[14]). Furthermore, disordered segments often act as flexible

linkers between folded domains in multidomain proteins [2,15].

Alternatively, many disordered proteins function by binding

specifically to other proteins, DNA or RNA. This process, termed

coupled folding and binding involves a transition from disordered

state to a more ordered state with stable secondary and tertiary

structural elements [16,17].

The coupled folding and binding confers several functional

advantages in certain types of molecular interactions. Since – at

least partial – folding happens together with binding, the entropic

penalty counterbalances the enthalpy gain coming from the

binding [18,19]. This way disorder uncouples specificity from

binding strength allowing for weak transient, still specific

interactions that are essential for signaling processes. These

properties enable disordered proteins to play an important role

in molecular recognition including gene regulation, cell cycle

control and other key cellular processes [20–23]. The kinetic and

thermodynamic details of the binding are influenced by confor-

mational preferences present prior to binding [24]. Although

disordered proteins in general lack secondary and tertiary

structure, some exhibit partial secondary structure at closer

inspection. For example, CD analysis indicated that p21 and

p27 possess a-helical segments [19,25,26]. Detailed NMR
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characterization of p27 and other proteins showed that several

segments can have a pronounced tendency to adopt a-helical, or

even b strand conformations [9]. Upon binding, these inherent

structural preferences can either be solidified or overwritten by the

partner molecule [27]. Some regions can preserve flexibility even

within the complex, mitigating the unfavorable entropy term [28].

This allows the fine-tuning of the affinity of interactions over a

wide range. As a general rule, however, these interactions are

driven largely enthalpically by the favorable interactions formed

with the partner molecule [18,19,29].

The inherent flexibility of disordered proteins offers further

advantages in binding. It results in a malleable interface that can

allow binding to several partners or to adopt different conforma-

tions, manifested in increased binding capability [8,20]. In

accordance, several analyses of protein interaction networks

revealed that disordered proteins are abundant among hub

proteins, proteins with a large number of interacting partners

[30,31]. In a different scenario, the binding partners of an ordered

protein are disordered, as shown for binding of 14-3-3 proteins,

thus allowing a single protein to bind multiple partners [32].

Beside their involvement in protein-protein interactions, these

proteins are also subjects of various post-translational modifica-

tions that control their functions, localization and turnover [33]. In

this way, these proteins can integrate and mediate multiple signals

of various sources, and act as the central elements in signaling or

regulatory networks. The centrality of these proteins, however, is

also their weakness. It has been suggested that the targeted attack

of hubs can cause serious disruption in protein interaction

networks [34]. Furthermore, disordered proteins are often

associated with various diseases [35]. For example, the primary

importance of p53 originates from its involvement of 50% of

cancers [36]. In general, 79% of human cancer associated proteins

have been classified as IUPs, compared to 47% of all eukaryotic

proteins in SwissProt database [22]. Disordered proteins were also

suggested to be common in diabetes and cardiovascular diseases

[35,37]. Several disordered proteins - such as Ab, t, a synuclein,

and prion protein - are involved in neurodegenerative diseases and

are also prone to amyloid formation [38–40]. On the other hand,

due to their specific way of interactions, disordered proteins can

also be attractive targets for drug discovery. A novel strategy for

drug discovery exploiting binding sites within disordered regions

has already been suggested [41]. This adds further support to the

importance of finding specific functional sites in proteins that

undergo disorder-to-order transition upon binding or disordered

binding regions in short.

Despite their importance, the number of well characterized

examples of disordered proteins undergoing disorder-to-order

transition is very small. The PDB also offers only a limited sample

of proteins adopting a well defined conformation as part of a

complex. However, recent comparisons of these structures with

complexes formed between ordered proteins pointed out several

differences [42–44]. In general, disordered proteins adopted a

largely extended conformation in the complex exposing the

majority of their residues for interacting with their partner. The

interface of disordered proteins was enriched in hydrophobic

residues compared to the interface of ordered proteins, but also to

disordered regions in general. The higher number of interchain

contacts was suggested to be a sign of better adaptation of

disordered proteins to the surface of their partner. In general, the

regions that become ordered were shorter as compared to globular

domains, usually less than 30–40 residues. While the interface of

globular proteins was most often formed by distant segments of the

amino acid sequence brought together by folding, disordered

binding sites were much more localized in the primary structure.

These features demonstrate that the underlying principles of

molecular recognition of disordered binding regions are different

from the complex formation of globular proteins [43].

Disordered binding sites are also expected to be distinguishable

from general disordered sites that are not directly involved in

binding. A common notion is that protein disorder comes in many

flavors, and these should be targeted by specific prediction

methods [45,46]. However, training specific methods would

require significantly larger datasets than those that are available

today. Nevertheless, existing general protein disorder prediction

methods might already be equipped for this problem. It has been

suggested that specific patterns of disorder prediction profiles can

be associated with regions undergoing disorder-to-order transitions

[47]. Since these regions can be ordered as well as disordered,

there is no clear recipe whether these regions should be predicted

ordered, disordered, or as borderline cases. A recent analysis

compared several methods to recognize short protein-protein

interaction motifs containing a-helical elements in their bound

state, the so-called a-MoRFs [48]. As expected, the various

methods showed large variations in predicted order/disorder

tendency corresponding to binding regions. One of the earliest

prediction method PONDR VL-XT [49–51] was quite consistent

in predicting these regions as ordered within a broader disordered

region, giving them the characteristic appearance of dips in the

prediction output. Based on this specific prediction output, a

method was developed to recognize a-MoRFs from the amino

acid sequence [48,52]. First, regions predicted with dips in the

output of VL-XT were selected and were filtered further by a

neural network using several additional properties. This prediction

method is restricted to recognize short, a-helical binding regions

within disordered proteins.

Here we present a general method to identify specific binding

regions undergoing disorder-to-order transition. Our method

relies on the general disorder prediction method IUPred [53,54].

IUPred is based on the assumption that disordered proteins have a

specific amino acid composition that does not allow the formation

Author Summary

Intrinsically unstructured/disordered proteins (IUPs/IDPs)
do not adopt a stable structure in isolation but exist as a
highly flexible ensemble of conformations. Despite the
lack of a well-defined structure these proteins carry out
important functions. Many IUPs/IDPs function via binding
specifically to other macromolecules that involves a
disorder-to-order transition. The molecular recognition
functions of IUPs/IDPs include regulatory and signaling
interactions where binding to multiple partners and high-
specificity/low-affinity interactions play a crucial role. Due
to their specific functional and structural properties, these
binding regions have distinct properties compared to both
globular proteins and disordered regions in general. Here,
we present a general method to identify disordered
binding regions from the amino acid sequence. Our
method targets the essential feature of these regions:
they behave in a characteristically different manner in
isolation than bound to their partner protein. This
prediction method allows us to compare the binding
properties of short and long binding sites. The evolution-
ary relationship between the amount of disordered
binding regions and general disordered regions in various
organisms was also analyzed. Our results suggest that
disordered binding regions can be recognized even
without taking into account their adopted secondary
structure or their specific binding partner.

Predicting Disordered Binding Regions in Proteins
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of a stable well-defined structure. The method utilizes statistical

potentials that can be used to calculate the pairwise interaction

energy from known coordinates. Using a dataset of globular

proteins only, a method was developed to estimate the pairwise

interaction energy of proteins directly from the amino acid sequence.

By virtue of this algorithm, disordered residues can be predicted by

having unfavorable estimated pairwise energies. The estimation of

the energy for each residue is based on its amino acid type, and the

amino acid composition of its sequential neighborhood. Through the

amino acid composition of the sequential environment, IUPred can

take into account that the disorder tendency of residues can be

modulated by their environment [53]. This property of IUPred is

exploited in order to recognize regions that are most likely to

undergo a disorder-to-order transition based on their estimated

pairwise energies in different contexts. The prediction of binding

sites is based on estimating the energy content in free and in the

bound states, and identifying segments that are potentially sensitive

to these changes. In a previous work, the ability to predict specific

contacts was emphasized in order to recognize disordered regions

that are involved in binding externally rather than internally [46]. In

our model, however, there was no attempt made to model specific

interactions. Instead, the environment is taken into account simply at

the level of amino acid composition. Here we show that this simple

model captures the essential property of disordered binding regions

and allows their robust prediction. We termed our disordered

binding site prediction method ANCHOR, to reflect the primary

importance of short segments driving the complex formation

between a disordered protein and its partner.

