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Abstract

Prediction of protein-protein interaction (PPI) sites is one of the most challenging problems in computational biology.
Although great progress has been made by employing various machine learning approaches with numerous characteristic
features, the problem is still far from being solved. In this study, we developed a novel predictor based on Random Forest
(RF) algorithm with the Minimum Redundancy Maximal Relevance (mRMR) method followed by incremental feature
selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual
disorder, secondary structure and solvent accessibility. We also included five 3D structural features to predict protein-
protein interaction sites and achieved an overall accuracy of 0.672997 and MCC of 0.347977. Feature analysis showed that
3D structural features such as Depth Index (DPX) and surface curvature (SC) contributed most to the prediction of protein-
protein interaction sites. It was also shown via site-specific feature analysis that the features of individual residues from PPI
sites contribute most to the determination of protein-protein interaction sites. It is anticipated that our prediction method
will become a useful tool for identifying PPI sites, and that the feature analysis described in this paper will provide useful
insights into the mechanisms of interaction.
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Introduction

Proteins play critical roles in nearly all biological events by

interacting with other proteins, compounds, RNA and DNA.

Understanding the characteristics of interaction sites is basic to

understanding the molecular recognition process. Proteins rarely

act in isolation and often exert their functions by being part of a

large molecular network, with roles coordinated via complicated

regulatory networks of protein-protein interactions (PPI). Thus,

protein complexes rather than individual components would

determine the behavior of a biological system. PPI are crucial to

nearly all aspects of cellular functions, including regulation of

signaling and metabolic pathways, protein synthesis, DNA

replication and gene translation, as well as immunological

recognition [1]. In particular, identifying the binding sites between

two interacting proteins would provide valuable clues for

understanding and determining the functions and structures of

protein complexes, for facilitating the identification of pharmaco-

logical targets and ultimately for drug design. Therefore,

predicting the interaction sites is of great significance.

Hitherto several methods have been proposed to predict PPI

sites and they can be roughly divided into three classes based on

the features used. Methods in the first class are based only on

sequence information [2,3,4]. The same dataset including 1,134

chains in 333 complexes with 59,559 contacting residues were

used in Ofran and Rost’s studies [3,4]. In their 2003 study [3],

when 70% of their predictions were accurate, they correctly

predicted at least one interaction site in 20% of the complexes (66/

333). In 2007, they proposed another method and improve the

prediction accuracy [4]. Methods in the second class integrate

secondary structural information and sequence information [5,6].

The work of Wang et al. [5] was based on a non-redundant data

set of heterodimers consisting of 69 protein chains and achieved a

sensitivity of 66.3%, a specificity of 49.7%, an accuracy of 0.654

and a correlation coefficient of 0.297. Zhou and his coworkers [6]

constructed a predictor trained on 615 pairs of nonhomologous

complex-forming proteins and tested on a different set of 129 pairs

of nonhomologous complex-forming proteins. With this method,

70% of the 11,004 interface residues were correctly predicted.

Methods in the third class use 3D structural information or

integrated 3D structure with sequence information for the

prediction [7,8,9]. Aytuna et al. [7] proposed an algorithm, which

was run on a template dataset of 67 interfaces and a sequentially

non-redundant dataset of 6,170 protein structures. The majority of

the predicted 62,616 potential interactions were verified in public

databases including Database of Interacting Proteins, Biomolec-

ular Interaction Network Database and PDB. In the work of Sikic

et al., they used the same dataset as those in Ofran and Rost’s

studies [3,4]. In this study, the sequence-based prediction achieved

a precision of 84% with a 26% recall. After combination with
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structural information, the prediction performance increases to a

precision of 76% and a recall of 38% [9]. Based on different kinds

of features, several machine learning approaches have been

proposed to predict protein-protein interaction sites, such as

neural networks [3,10], support vector machines (SVM)

[11,12,13], Bayesian network [14], hidden Markov models

(HMM) [15] and conditional random fields [16]. In Li et al.

