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Abstract

Identifying interaction sites in proteins provides important clues to the function of a protein and is becoming increasingly
relevant in topics such as systems biology and drug discovery. Although there are numerous papers on the prediction of
interaction sites using information derived from structure, there are only a few case reports on the prediction of interaction
residues based solely on protein sequence. Here, a sliding window approach is combined with the Random Forests method to
predict protein interaction sites using (i) a combination of sequence- and structure-derived parameters and (ii) sequence
information alone. For sequence-based prediction we achieved a precision of 84% with a 26% recall and an F-measure of 40%.
When combined with structural information, the prediction performance increases to a precision of 76% and a recall of 38%
with an F-measure of 51%. We also present an attempt to rationalize the sliding window size and demonstrate that a nine-
residue window is the most suitable for predictor construction. Finally, we demonstrate the applicability of our prediction
methods by modeling the Ras–Raf complex using predicted interaction sites as target binding interfaces. Our results suggest
that it is possible to predict protein interaction sites with quite a high accuracy using only sequence information.
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Introduction

Most proteins in a living cell interact in order to fulfil their

function. Protein interactions occur through the formation of

complexes, either transient or more long lasting, as a result of a

balance between different molecular properties: sequence, shape,

charge distribution, entropy and dynamics. Proteins often interact

through multiple components, with examples like the replisome,

RNA polymerases, the spliceosome, the ribosome, chaperonins

and the various complexes formed along signal transduction

pathways and during enzyme catalysis and inhibition. Knowledge

of protein interactions is sometimes crucial in elucidating their

functional roles. 3D structures of protein complexes have been the

basis for detailed understanding of protein function; however, it is

much more technically demanding to determine the structure of a

complex as opposed to solving a structure of a single protein or

even a fragment of the whole protein—a protein domain. This is

the reason why in the current release of the Protein Data Bank

(http://www.pdb.org) [1], 3D structures of protein complexes are

poorly represented. In addition, the number of protein sequences

deposited in the UniprotKB/Swiss-Prot database (http://www.

uniprot.org) [2] outstrips the number of known 3D structures by

around 7 times—a fact that further demonstrates the restricted

effective size of the structural sample set available for studying

protein interactions. On the other hand, experimental methods for

detection of protein interaction residues from proteins without a

known 3D structure are based on mutation and deletion studies.

These methods are expensive, laborious and, most importantly,

poorly applicable on a large scale.

The abundance of information that can be extracted from a 3D

structure and sequence, the increase in computer power and the

invention of novel classification methods have triggered development

of computer based methods for prediction of protein interfaces. Since

the pioneering work of Jones and Thornton [3] and their attempt to

predict surface patches that overlap with interaction interfaces,

several papers presenting different methods have been published.

Methods presented therein can be roughly divided into three groups

based on the choice of features used for prediction. The first group

consists of methods based solely on sequence information that predict

protein interfaces [4–8]. Methods in the second group [9–11] use

structural information to refine sequence sets that are then used to

construct predictors. Methods of the third group use 3D structure

information exclusively or a combination of 3D structure and

sequence for prediction [3,12–17]. Selection of the classification

method used also varies across different prediction tools: scoring

functions [15], SVM (support vector machines) with radial kernel

[6,7,9,10,14] and neural networks [5,8,11].

In this paper we present two methods for prediction of

interaction sites of protein heterocomplexes using only a) sequence

information; and b) information obtained from a combination of

sequence and 3D structure features. Both new methods are based

on the random forest algorithm [18] and linear classifier

combinations. Our classification features are derived from

sequence and spatial information, from sliding windows of nine

residues in width. For the first time we rationalized this most

commonly used window size through entropy analysis and

demonstrated that it contains the highest amount structural

information per sequence length.
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Proteins commonly have many more residues that do not

participate in an interaction than interacting residues, which

creates an effect of imbalance between positive and negative

datasets and must be dealt with in the process of classification. One

drawback of imbalanced datasets is that some of the classification

methods (especially the SVM) work with impaired performance

and may introduce a bias in the resulting classification. Another

consequence of working with an imbalanced dataset is that some

commonly used evaluation measures, such as accuracy, are not

appropriate because they favour the majority class [19]. Instead,

we used the precision-recall graph, F-measure [20] and AUC (area

under the ROC curve) [21], commonly used in the Information

Retrieval sciences. It was demonstrated [22] that the classification

method based on Random Forests achieves good results with

unbalanced data. In addition we employed a classifier combina-

tion approach, which further improved predictions made from

unbalanced data.