Results

The outline of the algorithm
The goal of the present work was to recognize a special class of

disordered segments from the amino acid sequence, namely those

that are capable of undergoing a disorder-to-order transition upon

binding to a globular protein partner. The essential feature of such

binding regions is that they behave in a characteristically different

manner in isolation than bound to their partner protein. In their

free state, they behave as disordered proteins, existing as a highly

flexible structural ensemble. In their bound state they usually

adopt a rigid conformation, similar to regions within globular

structures. This capability to behave in drastically different ways in

different environments is targeted by our approach. We seek to

identify segments in a generally disordered region that cannot

form enough favorable intrachain interactions, however they have

the capability to energetically gain by interacting with a globular

partner protein. Our prediction is based on three properties.

1. The first criterion ensures that a given residue belongs to a long

disordered region, and filters out globular domains.

2. The second criterion corresponds to the isolated state and it

ensures that a residue is not able to form enough favorable

contacts with its own local sequential neighbors to fold, otherwise

it would be prone to adopt a well defined structure on its own.

3. The third criterion tests the feasibility that a given residue can

form enough favorable interactions with globular proteins

upon binding. This basically ensures that there is an energy

gain by interacting with globular regions.

These properties are estimated individually and are combined

into a single predictor via optimized weights.

In more detail, the prediction of these three properties relies on

the energy estimation framework implemented in IUPred, a

general disorder prediction method. The core element of IUPred

is the energy predictor matrix P. The parameters in Pij were

trained on globular proteins with known structures only, without

relying on any kind of disordered dataset. These parameters were

determined to minimize the difference between the estimated

energies and the energies calculated from the known structures on

the dataset of globular proteins. Using the energy predictor matrix

IUPred predicts the E interaction energy for each residue based on

the following formula in default:

Ek
i ~

X20

j~1

Pijf
k
j w0ð Þ ð1Þ

where i denotes the type of the k-th amino acid, Pij is the element of

the energy predictor matrix that estimates the pairwise energy of

residue of type i in the presence of residue type j, f kj w0ð Þ is the

fraction of residue type j in the sequential environment within w0

residues from residue k. The size of neighborhood considered (w0)

equals 100 residues in both directions and the result is smoothed

over a window size of 10 (also in both directions from the k-th

residue so in fact 21 residues are considered in total). For the final

prediction output, the energies are transformed into probability

values, denoted as sk. For more details see Dosztányi et al. [53].

The disordered binding site prediction is based on three

different scores that are calculated with a slight modification of the

original energy estimation scheme. The parameters of Pij were
taken directly from IUPred. The following three scores are

assigned to each residue in a protein according to the above

described criteria (1–3):

1, To measure the tendency of the neighborhood of an amino

acid for being disordered we use the IUPred algorithm and assign

an Sk score to the k-th residue of the chain by averaging the

IUPred scores in the w1 neighborhood of the residue in question:

Sk~
1

N

Xbupper

k=j~blower

sj ð2Þ

where sj is the IUPred score of the j-th residue of the chain, N is the

number of amino acids in the averaging and blower and bupper are the

lower and upper boundaries of the neighborhood of the i-th
residue, that is blower=max(k2w1;1) and bupper=min(k+w1;l), where l

is the chain length.

2, We estimate the pairwise interaction energy the given residue

may gain by forming intrachain contacts. This is done the exact

same way as in IUPred using (1), only here the size of the

considered neighborhood (w2) is left as a parameter and is set

during the training of the predictor:

Eint,k
i ~

X20

j~1

Pijf
k
j w2ð Þ ð3Þ

The smaller window size corresponds to more local behavior.

3, The pairwise energy that the residue may gain by interacting

with a globular protein is approximated using the average amino

acid composition of globular proteins:

E
glob
i ~

X20

j~1

Pijf glob,j ð4Þ

where f glob,j is the fraction of residue type j in the averaged

reference amino acid composition of globular proteins shown in

Predicting Disordered Binding Regions in Proteins
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Table 1. By subtracting this energy from Eint,k
i one can estimate

the energy that the residue may gain by interacting with a

hypothetical globular protein compared to forming intrachain

contacts (E
gain,k
i ~Eint,k

i {E
glob
i ).

The final prediction score of the residue is given by the linear

combination of the above three terms:

Ik~p1Skzp2E
int,k
i zp3E

gain,k
i ð5Þ

where the p1, p2 and p3 coefficients are determined during the

training of the predictor together with the optimal values of w1 and

w2 window sizes. Ik is then converted into a p value that expresses

the probability of that residue being in a disordered binding site.

For a binary classification residues with scores above 0.5 are

predicted to be in a disordered binding site. Since the second and

third terms of (5) may vary heavily between neighboring residues,

the final score is smoothed in a window of 4 residues.

The optimal values for the three weights (p1, p2 and p3) and the two

window sizes (w1 and w2) are determined using a dataset of disordered

protein complexes and ordered monomeric proteins by three-fold

cross validation (See Methods and Figure S1 for a schematic

representation and outline of this procedure). The small dataset of

known disordered proteins bound to ordered proteins represent a

serious bottleneck during optimization. Therefore, it is a clear

advantage of our approach that it greatly reduces the dependence on

the existing dataset of disordered complexes, and leaves us with only 5

parameters to be optimized on this small dataset.

The behavior of various scores is shown for an example, the N

terminal domain (residues 1–100) of human p53 tumor supressor

protein that plays an important regulatory role [55]. Its N terminal

region is completely disordered [56] and is known to be able to

bind to (at least) three different globular proteins as shown in

Figure 1. The segment between residues 17–27 binds to MDM2

[57], the other two binding sites overlap with residues 33–56

binding to RPA 70N [58] and residues 45–58 binding to the B

subunit of RNA polymerase II [59]. The three calculated

quantities for this domain are also shown in Figure 1. It is worth

noting that the MDM2 binding site in the N-terminal region of

p53 appears to be on the border of being disordered. Although the

disordered prediction is part of ANCHOR, the output of this

prediction (Eint, described in Theory) is linearly combined with two

other quantities meaning that predicted disorder is not strictly a

prerequisite of a successful disordered binding site prediction.

Testing of the algorithm
Testing of the predictor was done by dividing both our negative

and positive datasets (Globular proteins and Short disordered complexes)

into three subsets, training the predictor on two of these and

evaluating it on the remaining third one. This was done in all three

possible combinations yielding three optimal parameter sets. The

parameters calculated on the training sets are shown in Table 2

together with the respective True Positive Rates (TPR) and the

fraction of the amino acids in disordered regions of the Disprot

dataset predicted to be in disordered binding sites (F values). The

optimal parameters were chosen to maximize the amount of

correctly predicted disordered binding sites (TPR) while minimiz-

ing predicted binding sites in globular proteins (FPR) and also

restricting predicted binding sites within disordered regions in

general (F). The fact that the three parameter sets do not differ

significantly implies that our method is robust.

The output of the predictor with all three parameter sets and

the combined final predictor (the average of these three) are shown

for the example of the N terminal region of p53 in Figure 1. A few

additional well characterized examples are shown in the

Supporting Information (Figure S2, Figure S3, Figure S4, Figure

S5, and Figure S6).

The results obtained on the three independent testing subsets as

well as their average are given in Table 3. Since the cutoffs are

given by the training process such that we achieve exactly 5%

False Positive Rate (FPR) on the respective training sets (ie. the

part of the original Globular proteins dataset that was used in the

training of the respective subpredictor), the FPR’s are also quoted

(they can differ slightly from 5%). Besides the overall TPR

calculated on a residue basis (marked TPRAA), we also calculated

the percentage of binding sites identified, termed TPRSEG. A

binding site was considered to be found if at least five of its amino

acids are correctly classified. The results show that ANCHOR

performs at 62% TPRAA with a slightly higher TPRSEG of 68% on

average, while maintaining a 5% FPR. ANCHOR is also specific

to disordered binding sites as opposed to disorder to general. If all

disordered proteins had approximately equal capability of binding

then the fraction of correctly identified disordered binding sites

(TPR) could not be significantly different from the fraction of

disordered regions predicted to be binding sites (F value). As this is

not the case (TPR=62% vs. F= 42%) we can conclude that

common features of known disordered binding sites that

distinguish them from general disordered protein regions are

successfully recognized.