[13], the best SVM model trained was tested on a set of 50

randomly selected proteins. The sensitivity, specificity, and MCC

for the prediction of the core interface residues were 60.6%,

53.4%, and 0.243, respectively. In Bradford et al. [14], a Bayesian

network was used to predict protein-protein binding sites with a

success rate of 82% on a benchmark dataset of 180 proteins. In a

study of Li and his coworkers [16], when 1276 non-redundant

hetero-complex protein chains were used as training and test set,

the best precision, recall, accuracy and MCC were 0.536, 0.595

0.692 and 0.328, respectively.

Although great progress has been made, the problem of

predicting interaction sites is still far from being solved. Several

challenges remain to be overcome. Firstly, specific biological

characteristics for precisely identifying protein-protein interaction

sites are not fully elucidated [17]. It seems impossible for any single

parameter to distinguish interaction interfaces from other surface

patches [11]. Therefore, many studies tried to combine multiple

characteristics to predict protein-protein interaction sites. Second-

ly, existing methods often utilize information derived directly from

amino acid sequences to predict protein-protein interaction

residues, which is not sufficient to excavate all important

information [18]. Thirdly, a skewed class distribution problem

exists ubiquitously in the prediction of protein interaction sites.

The quantity of interacting sites of a protein is usually much less

than that of non-interacting sites [17]. Such an imbalance tends to

cause overfitting and poor performance, especially affecting data

in the interacting class.

In this study, we developed a novel method to predict protein-

protein interaction sites based on a Random Forest (RF) algorithm

with a Minimum Redundancy Maximal Relevance (mRMR)

method followed by incremental feature selection (IFS). We not

only incorporated features of physicochemical/biochemical prop-

erties, sequence conservation, residual disorder, secondary struc-

ture and solvent accessibility, but also included five 3D structural

features to predict protein-protein interaction sites. Feature

analysis shows that structural features such as Depth Index

(DPX) and surface curvature (SC) contribute most to the

prediction. It is also shown via the site-specific feature analysis

that the features of individual residues from PPI sites contribute

most to the determination of protein-protein interaction sites.

Materials and Methods

Dataset
Our protein-protein interaction (PPI) datasets were retrieved

from the database of three-dimensional interaction domains (3did)

(http://3did.irbbarcelona.org) [19], collecting protein interactions

for which high-resolution three-dimensional structures are known.

3did exploits the availability of structural data to provide

molecular details for interactions between two globular domains.

We deleted the sequences whose lengths were less than 50 and

then deleted the homologous sequences in the original dataset of

the 120,622 chains with a threshold of 25% identity measured by

CD-HIT [20]. Finally, we obtained 6,488 chains specified by

3,353 PDB structures.

Then we extracted 21-residue protein segments centered on the

annotated protein-protein interaction residue, with 10 residues

upstream and 10 residues downstream of the interaction site. For

the peptides with lengths less than 21 amino acid residues, we

complement it with ‘‘X’’. We regarded the peptides centered on

the annotated interaction as positive data, while the other non-

interaction peptides are termed negative data. We obtained in

total 104,802 positive samples and 180,698 negative samples. After

removal of the peptides centered on a buried residue, 38,446

positive samples and 85,340 negative samples remained. We then

deleted the homologous peptides in the positive and negative

samples with a threshold of 40% identity measured by CD-HIT

[20], and obtained 13,427 positive samples and 12,429 negative

samples.

Features
PSSM conservation scores. Evolutionary conservation play

an important role in biological analysis. A more conserved residue

within a protein sequence may indicate that it is more important

for the protein function and thus under stronger selective pressure.