Performance comparison between different methods is rather

difficult owing to the (i) lack of a good interaction benchmark set;

(ii) different definitions of interaction sites; and (iii) different

evaluation measures. Nevertheless, performance of our method in

terms of structure-based prediction produces results comparable

with best results obtained by other authors and we believe that our

method outperforms others in the prediction of protein interacting

residues based on sequence information alone.

For testing purposes, we built a Ras–Raf complex whose 3D

structure has not been experimentally determined.

Results

The Length of a Sliding Window
The first step in our investigation was to determine the optimal

sliding window length. We used a method (See Methods) based on

the entropy difference between the occurrence of a particular

number of interacting residues within a window length of N

residues and the uniform occurrence distribution. We investigated

only windows with a central interacting residue present. The result

of the analysis is presented in Figure 1. Although the results for

different window lengths are similar, it is evident that for the

window length of 9 the entropy has the maximum difference.

Prediction Using Sequence-Only Information
The most challenging part of our work was to construct a

predictor of interacting residues using only sequence information.

The input feature vector consisted of names of nine consecutive

residues in a sequence. The class label of an instance was defined

positive if at least N residues, including the central one, were

marked as ‘interacting’. We classified data for values of N from 1 to

9. The evaluation of results is presented in Table 1. All of the

presented values of measures, except the AUC, were calculated

using a majority vote rule. The threshold for distinction between

positive and negative output classes was 0.5. Table 2 shows the

confusion matrix for a threshold of 1 interacting residue in a

window. For error estimation 10-fold cross validation was used. It

can be seen that the precision for almost all N’s was over 80% with

recall around 25%. When we further combined classifiers (See

methods) the recall, F-measure and AUC increased, while the

precision decreased. Using combining classifiers at a precision of

84%, we achieved a recall of about 26%. The F-measure, a

harmonic mean of precision and recall obtained by combining

classifiers was 40%, with the AUC at 74.7%. It is important to

notice how accuracy increased as the ratio between positive

labelled and negative labelled instances decreased. At the same

time the precision was decreasing. If we further decreased the ratio

between positive and negative labelled classes, accuracy would

converge to the accuracy of the majority class, while precision

would decrease to zero. Apparently, accuracy itself is not a good

measure for evaluating method performance on an unbalanced

dataset.

Figure 2 shows the precision-recall graph for combined

classifiers. The results obtained by randomization testing (see

Methods) are also presented. It can be seen that our method

significantly outperforms random results.

In order to improve our results we introduced class weights. The

Random Forests method uses different class weights for positive

and negative classes in an effort to improve results of imbalanced

data classification [22]. The results achieved using different

weights are presented in Table 3. As can be noticed, the

introduction of weights resulted in an increase in recall and F-

measure, but with a decrease in precision. If we compare these

values to those on the precision-recall graph it can be seen that the

weighted classifiers are on or slightly above the curve. Random

Forests is a discrete classifier so its output is represented with one

point on the precision-recall curve. However, we can move along

Figure 1. Entropy differences for different window lengths.
Entropies for different window lengths were calculated and subtracted
from entropies calculated for the uniform distribution of the number of
interacting residues in the window.
doi:10.1371/journal.pcbi.1000278.g001

Author Summary

In their active state, proteins—the workhorses of a living
cell—need to have a defined 3D structure. The majority of
functions in the living cell are performed through protein
interactions that occur through specific, often unknown,
residues on their surfaces. We can study protein interac-
tions either qualitatively (interaction: yes/no) using large-
scale, high-throughput experiments or determine specific
interaction sites by using biophysical techniques, such as,
for example, X-ray crystallography, that are much more
laborious and yet unable to provide us with a complete
interaction map within the cell. This paper presents the
machine learning classification method termed ‘‘Random
Forests’’ in its application to predicting interaction sites.
We use interaction data from available experimental
evidence to train the classifier and predict the interacting
residues on proteins with unknown 3D structures. Using
this approach, we are able to predict many more
interactions in greater detail (i.e., to accurately predict
most of the binding site) and with that to infer knowledge
about the functions of unknown proteins.