Another standard way of describing prediction algorithms is by

Receiver Operating Characteristic (ROC) curves [60], that is the

TPR versus the FPR of the algorithm. This relationship is mapped

Table 1. Reference amino acid composition of globular
proteins.

AA F %

R 3.68

K 6.37

D 4.92

E 5.43

N 4.69

Q 3.86

S 8.05

G 8.46

H 2.00

T 6.35

A 7.67

P 4.89

Y 3.86

V 7.13

M 1.84

C 2.43

L 8.22

F 3.19

I 5.20

W 1.76

Amino acid composition of the reference globular protein dataset comprised of
all the amino acids in the longer chains of the ordered complexes dataset.
Amino acids are sorted by increasing hydrophobicity based on the Fauchere-
Pliska hydrophobicity scale [94]. AA denotes amino acid codes and f denotes
the fraction of the respective amino acid expressed as a percentage.
doi:10.1371/journal.pcbi.1000376.t001

Predicting Disordered Binding Regions in Proteins
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by scanning the interval between 0 and 1 with the score cutoff.

The three ROC curves of the predictor with the three different

parameter sets evaluated on the respective testing sets are shown in

Figure 2. A single number measure to characterize the

performance is the area under the curve (AUC) with random

predictors scoring AUC=0.5 and perfect predictors scoring

AUC=1. The AUC values of the predictors trained and tested

on the respective subsets are 0.8675, 0.8781 and 0.8993.

Figure 1. The construction of the ANCHOR prediction method demonstrated on the N-terminal domain of human p53. Left: IUPred
prediction score for the full length human p53 (top) and S, Eint and Egain calculated for the disordered N terminal domain of human p53 (middle). Grey
boxes show the three binding sites with the overlap of the RPA70N and RNAPII binding sites shown in dark grey. The outputs of the three individually
optimized predictors are shown in black and their average, the final prediction score is shown in purple (bottom). Right: PDB structures of the binding
sites in the N-terminal region of p53 (yellow) complexed with the respective partners (blue): MDM2 (top, PDB ID: 1ycq [57]), RPA 70N (middle, PDB ID:
2b3g [58]) and RNA PII (bottom, PDB ID: 2gs0 [59]).
doi:10.1371/journal.pcbi.1000376.g001

Predicting Disordered Binding Regions in Proteins
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Since the interacting regions of a disordered and an ordered

protein are inherently different we expect that the predictor will

only recognize binding sites in disordered proteins that interact

with globular proteins but are not part of globular proteins

themselves. In order to verify this hypothesis we tested the

combined final predictor on a dataset of complexes containing

only ordered chains (that is three-state complexes – see Methods).

The prediction was done on the short interacting chain of the

complexes. This gave a false positive rate of only 3.7% that is even

lower than the value obtained on our testing set, although this

might be only a consequence of the relatively small size of our

ordered complex set (72 complexes). Overall, we could ensure that

our predictor makes very few mistakes on both globular proteins

and complexes of globular proteins, while it can still recognize the

majority of disordered binding regions. This implies that our

algorithm is specific to disordered binding sites as opposed to

globular proteins, the interface between globular proteins or

disordered proteins in general.

Our predictor was also tested on a completely independent

dataset of a-MoRFs, short disordered complexes that was

assembled by Cheng et al. [48] and composed of 40 proteins

containing binding regions that adopt mostly a-helical structure

upon binding. The results of the prediction on this dataset can be

seen in Table 4. Although the residue based TPR is somewhat

lower than that calculated on our testing set (57.0% instead of

61.8%), the segment based TPR is almost the same for the two sets

(67.5% and 68.3%). Overall these results are comparable to the

ones calculated on our training set.

Amino acid based evaluation of the predictor
The specific construction of the algorithm for the prediction of

interaction energy implies that the method will be sensitive to

amino acid compositions. The differences between the composi-

tion of disordered binding sites and the amino acid composition of

any of the negative sets (globular proteins, ordered interfaces and

disordered proteins in general) are shown in Figure 3A, 3B, and

3C, respectively. The amino acid compositions of all three datasets

are significantly different from that of disordered binding segments

(data not shown).

The final prediction is based on three different scores that

combine local and global disorder tendency with sensitivity to the

structural environment. Although the individual quantities that are

combined for the final score can work selectively better or worse

for various types of residues, the effect of these differences on the

efficiency of the final prediction is not trivial. This effect was tested

by comparing the amount of the different amino acids in the short

disordered binding sites to the amount recovered from these by the

predictor. These data are shown in Table 5 together with the

calculated p values quantifying their differences. As all of the p

values are fairly large, these differences are likely to occur by

chance alone. For example, proline rich binding sites are found

Table 2. Parameter and prediction accuracy values obtained
during the optimization of ANCHOR.

w1 w2 p1 p2 p3 F (%) TPR (%) FPR (%)

Training set 1 25 60 0.4630 0.3847 0.7985 46.0 69.8 5.0

Training set 2 27 60 0.6075 0.4149 0.6773 47.4 67.7 5.0

Training set 3 29 90 0.6990 0.4585 0.5488 43.4 64.8 5.0

Optimal parameters of the predictor determined during training. w1, w2, p1, p2
and p3 are the optimized parameters, F is the fraction of the residues in the
disordered regions in the Disprot database that are predicted to be in binding
sites, TRP and FPR are the True- and False Positive Rates, respectively.
doi:10.1371/journal.pcbi.1000376.t002

Table 3. Prediction efficiency of ANCHOR evaluated on the
testing datasets.

TPRAA (%) TPRSEG (%) FPR (%)

Testing set 1 61.1 62.5 5.7

Testing set 2 69.5 80.0 4.4

Testing set 3 54.7 62.5 5.1

Average 61.8 68.3 5.1

Results of the testing of ANCHOR on the three testing datasets. TPRAA denotes
the ratio of correctly identified amino acids belonging to binding sites. TPRSEG
denotes the ratio of binding sites found by the algorithm.
doi:10.1371/journal.pcbi.1000376.t003

Figure 2. ROC curves obtained during the testing of ANCHOR.
ROC curves of the predictor with parameter sets optimized on each of
the three training subsets and evaluated on the respective testing
subsets are shown with red, green and blue lines. The line with unity
slope corresponding to random prediction is also shown. The vertical
line corresponds to FPR= 0.05, where the final predictor (the average of
these three) is used.
doi:10.1371/journal.pcbi.1000376.g002

Table 4. Prediction efficiency of ANCHOR evaluated on an
independent dataset (a-MoRFs dataset).

H E C Total SEG

In dataset 263 8 210 479 40

Found 147 5 121 273 27

Ratio (TPR) 55.9% 62.5% 57.6% 57.0% 67.5%

Prediction results for the a-MoRFs dataset. SEG denotes segment based results
where each binding site is considered one segment and one such segment is
considered found if at least five of its amino acids are correctly identified.
doi:10.1371/journal.pcbi.1000376.t004

Predicting Disordered Binding Regions in Proteins
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with similar accuracy as binding sites enriched in hydrophobic

amino acids. Therefore, one may conclude that there is no

statistical evidence based on the available dataset that the

efficiency of the predictor depends significantly on the amino

acid composition of the disordered binding site in question.

Secondary structures and the efficiency of ANCHOR
The relationship between the efficiency of the prediction and

the secondary structure types was also assessed, by considering the

three types of secondary structural elements: helix (H, including a-

and 310 helices), extended (E) and coil (C, including everything else)

as defined by DSSP [61]. The number of amino acids in different

conformations that can be found in the PDB structures of our

positive training set (short disordered complexes), in the interacting

residues of these structures and the interacting residues that are

correctly identified by the predictor are shown in Table 6. These

data are represented graphically as distributions in Figure 4. The

secondary structure content in this type of interactions is heavily

biased towards coil conformation. It can also be seen on Figure 4 that

the predictor seems to work slightly better for H and E

conformations. However assessing the difference of the distributions

of secondary structures in interacting residues and in the subset

identified correctly by ANCHOR shows that this difference is not

statistically significant at a 5% level (x2=5.32, p=0.070).