We used Position Specific Iterative BLAST (PSI BLAST) [21] to

measure the conservation status for a specific residue. A 20-

dimensional vector was used to denote probabilities of conserva-

tion against mutations to 20 different amino acids for a specific

residue. For a given peptide, all such 20-dimensional vectors for all

residues composed a matrix called the position specific scoring

matrix (PSSM). In this study, we used the PSSM conservation

score to quantify the conservation status of each amino acid in a

protein sequence.

Amino acid factors. Since each of the 20 amino acids has

different and specific properties, the composition of these

properties of different residues within a protein can influence the

specificity and diversity of the protein structure and function.

AAIndex [22] is a database containing various physicochemical

and biochemical properties of amino acids. Atchley et al. [23]

performed multivariate statistical analyses on AAIndex and

transformed AAIndex to five multidimensional and highly

interpretable numeric patterns of attribute covariation reflecting

polarity, secondary structure, molecular volume, codon diversity,

and electrostatic charge. We used these five numerical pattern

scores (denoted as ‘‘amino acid factors’’) to represent the respective

properties of each amino acid in a given protein.

Disorder score. Protein segments lacking fixed three-dimen-

sional structures under physiological conditions play important

roles in biological functions [24,25]. The disordered regions of

proteins allow for more modification sites and interaction partners,

as well as usually containing PTM sites, sorting signals, and

protein ligands. Therefore such regions are quite important for

protein structure and function [24,26,27]. In this study, VSL2

[28], which can accurately predict both long and short disordered

regions in proteins, was used to calculate a disorder score to denote

the disorder status of each amino acid in a given protein sequence.

Secondary structure and solvent accessibility. The pro-

tein structures playing important roles in protein function and the

post-translational modifications of specific residues may be

influenced by the solvent accessibility of the relevant residues. In

our study, we also used the structural features including secondary

structure and solvent accessibility to encode the peptides. Of these

features, the solvent accessibility and secondary structure, were

predicted by the predictor SSpro4 [29]. SSpro4 designates the

secondary structural property of each amino acid as ‘helix’,

‘strand’, or ‘other’, encoded as 100, 010 and 001 respectively, and

terms the solvent accessibility of each amino acid ‘buried’ or

‘exposed’, encoded as 10 and 01 respectively. Since buried

residues almost never occur in a protein interface, we removed all

Prediction of Protein-Protein Interaction Sites

PLOS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e43927



the peptides centered on a residue predicted to be buried in both

positive and negative samples [6,30].

Protrusion index and depth index. It has been shown that

geometrical properties of the protein surface can influence protein-

protein interactions [31]. In our study, we also used 3D structural

features including Protrusion Index (CX) and Depth Index (DPX)

to encode the peptides. These features were predicted by the

Protein Structure and Interaction Analyzer (PSAIA) from PDB

data. PSAIA was developed to compute geometric parameters for

large sets of protein structures to predict and investigate protein-

protein interaction sites [32].

Accessible Surface Area, Molecular Surface Area and
Surface Curvature

Research has shown that stability and solubility of proteins are

determined by the manner in which elements of the macromo-

lecular surface interact with solvent and small solutes in solution.

Therefore, macromolecular surface is one of the most important

factors in analyzing macromolecular structure and function. In this

study, we also considered three other 3D structural features

including accessible surface area (AS), molecular surface area (MS)

and surface curvature (SC) to encode the peptides. These features

were predicted by Program SurfRace from PDB data [33].

The feature space. For each residue of a protein segment,

we incorporated 34 features, including 20 features of the PSSM

conservation score, 1 disorder feature, 5 features of AAFactor, 3

features of secondary structure and 5 3D structural features from

PDB data. Overall, for the 21-residue peptide there are a total of

34621 = 714 features. For 21-residue peptides complemented with

‘‘X’’ residues, all features of these ‘‘X’’ residues are denoted as 0.