Prediction of Protein Interaction Sites
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the curve to the desired values of precision or recall using different

class weights.

Figures 3 and 4 show histograms of recall values for protein

complexes and chains obtained for overall precision at 48% and

recall at 53%. For these values our method correctly predicted at

least one interaction site in 99.7% of the proteins and 99% of the

chains.

For precision at 76% and recall at 31% we correctly predicted

at least one interaction site in over 90% of the proteins and in over

80% of the chains.

Predictions Obtained by a Combination of Sequence and
3D Structure Information

We analysed and used an exhaustive set of 3D structure based

attributes (see Methods): accessible surface area (ASA) [23], depth

index (DPX) [24], protrusion index (CX) [25], hydrophobicity as

well as protein secondary structure. We used all 3D structure

information available from PSAIA [26] with the addition of

secondary structure. As the first step we performed training and

prediction with all available sequence and 3D structure (a total of

26) features. The random forest algorithm has the capability to

estimate the importance of a particular feature (an equivalent of

the principal component analysis), so we employed it in the process

of input parameter set reduction. Figure 5 shows the importance of

particular features and their contribution to the overall prediction

quality. It is evident that the information obtained from sequence

has the highest importance. In addition, we also selected five best

ranked structural features: non-polar ASA, maximum depth index,

relative non-polar ASA, average DPX and minimum CX. With

this reduced set of descriptors we obtained only slightly inferior

results then by the entire dataset and therefore it was used in all

subsequent analyses.

Table 1. Evaluation of the results obtained by prediction based on sequence information.

Threshold Class Ratioa Precision Recall F-measure Accuracy AUC

1 0.27 84.63 26.02 39.80 78.69 74.49

2 0.27 84.57 25.85 39.60 78.95 74.53

3 0.26 84.40 25.63 39.32 79.51 74.41

4 0.24 83.72 24.88 38.37 80.58 74.06

5 0.22 82.47 23.77 36.90 82.34 73.73

6 0.18 81.31 22.01 34.64 85.35 73.38

7 0.13 79.13 19.61 31.43 88.81 72.59

8 0.09 77.72 17.39 28.43 92.51 72.05

9 0.04 72.68 13.59 22.90 96.03 70.17

1 (combination)b 0.27 84.43 26.42 40.25 78.76 74.65

aThe ratio between the number of positive labeled instaces and the number of negative labeled instances.
bThe results obtained by combining classifiers.
doi:10.1371/journal.pcbi.1000278.t001

Table 2. Evaluation of the results obtained by prediction
based on sequence information–confusion matrix for
threshold of 1 interacting residue.

Actual Class = 0 Actual Class = 1

Predicted class = 0 121927 34097

Predicted class = 1 2178 11990

doi:10.1371/journal.pcbi.1000278.t002

Figure 2. Precision–recall graph for prediction based on
sequence alone. The figure presents precision–recall curves of the
following methods: prediction of interacting residues when a positive
class is labelled if at least the central residue is an interacting residue
(red curve), combining classifiers (blue curve), randomization testing
(green curve).
doi:10.1371/journal.pcbi.1000278.g002

Table 3. Evaluation of the results obtained by prediction
based on sequence information using different class weights
(threshold value is 1).