Furthermore, a similar result holds true if binding sites are

categorized based on their dominant secondary structure type -

that is there is no significant correlation between the secondary

structure type the binding regions adopt upon binding and the

efficiency of the predictor. (Dataset S1 shows the secondary

structure types determined for the short disordered chains in the

disordered complexes as described in Protocol S1.) Overall, this

means that there is no significant difference in the efficiency of the

prediction on different secondary structural elements.

Testing on long disordered regions
Since the predictor was trained on the short disordered dataset

it is informative to see how it performs on long disordered binding

Figure 3. The distinct amino acid composition of short disordered binding sites. The average amino acid composition of the interacting
parts of the short disordered binding sites compared to the average amino acid composition of (A) the globular proteins dataset, (B) the disordered
proteins dataset and (C) the interacting parts of the shorter chains of the ordered complexes. Amino acids are arranged according to increasing
hydrophobicity.
doi:10.1371/journal.pcbi.1000376.g003

Table 5. The independence of the efficiency of ANCHOR from
the amino acid composition of the binding sites.

AA Nint Nfound p

R 42 21 0.122

K 47 36 0.362

D 40 27 1.000

E 41 20 0.116

N 14 6 0.252

Q 22 11 0.358

S 46 34 0.497

G 23 14 0.758

H 9 7 1.000

T 31 20 1.000

A 39 33 0.068

P 40 19 0.113

Y 17 11 1.000

V 29 20 1.000

M 17 16 0.085

C 4 2 1.000

L 69 47 0.857

F 26 19 0.764

I 31 26 0.146

W 6 5 1.000

Nint shows the number of interacting residues in the short disordered binding
sites, Nfound shows the amount of these that are correctly found by the
predictor. As there are types of amino acids that are rare, Fisher’s exact test was
used to calculate (two-tailed) p values to determine if the predictor works
significantly better or worse for certain amino acid types with high p values
corresponding to no significant difference.
doi:10.1371/journal.pcbi.1000376.t005
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sites. There is experimental evidence that at least some long

disordered chains are not uniform concerning binding strength but

contain short stretches of strongly interacting residues separated by

segments that interact with the partner only weakly if at all [19]. In

these cases, it is expected that the predictor will be unable to

identify the weakly interacting parts since – though these parts

may also form interchain contacts – they would not be able to bind

to the partner in the absence of their sequential neighbors. The

distribution of predicted binding regions for the short and long

disordered chains in Figure 5A shows a strong preference for

predicting multiple interacting regions for longer chains. This

inevitably yields lower residue based TPR but the segment based

TPR is not expected to drop. Testing the predictor on the long

disordered data confirms this assumption with a decreased residue

based TPR of 47.7% (as opposed to 65.8% obtained on running

the final predictor on the whole set of short disordered complexes)

but with a basically unchanged segment based TPR of 78.6%

(compared to the 76.1% calculated on short disordered complex-

es). These data suggest that the method either finds short

disordered binding sites as a whole or completely misses it.

However, this may not be true for long binding regions. Figure 5B

shows the distribution of the fraction of amino acids successfully

identified during prediction in the two types of binding sites. The

effect can clearly be seen as about 59% of short binding regions

are either fully recovered or are completely missed (the sum of the

rightmost and leftmost columns) whereas this ratio is only about

29% for long binding sites.

This type of behavior is illustrated on the disordered human

p27. This protein is involved in controlling eukaryotic cell division

through interactions with cyclin-dependent kinases. Its kinase

inhibitory domain binds both subunits of the CDK2-cyclin A

complex in an extended conformation (PDB ID: 1jsu [62]). It is

known from kinetic measurements that the binding of p27 is

hierarchical through its three domains: first, the D1 domain

(residues 25–36) binds to cyclinA which anchors the neighboring

LH domain (residues 38–60) that exhibits transient helical

structure in monomer state as well [63]. After the binding of D1

this transient structure is stabilized and positions the rest of the

chain (D2 domain, residues 62–90) in the correct position to bind

to CDK2.

Figure 6 shows the prediction output for p27. Four interacting

regions are identified with the first one (27–37) clearly corre-

sponding to D1. The gap between the first two regions (38–58)

coincides with the weakly interacting LH domain. The last three

regions (59–67, 74–77 and 79–90) cover the strongly interacting

D2. Figure 6 also shows the number of atomic contacts/residue for

p27 (averaged in a window of size 3). This contact number profile

exhibits well pronounced peaks that line up with the regions that

are predicted by our algorithm. The figure also shows the four

predicted regions mapped to the crystal structure of the complex.

Wiskott-Aldrich Syndrome protein (WASp)
The examples discussed so far represent various fragments of

proteins. Here we present an additional case showing the

prediction output for a complete protein sequence.

Table 6. Secondary structure distributions in the short
disordered binding site dataset.

Total in PDB

Interacting

residues Correctly identified

Number

Fraction

(%) Number

Fraction

(%) Number

Fraction

(%)

H 297 35.7 200 33.6 144 36.7

E 25 3.0 25 4.2 23 5.9

C 510 61.3 371 62.2 225 57.4

Total 832 596 392

The number and fraction of amino acids in different secondary structures in the
disordered chains of the complexes. The three groups show these data for all
the amino acids in the PDB structures, the ones in interaction and the ones that
are correctly identified as part of binding site by ANCHOR.
doi:10.1371/journal.pcbi.1000376.t006

Figure 4. Secondary structure distributions in the short disordered binding site dataset. Fraction of amino acids in different secondary
structures in the disordered chains of the complexes. The three groups denote the fractions calculated on all the residues in the PDB structures, only
the interacting ones and the ones correctly identified by the predictor.
doi:10.1371/journal.pcbi.1000376.g004
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The human Wiskott-Aldrich Syndrome protein (WASp) is a 502

residue long protein that is expressed in the cells of the

hematopoietic system [64]. Its mutations can be linked to the

Wiskott-Aldrich Syndrome (WAS), a disease characterized by

actin cytoskeleton defects leading to deficiencies in blood clotting

and immune response. The protein is composed of various

functional domains. It contains the WH1 domain near the N

terminus (residues 39–148), the GTPase-binding domain (GBD,

230–310), a polyproline-rich region and a C-terminal verpolin

homology/central region/acidic region (VCA, 430–502) domain

[65] that also contains the WH2 domain (430–447). Apart from

the structured WH1 domain, it is predicted to be largely

disordered and contains several low complexity regions (enriched

in P, G and acidic amino acids). There is experimental evidence

that the activated WASp hubs a number of interactions with

partners including CDC42, RAC, NCK, FYN, SRC kinase FGR,

BTK, ABL, PSTPIP1, WIP, and the p85 subunit of PLC-gamma

as well as the Arp2/3 complex. However, the location of many of

these binding regions is not known. The domain structure of

WASp is shown in Figure 7 together with the known binding

regions.

In its inactive state WASp exists in an autoinhibited form with

the GBD domain bound to the VCA domain. When WASp is

activated, the GBD domain is bound to CDC42 and this

interaction disrupts the GBD-VCA interaction. This initiates a

conformational change where WASp opens up and becomes able

to bind to the Arp2/3 complex leading to its activation and actin

nucleation. Both GBD and VCA regions were shown to be

disordered in their free state [65,66], with GBD adopting a loosely

packed, compact conformation. However, the structure of both

complexes could be determined using NMR, by covalently linking

GBD to CDC42 or the VCA region, respectively [65,67]. In these

two structures WASp GBD adopts related but distinct folds. The

plasticity that can be seen by comparing these two complexes is

enabled by the absence of discrete tertiary structure in isolation. As

it can be seen on Figure 7, ANCHOR captures these disordered

binding sites correctly.