To determine whether 3D structural features can improve the

prediction performance, we also constructed another dataset

without the 5 3D structural features. Therefore, there are a total of

29621 = 609 features for this dataset.

mRMR method. We used the Minimum Redundancy

Maximal Relevance (mRMR) method to rank the importance of

the features [34]. The mRMR method ranks features based on

both their relevance to the target and the redundancy between

features. A smaller index of a feature denotes that it has a better

trade-off between maximum relevance to the target and minimum

redundancy.

Both relevance and redundancy were quantified by mutual

information (MI), which estimates the extent to which one vector is

related to another. The MI equation is defined as:

I(x,y)~

ðð
p(x,y) log

p(x,y)

p(x)p(y)
dxdy ð1Þ

In equation (1),x, yare vectors, p(x,y)is their joint probabilistic

density, and p(x)and p(y)are the marginal probabilistic densities.

V is used to denote the entire feature set. Vs is used to denote

the already-selected feature set containing m features and Vt is

used to denote the to-be-selected feature set containing n features.

The relevance D between the feature f in Vt and the target c can

be calculated by:

D~I(f ,c) ð2Þ

The redundancy R between the feature f in Vt and all the features

in Vs can be calculated by:

R~
1

m

X
fi[Vs

I(f ,fi) ð3Þ

To determine the feature fj in Vtwith maximum relevance and

minimum redundancy, the mRMR function combines equation

(2) and equation (3) and is defined as:

max
fj[Vt

I(fj ,c){
1

m

X
fi[Vs

I(fj ,fi)

2
4

3
5(j~1,2,:::,n) ð4Þ

The mRMR feature evaluation would continue N rounds when

given a feature set with N (N = m+n) features. After the mRMR

feature evaluation, a feature set S is obtained:

S~ f1

0
,f2

0
,:::,fh

0
,:::,fN

0n o
ð5Þ

In this feature set S, the index h of each feature indicates at which

round the feature is selected. The smaller the index h, the earlier

the feature satisfies equation (4) and the better the feature is.

Prediction engine and assessment. In the current study,

Random Forest was adopted as the prediction engine and

operated with the default parameters. Random Forest is an

ensemble predictor that consists of a certain number of decision

trees. To classify a new query sample coded by an input vector, the

sample is placed into each of the trees in the forest. Each decision

tree provides a predicted class. The class with the most votes will

be put forward as the predicted class of the random forest. The

detailed procedure can be found in Ref. [35]. Ten-fold cross-

validation was used to evaluate the performance of our method

[36]. TP denotes true positive. TN denotes true negative. FP

denotes false positive and FN denotes false negative [37]. To

evaluate the performance of our protein-protein interaction site

predictor, the prediction sensitivity (also known as recall),

precision, specificity, accuracy and MCC (Matthews correlation

coefficient) were calculated as shown below:

sensitivity (recall)~
TP

TPzFN

precision~
TP

TPzFP

specificity~
TN

TNzFP

accuracy~
TPzTN

TPzTNzFPzFN

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð6Þ

As we know, the precision-recall curve is often used to evaluate the

classifier’s performance [38]. A classifier makes its prediction for

each sample based on a threshold, ‘‘k’’, that is often defined as 0.5.

For a classifier and a certain threshold, the predicted results

obtained by this classifier can be represented by a confusion

matrix, including four entries: TP, FN, FP, and TN. Thus, we can

obtain precision and recall for different thresholds ‘‘k’’, thereby

plotting a point with precision as its Y-axis and recall as its X-axis

in a coordinate system [39]. The obtained curve is termed the

‘‘precision-recall curve’’.

The default parameters of the Random Forest are listed below:

Prediction of Protein-Protein Interaction Sites
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1) -c ,class index.

2) Sets index of class attribute (default: last).

3) -x ,number of folds.

4) Sets number of folds for cross-validation (default: 10).

5) -s ,random number seed.

6) Sets random number seed for cross-validation or percentage

split (default: 1).

7) -S

8) Seed for random number generator. (default 1).

9) -depth ,num.

10) The maximum depth of the trees, 0 for unlimited. (default

0).