Weigh Ratioa Precision Recall F-measure Accuracy AUC

1:2 72.05 32.75 45.03 78.35 74.53

1:3 48.17 52.83 50.39 71.83 74.42

1:4 38.90 73.86 50.96 61.51 74.36

2:3 82.34 28.15 41.95 78.91 74.51

2:5 58.3 41.65 48.59 76.13 74.50

aWeights ratio between positive and negative labelled instances.
doi:10.1371/journal.pcbi.1000278.t003

Prediction of Protein Interaction Sites
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We defined the central residue in the sliding window as an

interacting residue if at least N of the residues (including the central

residue) in the window are in contact with another chain. We

tested threshold values of N in the range of 1 to 9. The evaluation

of results is presented in Table 4. For precision at 78%, we

achieved a recall of about 35%. When combining classifiers at the

precision of 76%, we achieved a recall of about 38%. It can be

seen that results obtained using combining classifiers are better.

From the precision-recall graph (Figure 6) it is evident that

prediction using structural information in combination with

sequence information is better, especially in the central region,

the most important part of the curve. Results with different class

weights are presented in Table 5.

Similarly to predictions of interaction sites using only sequence

information we evaluated the results per protein complex and

chain. For precision at 75% and a recall of 40% our method

correctly predicted at least one interaction site in over 97% of the

proteins and over 90% of the chains. In addition for precision at

61% and a recall of 59% we correctly predicted at least one

interaction site in 100% of the proteins and in over 99% of the

chains.

Ras–C-Raf
Reliability of our method was tested at the RBD (Ras Binding

Domain) of C-Raf1 (PDB::1C1Y) and the wild type Ras

(PDB::121P). Although the 3D structures of both C-Raf1 and

Ras were solved, the structure of their complex has not been

determined experimentally yet.

Using information from sequence and structure the following

residues were predicted as potentially interacting: Ile21, Gln25,

His27, Glu31, Asp33, Pro34, Thr35, Ile36, Glu37, Asp38, Ser39,

Tyr40, Arg41, Lys42 and Ser65 (Ras protein) and Arg67, Val70,

Val88, Glu104, Gly107, Lys108, Leu112 and Asp113 (C- Raf

protein).

The complex was built by AutoDock, version 4.0, [27] using the

Ras Protein as a receptor and by setting the centre of the grid to

Ras Asp38, the central residue of the largest predicted interaction

region. Docking simulations were carried out with an initial

population of 200 individuals, and a maximum number of

2 500 000 energy evaluations. The model with the amino acids

residues predicted as possible interacting sites labelled, is displayed

in Figure 7. Majority of the predicted residues are part of the

modeled complex interface and their importance for complex

formation was found by the experiments [28–30] as well.

Exceptions are Raf amino-acids Glu104, Lys108, Leu112 and

Asp113 on the opposite side of its Ras binding interface. Although

they have not been described in the literature as interacting

residues, they might present interaction sites for some currently

unknown interaction partner.

Stability of the complex was tested during 700 ps of molecular

dynamics (MD) simulation performed by AMBER9 (http://

amber.scripps.edu/) [31]. The proteins’ conformations, as well

as their mutual position, did not change significantly during the

Figure 4. Histogram of recall values for chains. The histogram of
recall values for overall set precision at 48% and recall at 53%.
doi:10.1371/journal.pcbi.1000278.g004

Figure 5. Variable importance. It can been seen that the most
important variables are residue names, followed by non-polar ASA,
maximum depth index, relative non-polar ASA, average depth index,
and minimum protrusion index.
doi:10.1371/journal.pcbi.1000278.g005

Figure 3. Histogram of recall values for protein complexes. The
histogram of recall values for overall set precision at 48% and recall at
53%.
doi:10.1371/journal.pcbi.1000278.g003

Prediction of Protein Interaction Sites
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simulation: RMSD for the main chain atoms was 1.66 Å (RMSD

for Raf was 1.31 Å, and for Ras 1.02 Å, final structure), and its

plateau was achieved within 200 ps of unrestrained simulation,

i.e., during the last 500 ps of simulations RMSD for the main

chain was within 0.5 Å

Discussion

Comparison
The main aim of this paper was to improve the prediction of

interaction residues solely in protein sequence. In order to

facilitate comparison, we used the same dataset and definitions

of interacting sites as Ofran and Rost [5]. Because they divided

sets of protein complexes into three subsets, we did the same for

comparison of results. Figure 8 shows results obtained using 3-fold

cross validation. For precision between 60 and 70%, Ofran and

Rost achieved a recall of about 10% [8], while for the same

precision we obtained a recall level of about 30%. The results can

also be compared by the precision-recall (P-R) graphs where the P-

R curve obtained by our methods shows better results, for recall at

less than 50%. For higher recall values curves are similar.