It is known that WASp is able to bind to SRC Homology 3

(SH3) domains through one of its proline rich regions although

the exact binding site is not known. The interaction with SH3

domains is usually mediated by a short, linear sequence motif

that is present in the interaction partner. In the collection of

Eukaryotic Linear Motifs (ELM) database (http://elm.eu.org/

[68]) there are five different motifs annotated as SH3 recognition

sites. Multiple instances of the following three can be found in

human WASp: LIG_SH3_1, LIG_SH3_2 and LIG_SH3_3

represented by the following consensus sequences: [RKY]..P..P,

P..P.[KR] and …[PV]..P, for interaction with Class I/ClassII

SH3 domains and those SH3 domains with a non-canonical

Class I recognition specificity, respectively. The found motifs are

clustered in two separate regions mainly falling into the proline-

rich regions of WASp (Figure 7). Although there is no direct

evidence for the location of interaction with SH3 domains on

human WASp, the interaction sites have been identified for

Las17 [69], the yeast homologue of this protein. In total, four

distinct regions containing multiple binding sites were identified

experimentally in Las17 that interact with various SH3 domains.

These sites correspond to the proline rich regions in WASp

Figure 5. Prediction accuracies and segmentation for the short and long disordered binding sites. (A) The distribution of the number of
binding segments predicted in short (white bars) and long (black bars) binding sites. It shows the segmented nature of longer binding sites. (B) The
distribution of the fraction of correctly recovered interacting residues in both the short (white bars) and long (black bars) disordered binding sites.
doi:10.1371/journal.pcbi.1000376.g005
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(155–194 and 306–427) that also match with several SH3

binding motifs. As linear motifs were shown to have a preference

to reside in disordered regions [70], it is plausible to expect

ANCHOR to be able to recognize the SH3 binding region of

WASp. In accordance with this, both regions containing putative

SH3 binding sites contain binding sites predicted by ANCHOR.

This prediction can restrict the candidate sequence regions for

SH3 binding and can guide experimental studies to localize true

binding sites.

Complete proteome scans
In order to gain some evolutionary insight concerning

disordered binding sites, the predictor was run on the 736

complete proteomes (53 archaea, 639 bacteria and 44 eukaryota,

see Dataset S5, Dataset S6, and Dataset S7, respectively) that are

currently available from the SwissProt database (ftp://ftp.expasy.

org/). In agreement of previous analyses [5,6] there is a clear trend

of increasing amount of protein disorder as the complexity of the

organism increases (see Figure 8). However, Figure 8 also shows

that the fraction of disordered amino acids predicted to be in

disordered binding sites increases even compared to fraction of

disordered residues, as the complexity of organisms grows.

Generally, archaea have the least amount of both disorder and

binding sites. On the other hand, eukaryota have generally the

largest ratio of disordered and binding amino acids with bacteria

being between these two groups on average. However there are a

few exceptions to these general trends, marked separately on

Figure 8.

Figure 6. ANCHOR prediction for human p27. Top: Number of atomic contacts (green) and prediction output (blue) and for the N-terminal
binding region of human p27. ‘‘D1’’and ‘‘D2’’ denote the two strongly interacting domains (red boxes) and ‘‘LH’’ denotes the weakly interacting linker
domain between them (yellow box). Bottom: Crystal structure of human p27 (red and yellow) complexed with CDK2 (magenta) and Cyclin A (blue)
(PDB ID: 1jsu [62]). Red parts denote regions that are predicted to bind by the predictor. These regions correspond to the experimentally verified
strongly binding regions of p27. The figure was generated by PyMOL.
doi:10.1371/journal.pcbi.1000376.g006
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Considering archaea, mesophiles generally contain a larger

amount of disorder and a larger fraction of disordered binding

sites than most extremophiles (thermophiles, cryophiles and

acidiphiles). However the group of halophile archaea (archaea

that favor high saline concentration) is a distinct exception with

fraction of disordered amino acids ranging from 0.2 to 0.25 as

opposed to other extremophiles’ values not exceeding 0.07. This

group includes all the halophile archaea in our study, namely

Figure 7. ANCHOR prediction for humanWASp. Red bars mark known interaction sites, green box marks the globular WH1 domain, blue boxes
mark the GBD and VCA domains. Light red boxes indicate the regions with putative SH3 domain interaction sites.
doi:10.1371/journal.pcbi.1000376.g007

Figure 8. Fraction of disordered and disordered binding site residues in complete proteomes. The number of amino acids in disordered
binding sites divided by the number of amino acids in disordered regions plotted as a function of the number of amino acids in disordered regions
divided by the total number of residues in the proteome of the organism for the 736 complete proteomes deposited in the SwissProt database,
colored according to the three kingdoms of life. The outlying points are marked with the name of the corresponding organism.
doi:10.1371/journal.pcbi.1000376.g008
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Natronomonas pharaonis, Haloarcula marismortui, Haloquadratum walsbyi

and two types of Halobacterium salinarum. Cenarchaeum symbiosum, the

only example of obligate endosymbiont among archaea also has an

unusually large amount of disordered protein segments in its

proteome (0.12). While Cenarchaeum symbiosum is closely related to

thermophile archaeas, it is adopted to the much lower living

temperature of its host [71]. This adaptation could explain the

relatively large amount protein disorder and disordered binding

sites. In general, these clear differences in the predicted disorder

between various archaea organisms points to different strategies to

adapt to various extreme environmental conditions resulting in

biased amino acid compositions. However, we cannot rule out the

possibility that under such extreme conditions, as high salt

concentration or high temperature, the amount of disorder can

be over- or underpredicted depending how these conditions affect

the presence of protein disorder.

Among bacterial proteomes, there are a few examples of

organisms that seem to utilize a surprisingly large fraction of their

disordered amino acids in binding. The three most extreme cases

(Carsonella ruddii, Sulcia muelleri and Buchnera aphidicola subsp. Cinara

cedri) are marked separately on Figure 8. These are the three

smallest complete bacterial proteomes, none of them reaching the

size of the smallest archaea proteome. These organisms present

extreme cases of streamlined genomes as a result of endosymbiosis

[72–74]. As these proteomes are very small, the predicted amount

of disorder and disordered binding sites are within the false

positive range, and should be treated more cautiously.

Eukaryotes tend to appear more consistent both in using larger

amount of disordered residues and larger fraction of disordered

residues for binding compared to the other two kingdoms

(Figure 8). The only notable outlier both in terms of extremely

low amount disordered proteins and disordered binding sites is

Encephalitozoon cuniculi. This organism is the only microsporidian

parasite in our dataset and has an extremely small proteome. This

lack of complexity and dependence on a eukaryotic host to

function might explain the lack of disordered proteins.

Figure 9. Length distribution of disordered and disordered binding sites in complete proteomes. The length distribution of (A) the
disordered protein segments determined by IUPred and (B) predicted disordered binding sites determined by ANCHOR for the 736 complete
proteomes available, grouped according to the three kingdoms of life.
doi:10.1371/journal.pcbi.1000376.g009
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The length distributions of the predicted disordered regions and

binding sites in the three kingdoms of life was also analyzed and

are shown in Figure 9A and 9B, respectively. As complexity

increases, longer disordered segments are preferred, and the

difference between eukaryota and lower complexity organisms

becomes even more apparent for longer regions (over 30 residues).

A similar trend can be observed in the length distribution of

disordered binding sites. While in archaea and bacteria predicted

binding regions are generally below 30 residues, longer binding

sites in eukaryota organisms are much more common. There are

at least three different effects that can contribute to this

phenomenon. First, as the number of binding sites rise there is

also an increasing possibility of these binding sites becoming very

close to each other or even overlapping with each other. This

scenario was demonstrated in the case of the N-terminal domain of

p53, as shown in Figure 1. Second, extremely large disordered

binding regions may be needed for special functions. Some

members of the mucin protein family provide an example for this.

Human MUC1 contains a large repeat region (20–120 repeats,

one repeat being 20 amino acids long) that enables it to aggregate

and to perform its function [75]. As each repeat is correctly

identified as a disordered binding site, the whole repeat region is

predicted as one large binding region. This mechanism can create

binding sites up to the length of several hundreds of residues in

extreme cases. Third, we cannot exclude the possibility that longer

binding sites are not always segmented by weakly interacting

regions like in the case of p27, thus forming long, continuous

binding regions. Nevertheless, the majority of predicted binding

sites is shorter than 30 residues, although such restriction on the

length of disordered binding sites was not enforced.