11) -threshold-label ,label.

12) The class label to determine the threshold data. (default is

the first label).

Incremental Feature Selection (IFS). Based on the ranked

features obtained by the mRMR approach, we used the IFS

[40,41] approach to determine the optimal number of features.

During the IFS procedure, features in the ranked feature set were

added with a stepwise of l features from higher to lower rank. A

new feature set was formed when l features had been added. Thus

N=l½ � feature sets would be composed for N ranked features. The

i-th feature set is:

Si~fSl ,S2l , � � � ,Silg(1ƒiƒ½N=l�) ð7Þ

where N denotes the total number of features in the original

dataset and l (step) is a positive integer. In this study l~1. For each

of the [N/l] feature sets, an RF classifier was constructed and

examined using the 10-fold cross-validation on the benchmark

dataset. By doing so we obtained an IFS table with one column for

the index i and the other four columns for the prediction accuracy,

sensitivity, specificity and MCC, respectively. Thus, we could

obtain the optimal feature set (Soptimal), with which the predictor

would yield the best prediction performance.

Results and Discussion

The mRMR Result
Listed in Information S1 are two outcomes obtained by running

the mRMR software: one is a MaxRel feature table that ranks the

714 features according to their relevance to the class of samples;

the other is called the mRMR feature table that lists the ranked

714 features according to mRMR criteria. In the mRMR feature

table, a feature with a smaller index implies that it is more

important for PPI site prediction. Such a list of ranked features has

been used in the following IFS procedure for optimal feature set

selection.

IFS Results
Referring to IFS in Materials and Methods, by setting 714 for N

and 1 for the feature-increasing gap, 714 individual predictors

corresponding to 714 feature subsets were constructed to predict

the PPI sites in the sequence samples. Listed in Information S2 are

the rates of prediction accuracy, specificity, sensitivity and MCC

obtained by each of the 714 predictors. Shown in Fig. 1 is the IFS

curve plotted based on the data in Information S2. From Fig. 1 we

can see that the predictor achieved a maximum of MCC equaling

0.347977 when 51 features were included. These 51 features were

deemed as the optimal feature set of our classifier. With such a

classifier, the prediction sensitivity(recall), precision, specificity and

accuracy were 0.789975, 0.653060, 0.546625 and 0.672997

respectively (Table 1). The optimal 51 features are given in

Information S3. Hereafter, all the analyses are based on these 51

optimal features.

Feature Analysis
The distribution of the number of each type of feature in the

final optimal feature set was investigated and is shown in Fig. 2A.

Figure 1. A plot to show the change of MCC values versus feature numbers. The IFS curves were drawn based on the data in Information
S2. The MCC value reached a peak when the number of features was 51. The 51 features thus obtained were used to form the optimal feature set for
the PPI site predictor.
doi:10.1371/journal.pone.0043927.g001

2)

3)

4)

5)

6)
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Of the 51 optimal features, 16 were obtained from PSSM

conservation scores, 4 from the amino acid factors, 3 from the

disorder scores, 1 from the secondary structural propensities, 19

from CX and DPX, and 8 from ASA, MSA and SC. Six kinds of

features contributed to the prediction of PPI sites. It was revealed

by the site-specific distribution of the optimal feature set (see

Fig. 2B) that site 11 played the most important role in determining

the PPI sites. In addition, the features of site 1 and site 12 also

contribute considerably to the prediction of PPI sites.

PSSM Conservation Score Feature Analysis
As mentioned above, among the 36 optimal features, 16

belonged to the PSSM conservation features, showing the highest

proportion. It can be clearly seen from Fig. 3A that each of the 20

different amino acid types has a different number of PSSM

conservations in determining the PPI site. In this regard, the

conservation status against amino acid P (Proline) contributed

most, successively followed by V (Valine) and so forth. Interest-

ingly, it has been reported that P frequently occurs near

interaction sites. The unique chemical characteristics of P helps

protect the integrity and present the sites, which can promote

protein-protein interactions [42]. Unlike other amino acid

residues, P can assume either a cis or trans configuration [43]. P

disrupts both a-helices and b-sheet conformation owing to the lack

of the amide proton and steric hindrance [44], and therefore

blocks the propagation of neighboring secondary structures

through the interaction site. Thus, P residues form ‘‘brackets’’

on both sides of the interaction sites and help preserve the

conformation and integrity of the site which are necessary for

molecular recognition and specific interaction [42]. Meanwhile, as

shown in Fig. 3B, the conservation status at subsites 11 and 1

played the most important roles in predicting the PPI site,

indicating that the conservation status of PPI sites themselves had

great influence in determining the PPI sites.

Amino Acid Factor Analysis
Illustrated in Fig. 4 are the contribution points of different

amino acid factors and their subsite locations to the PPI site

prediction. It can be seen from Fig. 4A that secondary structure

was the most important feature in PPI site prediction, which result

is supported by the finding that the manner in which protein-

protein interactions are formed is determined by the residue type

and the secondary structure found in the interface [45]. The

secondary structural features appear to be useful for the

characterization and classification of PPI sites as reported recently

in a study by Guharoy et al. [46]. As shown in Fig. 4B, the amino

acid residues at subsites 8, 10, 11 and subsite 21 contributed most

to the PPI site prediction. Furthermore, the secondary structural

Table 1. Comparison of prediction performances of different
methods.

Method Sn Pr Sp Ac MCC

Without 3D structural
features

0.720340 0.591741 0.463110 0.596689 0.190073

With 3D structural
features

0.789975 0.653060 0.546625 0.672997 0.347977

Sikic et al.’ method [9] 0.782751 0.634470 0.512833 0.653001 0.307795

Sn: sensitivity (recall).
Pr: precision.
Sp: specificity.
Ac: accuracy.
MCC: Matthews correlation coefficient.
doi:10.1371/journal.pone.0043927.t001

Figure 2. Bar plots to show the feature distribution for the 51 optimal features and the corresponding site distribution. It can be seen
from panel A that of the 51 optimal features, 16 were obtained from PSSM conservation scores, 4 from the amino acid factors, 3 from the disorder
scores, 1 from the secondary structural propensities, 19 from CX and DPX, and 8 from ASA, MSA and SC. It can be seen from panel B that site 11
played the most important role in determining the PPI sites.
doi:10.1371/journal.pone.0043927.g002

Prediction of Protein-Protein Interaction Sites
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feature of subsite 11 had an index of 9 in the optimal feature set,

suggesting that the secondary structure of the PPI site itself was

one of the most important features for prediction of the PPI site.

Disorder Analysis
Within the final optimal feature set, three disorder features were

selected. These three disorder features were from subsites 1, 16

Figure 3. Bar plots to show the distribution in the optimal feature set for the PSSM score and the corresponding specific site score.
It can be seen from panel A that the conservation against mutations to amino acid P (Proline) has the most impact on the prediction of PPI sites. It
can be seen from panel B that the conservation status at subsites 11 and 1 played the most important role in predicting the PPI site.
doi:10.1371/journal.pone.0043927.g003

Figure 4. Bar plots to show the distribution in the optimal feature set for the amino acid factor features and the corresponding
specific site score. It can be seen from panel A that the secondary structural feature was the most important one for predicting PPI sites. It can be
seen from panel B that amino acid residues at subsites 8, 10, 11 and subsite 21 contributed most to PPI site prediction.
doi:10.1371/journal.pone.0043927.g004

Prediction of Protein-Protein Interaction Sites
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and 21. In particular, the disorder feature of subsite 1 had an index

of 1 in the optimal feature set, suggesting that it was one of the

most important features in the PPI prediction. The non-regular

structures have importance in mediating interactions in interfaces

formed by heterocomplexes [46]. In addition, it has been reported

that disordered structures as well as helices constitute most of the

PPI regions (about 92%) [47]. Also, the disorder feature of subsite

21 has an index of 6 in the final optimal feature site.