Discussion

Regions undergoing disorder-to-order transitions upon binding

are essential elements in the molecular recognition process

involving disordered proteins. The main property of these binding

regions is that they can exist in a disordered state as well as in

bound state, adopting at least partially a well-defined conforma-

tion. The presence of these two separate states discriminates them

from monomeric globular proteins as well as from complexes

formed between globular proteins and from disordered proteins in

general. They are also expected to differ from dual personality

fragments [76], which occur within globular proteins, however,

mostly as a result of perturbations of environmental conditions. In

this work we aimed to recognize such disordered binding regions

from the amino acid sequence. So far, the limited number of well

characterized examples hindered the development of general

prediction methods. Nevertheless, biophysical considerations

suggest that in most cases there is a strong signal in the amino

acid sequence highlighting regions involved in coupled folding and

binding. These regions are linear in sequence, unlike in the case of

globular proteins, where distinct sites in the amino acid sequence

are brought together to form the interface for interaction [43]. An

additional difference is that binding of disordered proteins is

driven by a large enthalpic component to compensate for the

entropy penalty due to the loss of conformational freedom [9].

These features result in a relatively short sequence segment

containing residues with a pronounced tendency to make

interactions, leading to a characteristic sequence signal.

Our approach relies on a basic physical model of disordered

binding sites and it is based on modeling the interaction capacity

in the free disordered state and in the bound ordered state.

Previously, it was shown that ordered proteins can be discrimi-

nated from disordered proteins based on estimated pairwise

energy content and this approach was implemented in IUPred, a

general disorder prediction method [53]. This method takes into

account that disorder/order tendency can be modulated by the

sequential neighborhood simply at the level of amino acid

composition, without attempting to model the specific interactions.

Taking it one step further, the same energy estimation calculations

were used to identify disordered binding regions in proteins. Our

model assumes that the specific properties of disordered binding

sites are dictated by the combination of preferences to bind to an

ordered protein on the one hand, and the ability to remain in a

disordered state in isolation, on the other. Based on this simple

model, ANCHOR achieved approximately 67% accuracy at

predicting 5% false positive rate (Tables 2–4). Furthermore, this

approach was validated by the ability to reproduce the specific

amino acid composition of disordered binding sites, that is distinct

from that of ordered proteins as well as disordered proteins in

general (Table 5).

During binding, the formation of intermolecular contacts is

accompanied by the formation or the stabilization of secondary

structure elements. The secondary structure composition of the

binding sites is highly unequal (Table 6 and Figure 4). The most

dominant secondary structure element adopted in the bound

conformation is coil, while b strand conformation is rare. Helical

conformations are observed as frequently in disordered complexes

as in globular proteins [27]. It was found that the adopted

secondary structure can be predicted from the amino acid

sequence with similar accuracy as in the case of globular proteins,

suggesting that the adopted secondary structure can be imprinted

into the sequence of the binding motif [27]. The secondary

structure observed in the complex can also be dictated by the

template structure. An extreme example of this is the C-terminal

region of p53 (see Supporting Information), observed in all three

secondary structure classes [32]. It is clear that not all of these

conformations can be the result of inherent preferences.

Interestingly, our prediction method does not seem to be sensitive

to the adopted secondary structure conformation and it works with

the same accuracy for all secondary structure conformations

(Table 6 and Figure 4). This independence of secondary structure

elements underlines the generality of ANCHOR. These results

also suggest that disordered binding sites can be recognized

without taking into account of the adopted secondary structure in

the majority of cases. Nevertheless, the details of conformational

preferences can be still crucial in selecting the specific binding

partner, or determining the kinetic and thermodynamic properties

of the associations.

Beside our algorithm, a previously published method called a-

MoRF predictor also exploited a general disorder prediction

method to recognize short binding elements [48,52]. Although the

direct comparison between the two methods was not possible,

because the a-MoRF predictor is not yet publicly available, some

basic differences between the two methods should be noted. First,

the a-MoRF predictor directly relies on the prediction output of

PONDR VXLT, which essentially predicts binding regions as

ordered structural elements, and a subsequent neural network is

applied to filter out valid disordered binding sites. Although very

high accuracies were reported for the performance of the neural

network based filtering, the complete method is limited by finding

dips based on PONDR VLXT [49–51]. Therefore it should be

taken into account that this program is a first generation

prediction method that was trained on only 15 proteins. In the

case of IUPred, dips corresponding to certain binding sites were

also observed, although to a smaller extent [48,53]. This

observation, however, is not directly exploited in our prediction

method. Instead, the core parameters of the energy prediction of
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IUPred are used to create three separate scores characterizing

three important attributes of disordered binding regions. The

second main difference is that ANCHOR is not restricted to a

single secondary structure class like the a-MoRF predictor that

was trained to recognize only a-helical segments. The example of

the C-terminal region of p53 (Figure S2), where four short

overlapping regions were shown to bind in different conformations

representing all three secondary structure classes, indicates that

such restriction can be a serious disadvantage for recognizing some

extremely adaptable disordered binding motifs.

An alternative approach for binding site identification is based

on the observation that protein-protein interactions are often

mediated through short linear motifs (approximately three to eight

residues) [77]. Such motifs are defined by a consensus pattern,

which captures the key residues involved in function or binding.

Prominent examples include the nuclear receptor box motif,

MDM2 binding sites, SH2/SH3 domain recognition patterns or

14-3-3 domain binding sites [68]. Although there are known

examples of motifs that reside within globular domains, many of

them are required to be in a disordered region to function properly

and it was suggested that such motifs share many similarities with

disordered binding regions [70]. Our preliminary results support

previous observations of the partial overlap between short linear

motifs and disordered binding segments. Nevertheless, short

disordered binding sites and sequence specific linear motifs

capture different aspects of certain binding regions. Linear motifs

are defined on the basis of a per residue binding strength, and they

are specific to a certain partner or to a group of partner molecules.

However, such short linear motifs can also occur purely by chance,

with no biological significance. Also, sequence patterns alone

cannot ensure the accessibility of the site and the potential

flexibility of the binding region that could be necessary for the

complex formation. Complementary to sequence motifs, AN-

CHOR aims to capture a broader structural context. Based on

their specific structural properties, it can recognize disordered

binding regions that are capable of undergoing disorder-to-order

transition. The predictions are made without taking into account

the partner molecules and are expected to be less sensitive to

sequence details. For certain motifs, this molecular environment

can be a prerequisite of functionality and could help to identify

biologically significant binding motifs.

In our work we assumed, that short binding regions undergoing

disorder-to-order transition can be viewed as elementary binding

units that are necessary for the molecular recognition. Therefore,

such examples were used for the optimization of our method. In

accordance with their elementary unit picture, ANCHOR

recognized them generally as a single continuous binding site

(Figure 5). Regions undergoing disorder-to-order transition,

however, are not limited to such short segments as there are

several examples of longer disordered segment becoming ordered

upon complex formation. Such segments can be as long as 100

residues. However, these longer regions can contain segments

which bind only weakly or might not become ordered at all

[63,78,79]. This segmentation of longer binding regions can occur

for structural reasons. The segmentation can prevent the

accumulation of the critical amount of residues that would lead

to the formation a collapsed structure or non-specific aggregates.

The possible functional advantages of the segmented nature of a

binding site were demonstrated for the well characterized example

of p27. The kinase inhibitory domain of p27 can be divided into

several subdomains which dock and fold in a stepwise manner on

the surface of the Cdk2-cyclin A complex [19]. These segments

can also evolve independently, increasing the repertoire for

specificity for different cellular location or species. Intervening

segments of higher flexibility are accessible for modifications such

as phosphorylations and ubiquitinations. This way p27 can

integrate and process various signals to regulate cell proliferation,

in which the flexibility and modularity of p27 is essential [63]. The

segmented nature of binding is reflected in the prediction output,

with predicted binding sites corresponding to the strongly

interacting regions (Figure 6 for p27, and Figure S4 for a similar

example, calpastatin). In the dataset of longer disordered binding

segments, we found this segmentation to be quite general. In these

cases, the predicted sites generally give only partial coverage of the

PDB structure, and multiple binding sites are predicted in the

majority of cases (Figure 5). This suggests that our prediction

method is likely to find those sites that interact more strongly,

anchoring the disordered segments to their partner protein. While

the segmented nature of binding is prominent in the case of long

binding regions, to a smaller extent, it can also affect shorter

binding regions. Indeed, around 20% of short disordered binding

regions are predicted as 2 or 3 segments (Figure 5). This could also

account for the significantly lower per residue efficiency compared

to the segment based efficiency.