Secondary Structural Features Analysis
There was one feature of secondary structure in the optimal

feature set. This was other secondary structure besides helix and

strand of site 1, which was consistent with the discussion above

that PPI regions preferred to have a non-regular structure [46,47].

Protrusion Index (CX) and Depth Index (DPX) Feature
Analysis

Shown in Fig. 5 are the CX and DPX features in the optimal

feature set. It can be seen from Fig. 5A that both CX and DPX

contribute to the prediction of PPI sites, and DPX has more

influence than CX, an observation consistent with the variable

importance revealed in a study by Sikic et al. [9]. It was shown

that both DPX and CX can contributed to the prediction of PPI

sites and that DPX had more influence than CX (Fig. 5 in ref. [9]).

Because PPIs are generally dominated by hydrogen bonds, salt

bridges and hydrophobic contacts across the interface, comple-

mentary protein surface patterns underlying local interactions

must be desolvated, densely packed and hence deeply buried to

make a contribution to the binding free energy [48]. Compared to

other residues, it has been found that PPI sites generally have a

larger relative side-chain accessible surface area and a larger

average DPX [49]. Moreover, it can be seen from Fig. 5B that the

CX and DPX features at subsites 12 and 19 contribute more to the

PPI site prediction. There are two DPX features and a CX feature

within the top 10 of the optimal feature set, which are DPX at

subsite 16 and subsite 1 and CX at subsite 12.

Accessible Surface Area (AS), Molecular Surface Area (MS)
and Surface Curvature (SC) Feature Analysis

Shown in Fig. 6 are the AS, MS and SC features in the optimal

feature set. It can be seen from Fig. 6A that SC plays the most

important role in determination of PPI sites as compared with AS

and MS. PPI sites are widely known to have concave structures on

their surfaces because of binding stability, specificity, and reaction

promotion [50]. Much research has been conducted into searching

for and extracting pockets from the protein surface as candidates

of interaction sites [51,52]. In addition, it has been shown that

interface surface characteristics including surface curvature play

important roles in protein-DNA interaction [53]. Thus, SC

probably also is important for PPI. In addition, It is exactly the

saddle-shaped curvatures that give rise to membrane-protein

interactions [54]. Therefore, SC can be used as a promising

feature for prediction of PPI sites from protein structural data.

Moreover, it can be seen from Fig. 6B that the SC features at

subsite 8 and subsites 10–15 contribute relatively more to PPI site

prediction. There are three SC features in the optimal feature set,

which are SC at subsite 11, subsite 14 and subsite 12 with an

indices of 2, 5 and 10 respectively. It is suggested that the SC

features of the PPI site itself play a key role in the prediction of PPI

sites.

Figure 5. Bar plots to show the distribution in the optimal feature set for the protrusion index and depth index features, and the
corresponding specific site score. It can be seen from panel A that both CX and DPX contribute to the prediction of PPI sites, and that DPX has
more influence than does CX. It can be seen from panel B that the CX and DPX features at subsites 12 and 19 contribute more to the PPI site
prediction.
doi:10.1371/journal.pone.0043927.g005
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Comparing the Prediction Performances of Different
Methods

To determine whether the 3D structural features contribute to

the prediction of the PPI site, we constructed another dataset

without 3D structural features. Listed in Information S4 are the

rates of prediction accuracy, specificity, sensitivity and MCC based

on the dataset without 3D structural features. As we can see in

Table 1, the prediction accuracy and MCC were better when

using 3D structural features (accuracy: 0.672997, MCC: 0.347977)

than without (accuracy: 0.596689, MCC: 0.190073). The com-

parison suggests that the 3D structural features indeed contribute

to the prediction of PPI sites.