By looking at further individual examples, one can already see

remarkable variations in the details of disorder-to-order transitions

even within the limited collection that is available today. The

adopted conformation in these complexes can be quite different,

both in terms of secondary or tertiary structure. Furthermore, the

transition to an ordered structure might not be complete [28]. This

could leave terminal residues or linker regions flexible and

inaccessible to structure determination. It was also suggested that

specific binding can be possible even without adopting a well-

defined conformation as in the case of the f-chain of T-cell

receptor [80] (see Figure S6). Differences are also present at the

level of the sequence. Some binding regions rely largely on

hydrophobic or aromatic residues (MDM2 binding regions,

Figure 1), others use proline rich regions (WASp SH3 binding

regions, Figure 7). Disordered binding regions can contain

conserved linear motifs, while large divergence in sequence was

noted in other cases (C terminal domain of histones [81]). These

examples represent multiple ways disordered regions can be

utilized for binding. A single protein sequence can contain several

distinct binding regions, however, a single region can be involved

in binding to multiple partners, or use these regions in

combination to hub several interactions (p53 – see Figure 1 and

Figure S2, WASp – see Figure 7). In an alternative scenario,

disorder present in the partner molecules allows to bind a well-

folded protein by a large number of proteins (b-catenin [82],

Figure S3). Even further variations are expected as the number of

examples will grow in the future. Nevertheless, the success of

ANCHOR confirms our hypothesis, that despite these differences

disordered binding regions have a common property that

predispose them for coupled folding and binding.

The occurrence of disordered binding sites is clearly tied to the

presence of disordered protein regions. Their relationship was

further analyzed at the level of complete proteomes. Previous

studies have shown that the amount of predicted disordered

regions increases with the complexity of organisms throughout

evolution and reaches a high level in multicellular organisms [5,6].

This increase can be mostly attributed to the appearance of long,

domain-sized segments of protein disorder or fully disordered

proteins (Figure 9A). Our analysis showed that the amount of

disordered binding segments increases in eukaryotes in a similar

way, however, their fraction is elevated even compared to

disordered regions in general (Figure 8). The observed trend is

valid through a wide range of organisms, and occasional

exceptions occur either due to adaptation to extreme habitat
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conditions, or as a result of endosymbiosis. These findings imply

that the newly introduced disordered proteins and protein

segments mainly serve as a carrier for new binding regions in

eukaryotic organisms. The importance of disordered regions in

protein-protein interactions is also supported by the increased ratio

of disordered proteins among hub proteins [30,31]. Disordered

segments are often involved for complex signaling and regulatory

processes [20] such as cell cycle control, gene regulation or signal

transduction in the intracellular region of transmembrane proteins

[83]. These processes rely on interactions involving multiple

partners and high specificity/low affinity interactions, that

disordered binding segments can provide by their very nature.

The disordered segments can harbor multiple binding sites which

can act relatively independently. In other cases segmented binding

sites can be involved in simultaneous binding to larger complexes.

Overlapping binding sites (such in the case of p53 N and C

terminal regions) suggest competition between binding partners.

We are only beginning to comprehend how disordered binding

regions are exploited to provide versatile interaction sites in

proteins.

In conclusion, disordered binding regions represent a specific

subclass of disordered proteins that can undergo a disorder-to-

order transition upon binding. These binding sites generally have

distinct properties both structurally and functionally. Due to the

inherent flexibility, these regions are difficult to study experimen-

tally [84], making specific prediction methods even more valuable.

While there are several methods available for prediction of

disordered regions [85,86], recognizing disordered binding sites

was regarded as a more challenging problem [9] due to the limited

number of well-characterized examples. In this work we report a

general method to recognize disordered binding sites based on a

basic biophysical model. Our method relies on a simple energy

estimation procedure that was developed earlier for the IUPred

disorder prediction method. This way, the problem of small

datasets can be largely avoided. We showed that these regions can

be characterized by highly disordered sequential neighborhood,

unfavorable intrachain energies and more favorable interaction

energies with a globular partner. The combination of these

properties allowed the recognition of disordered binding sites

independent of their secondary structure or amino acid compo-

sition, underlining the generality of the method. As such binding

sites are essential functional elements of disordered proteins, their

prediction directly provides information about functionally

important residues in these proteins. In this way, ANCHOR

broadens the repertoire of prediction methods for functional sites

in proteins aiming to decrease the large number of unannotated

sequences [87]. Generally, the complete understanding of protein-

protein interactions involving disordered binding sites requires the

knowledge of their partners as well as possible post-translational

modifications that can influence their binding. While predictions

can be made even without taking the partner molecule into

account, certain cases might require incorporating the specific

feature of the partner. Nevertheless, our method can provide the

starting point for such scientific explorations, by finding potential

regions involved in such binding.

Methods

Databases
The primary source of data for the present analysis is a carefully

assembled dataset of binding regions undergoing disorder-to-order

transition. The strict requirement of the experimental verification

of both the disordered status in isolation and the formation of an

ordered structure in complex distinguishes our dataset from a

previously collected dataset for disordered binding regions [88].

The length of disordered regions involved in the binding can vary

on a large scale. In the case of longer regions it is not guaranteed

that each residue is equally important for binding, therefore

complexes of short disordered regions were treated separately, and

only these were used for tuning the method.

Short disordered complexes. Complexes from the PDB

[89] were collected by scanning the chains in the PDB entries

against the Disprot database [90]. A complex was accepted if it

consisted of a chain with length between 10 and 30 residues that

was found in the Disprot database as part of an annotated

disordered segment and at least one interacting partner that was at

least 40 residues long. Furthermore, complexes containing

transmembrane proteins, RNA or DNA, chimeras, disulfide

bonds between the disordered and ordered chains or a large

number of unknown residues (marked with an X) were excluded.

A few experimentally verified disordered complexes missing from

Disprot were added to this set [42,43,62,91–93]. A sequence

similarity filter of 50% has also been applied to remove closely

related proteins or protein segments. This procedure yielded a set

of 46 complexes that are listed in Dataset S1.

Long disordered complexes. Complexes containing long

disordered chains were collected in the same fashion as short ones

but with different criteria for the length of the interacting partners.

Here the length of the disordered chains was required to be at least

30 residues and they had to have an interacting partner of 70

residues or more. The resulting set of 28 complexes is listed in

Dataset S2.

a-MoRFs dataset. This dataset originally consisted of 53

complexes [48]. Complexes that were contained in our Short

disordered complexes dataset as well were excluded in order to get

a truly independent set. Three complexes were further removed

from the remainder since one of them is part of the ribosome

subunit S23 and the other two can be found in the PBD with

structures containing only the disordered chain – that is they are

presumably capable of folding on their own. The rationale behind

this exclusion is that our predictor is neither trained to recognize

RNA/DNA-protein interactions nor to identify globular-globular

interfaces. This left 40 complexes in total.

Globular proteins. Globular proteins were collected from

PDB entries that had only one chain of at least 30 residues [53].

Also transmembrane proteins and complexes with RNA/DNA

were filtered out. This dataset contains 553 proteins and is

presented in Dataset S3.

Ordered complexes. This set contains protein complexes

that consist of two partners both of which are ordered. These data

were taken from the literature [43]. The dataset does not include

cases of crystal packing dimers, chimeras and fragments and

consists of 72 complexes (Dataset S4).

Disordered proteins. For the analysis of disordered proteins

and protein segments the 3.7 version of Disprot database was used

(http://www.disprot.org/) [90], considering only annotated

disordered segments of 10 residues or longer.