In addition, we compared our method with that of Sikic et al.

[9] on the same dataset used in our study, since their data was not

publicly available. The dataset was encoded with features

mentioned in their work and features proposed in our study

separately. Random forest and 10-fold across-validation were

employed to establish predictive models for both methods. As

Figure 6. Bar plots to show the distribution in the optimal feature set for the accessible surface area, molecular surface area and
surface curvature features, and the corresponding specific site score. It can be seen from panel A that SC plays the most important role in
determination of PPI sites as compared with AS and MS. It can be seen from panel B that SC features at subsite 8 and subsites 10–15 contribute
relatively more to PPI site prediction.
doi:10.1371/journal.pone.0043927.g006

Figure 7. Precision–recall graph for prediction based on sequence and structural features. The figure presents precision–recall curves for
the following methods: our method with structural features (solid line) and the method of Sikic et al. [9] with structural features (dashed line).
doi:10.1371/journal.pone.0043927.g007
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show in Table 1, the accuracy (0.672997) and MCC (0.347977) of

our method were better than those of Sikic et al. (0.653001 and

0.307795). In addition, from the Precision-Recall curve in Fig. 7,

we can see that the curve of our method with 3D structural

features was above that of Sikic et al. Therefore, the features

proposed in our study appear more effective for prediction of PPI

sites.

Directions for Experimental Validation
The selected features at different sites may provide clue for

researchers to use in finding or validating new determinants of PPI

sites. For example, we reveal that proline(P) plays a pivotal role in

PPI site determination, consistent with the report that P frequently

occurs near interaction sites [42]. In addition, we highlight the

importance of secondary structure, in agreement with previous

studies [45,46]. There were three disorder features in the optimal

feature set, indicating that disorder features are important for

prediction of PPI sites, consistent with the notions that the non-

regular structures have importance in mediating interactions in

interfaces formed by heterocomplexes [46] and that disordered

structures as well as helices constitute most of the PPI regions

(about 92%) [47]. The important role of DPX in prediction of PPI

sites revealed in our study has been supported by previous studies

[9,49]. It was revealed in our study that surface curvature plays an

important role in determination of PPI sites, whose role in protein-

DNA interaction has been confirmed [53]. Thus, the remaining

features in the optimal feature set are seen to be worthy of

validation by experiments and further research.

Conclusion
In this study, we developed a new method for the prediction of

PPI sites. Our method considers not only the physicochemical

features of each amino acid but also the sequence conservation

information and residue disorder status within the PPI region. In

addition, we also took into consideration the solvent accessibility,

secondary structure of amino acids in the PPI region and 3D

structural features from PDB data. Our approach achieved an

overall MCC of 0.347977 with 51 features. We also show that the

accuracy of the classification can be improved through the use of

3D structural information. On the basis of the feature selection

algorithm, an optimal set of features were selected, which are

regarded as the features that contribute most significantly to the

prediction of PPI sites. The selected features may shed some light

on the mechanism of PPI and provide guidelines for experimental

validation.

Supporting Information

Information S1 This file contains two sheets. The first one

shows the MaxRel feature table, which ranked the 714 features

according to the relevance between features and class of the

samples. The second one shows the mRMR feature table, which

ranked the 714 features according to the redundancy and

relevance criteria.

(XLSX)

Information S2 The sensitivity (Sn), specificity (Sp), accuracy

(Ac), Matthews correlation coefficient (MCC) of each runs of IFS

for the dataset with 3D structural features. The IFS curve was

plotted based on this file.

(XLSX)

Information S3 The 51 features selected by the IFS procedure.

(XLSX)

Information S4 The sensitivity (Sn), specificity (Sp), accuracy

(Ac), Matthews’s correlation coefficient (MCC) of each run of IFS

for the dataset without 3D structural features. The IFS curve was

plotted based on this file.

(XLSX)
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