Parameter optimization
The optimal parameters were determined by a three fold cross-

validation, by dividing both our negative and positive datasets

(Globular proteins and Short disordered complexes, respectively)

into three parts. In each turn we used two parts for training and

the remaining part for testing. To avoid any bias, the different

subsets were chosen such that the distribution of chain lengths in

both the positive and negative sets and the distribution of

secondary structure types in the positive set were approximately

the same. Our approach relies on IUPred, a general disorder
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prediction method, and its energy predictor matrix. These

parameters (ie. the elements of the energy predictor matrix) have

been determined earlier, independently of disordered binding

regions. Only five additional parameters, w1, w2, p1, p2 and p3 were

optimized for this specific problem and were selected by a grid search

procedure. Specifically, w1 was varied in the range of 20 to 100 in

steps of 10 (giving 9 possible values), w2 was varied in the range of 5

to 35 in steps of 2 (giving 16 possible values), and p1, p2 and p3 was

selected from 1000 sets of randomly generated values. Taking into

account that the prediction performance is insensitive to the norm

and the sign of the vector corresponding to the p1, p2 and p3 values,

the search was restricted to 1000 random sets that were evenly

distributed on the surface of the upper half of the unit sphere. This

means that p1 and p2 were randomly selected from the interval

[21;1] and p3 was selected from the interval [0;1] in a way that the

sum of their squares is always equal to 1. This yielded 1000 different

(p1, p2, p3) combinations. These, combined with all possible values of

w1 and w2 gave 144,000 different parameter sets in total. These were

considered in order to select the optimal one, containing the five

optimal parameters for each round of the cross-validation.

To quantify the performance of the predictor given a set of

parameters we calculated the True Positive Rate (TPR) at False

Positive Rates (FPR) fixed at 5% calculated on globular proteins as

the negative set. However, a full characterization of the

performance of the algorithm would also require a set of

disordered proteins that are known not to bind to globular

proteins. Unfortunately, such dataset cannot be constructed since

there is hardly any way to give evidence for a protein that it does

not contain binding sites. This problem was addressed by

calculating the fraction of amino acids that are predicted as

binding sites in general disordered regions of Disprot database that

are correctly recognized as disordered by IUPred. This fraction

was denoted as F. Optimal parameters should combine high TPR

with low F at the expense of very low FPR.

During optimization of the algorithm, the performance on three

different datasets needed to be monitored at the same time (set of

globular proteins, set of disordered binding sites and Disprot). The

best parameter set was chosen manually, by reducing the

parameter set in a step-wise manner based on the following steps:

1, Calculate TPR (at fixed FPR=5%) and F for each of the

144,000 candidate sets of parameters

2, Discard all for which F.50%

3, Discard all for which TPR,60%

4, From the remainder choose the 20 for which the difference

between TPR and F is the largest

5, Choose the one for which TPR is maximal (the TPR-F

difference among these 20 sets vary only within a range of less then

0.02 so that is not a good measure to choose the best one)

The negative and positive sets were divided into three parts,

resulting in three different optimal parameter sets. The final

predictor algorithm is constructed by averaging these three

outputs. As the training sets only contained binding regions of at

least 10 amino acids and we aim to identify at least 5 residues of

each region, all predicted binding sites were removed that did not

exceed 5 consecutive residues. A schematic figure of the training

procedure is given in Figure S1.

Availability
ANCHOR is available upon request from the authors.

Supporting Information

Dataset S1 46 complexes of short disordered and long globular

proteins. Column 4 contains the secondary structure type of the

bound disordered chains based on the structure found in the PDB

record as defined in Data and Methods. Thick lines separate the

three groups used during parameter optimization.

Found at: doi:10.1371/journal.pcbi.1000376.s001 (0.07 MB

DOC)

Dataset S2 28 complexes of long disordered and long globular

proteins. Column 4 contains the secondary structure type of the

bound disordered chains based on the structure found in the PDB

record as defined in Data and Methods.

Found at: doi:10.1371/journal.pcbi.1000376.s002 (0.05 MB

DOC)

Dataset S3 553 monomeric globular proteins that were used as

a negative dataset [2]. Columns correspond to the grouping used

during parameter optimization.

Found at: doi:10.1371/journal.pcbi.1000376.s003 (0.20 MB

DOC)

Dataset S4 72 complexes of ordered proteins [3]. The

interaction is considered between the shortest chains and its

interaction partners.

Found at: doi:10.1371/journal.pcbi.1000376.s004 (0.08 MB

DOC)

Dataset S5 The 53 complete archaea proteomes available from

SwissProt (ftp://ftp.expasy.org/) used for full proteome scans. The

fraction of total amino acids in disordered regions and the fraction

of disordered amino acids in disordered binding sites are indicated

together for each organism.

Found at: doi:10.1371/journal.pcbi.1000376.s005 (0.09 MB

DOC)

Dataset S6 The 639 complete bacteria proteomes available

from SwissProt (ftp://ftp.expasy.org/) used for full proteome

scans. The fraction of total amino acids in disordered regions and

the fraction of disordered amino acids in disordered binding sites

are indicated together for each organism.

Found at: doi:10.1371/journal.pcbi.1000376.s006 (0.86 MB

DOC)

Dataset S7 The 44 complete eukaryota proteomes available

from SwissProt (ftp://ftp.expasy.org/) used for full proteome

scans. The fraction of total amino acids in disordered regions and

the fraction of disordered amino acids in disordered binding sites

are indicated together for each organism.

Found at: doi:10.1371/journal.pcbi.1000376.s007 (0.08 MB

DOC)

Figure S1 Development of ANCHOR. In the first step, our

Short Disordered Binding Sites dataset and Globular Proteins

dataset (positive and negative datasets) are split up and only 2/3 is

used in the subsequential steps. Then a parameter set (w1, w2, p1,

p2, p3) is selected from the 144,000 random ones. This parameter

set is used to calculate S, Eint and Egain for every position in every

sequence in the three input datasets using the fixed energy

predictor matrix P (see Theory). Based on this calculations the

evaluating measures are calculated: TPR is calculated on Short

Disordered Binding Sites, FPR is calculated on Globular Proteins

and F is calculated on Disordered Proteins. Based on these

measures, the best parameter set out of 144,000 is chosen (see

Data and Methods). Then this parameter set is evaluated on the

remaining one third of the datasets. These results are reported in

Table 3. This procedure is repeated for all three subsets of Short

Disordered Binding Sites and Globular Proteins. The output of the

three optimized predictors are combined into one final predictor

by averaging their output.

Found at: doi:10.1371/journal.pcbi.1000376.s008 (0.05 MB PPT)
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Figure S2 ANCHOR prediction output for the C-terminal

domain of human p53. Prediction for the C-terminal disordered

domain of human p53. The regulatory binding site around

residues 375–390 is able to adopt all three secondary structural

elements upon binding to globular partners [4].

Found at: doi:10.1371/journal.pcbi.1000376.s009 (0.04 MB TIF)

Figure S3 ANCHOR prediction output for Tcf4. Prediction

output for transcription factor Tcf4 (blue) together with the

number of atomic contacts (green) determined in the complexed

form with Beta-catenin (PDB ID: 2gl7 [5]). Beta-catenin is known

to bind several disordered binding regions.

Found at: doi:10.1371/journal.pcbi.1000376.s010 (0.03 MB TIF)

Figure S4 ANCHOR prediction output for human calpastatin.

Prediction output for the I. domain of human calpastatin.

Subdomains A. B and C (grey boxes) are known to bind to

calpain and inhibit it. Subdomains A and C bind via a preformed

alpha-helix. while subdomain B does not exhibit strong structural

preference in solution [6].

Found at: doi:10.1371/journal.pcbi.1000376.s011 (0.04 MB TIF)

Figure S5 ANCHOR prediction output for the KID domain of

CREB. Prediction output for the KID domain of CREB. The

region marked with a grey box interacts with the KIX domain of

CBP via two preformed alpha-helices [7].

Found at: doi:10.1371/journal.pcbi.1000376.s012 (0.03 MB TIF)

Figure S6 ANCHOR prediction output for the f-chain of T-cell

receptor. Prediction output for the zeta-chain of the T-cell

receptor. The transmembrane region is marked with red box

and the three intracellular ITAM regions are marked with blue

boxes.

Found at: doi:10.1371/journal.pcbi.1000376.s013 (0.12 MB TIF)

Protocol S1 Protocol including references for the Supporting

Information.

Found at: doi:10.1371/journal.pcbi.1000376.s014 (0.04 MB

DOC)
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