However, it is important to emphasise that the P-R curve obtained

with randomization testing by our method has a lower value than

theirs (27% compared to 30%). Because of that for recall values at

more than 50% the curve obtained by our method is more distant

from a random curve. Res et al. [7], did not present a precision-

recall curve so we could compare only single point results. For the

level of recall at 57.5% Res et al. [7] achieved a precision of

27.3%. This result is inferior to ours, i.e., for a recall of 57.5% we

obtained precision above 40%.

Since authors [3,13,15–17] in the field of predicting interacting

residues using 3D structure information used different estimation

measures, datasets and definitions of interacting sites, it is difficult

to objectively compare results.

Usability
Docking of the Ras-Raf complex is an example of how our

proposed methods can help with practical problems. Information

on possible interacting residues can significantly help and speed up

determination of reliable complex conformation. Similarly,

prediction based on sequence information only, can help in the

determination of possible deletion or mutation residues in

experiments when 3D structure is unknown. Using different class

weights a compromise can be made between expected prediction

and recall of achieved results.

Finally, one of the results of this paper is the confirmation that a

Figure 6. Precision–recall graph for prediction based on both
sequence and 3D structure. The figure presents precision–recall
curves of the following methods: prediction of interacting residues
when a positive class is labelled if at least the central residue is an
interacting residue (red curve), combining classifiers (blue curve),
randomization testing (green curve).
doi:10.1371/journal.pcbi.1000278.g006

Table 5. Evaluation of the results obtained by prediction
based on sequence and 3D structure information using
different class weights (threshold value is 1).

Weigh Ratioa Precision Recall F-measure Accuracy AUC

1:2 63.89 55.68 59.51 79.48 81.44

1:3 52.54 70.08 60.05 74.76 81.42

1:4 44.78 80.86 57.64 67.82 81.35

2:3 71.68 45.68 55.8 80.40 81.46

2:5 57.87 63.32 60.47 77.58 81.46

aWeights ratio between positive and negative labelled instances.
doi:10.1371/journal.pcbi.1000278.t005

Table 4. Evaluation of the results obtained by prediction based on sequence and 3D structure information.

Threshold Class Ratioa Precision Recall F-measure Accuracy AUC

1 0.27 78.27 34.64 48.02 79.7 81.27

2 0.27 78.44 34.39 47.81 79.96 81.47

3 0.26 78.04 34.05 47.41 80.44 81.69

4 0.24 77.41 33.13 46.40 81.41 82.10

5 0.22 76.58 31.86 45.00 83.08 82.67

6 0.18 75.27 29.27 42.15 85.82 83.89

7 0.13 72.97 25.35 37.63 89.01 85.16

8 0.09 70.49 17.64 28.22 92.32 86.96

9 0.04 75.31 9.92 17.53 95.95 89.34

1 (combination)b 0.27 76.45 38.06 50.82 80.05 81.56

aThe ratio between the number of positive labeled instaces and the number of negative labeled instances.
bThe results obtained by combining classifiers.
doi:10.1371/journal.pcbi.1000278.t004
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widow of nine concatenating residues contains the highest

information content for prediction of interacting residues.

Improvement
We believe that the results can be further improved in the ways

explained below. For example, a bigger non redundant test set

should be defined. The dataset we have used dates back to 2003.

Since then, the number of experimentally determined 3D

structures has increased from 20 000 to 50 000. In addition,

methods proposed in this paper do not use information that other

authors found valuable like evolutionary information [7,8,11,16],

electrostatics [13,15] and desolvation [15]. Furthermore, it is

evident that some 3D structure data like ASA improve prediction

of interaction sites compared to sequence-only predictions. Hence,

prediction of these 3D structure features from sequence through

the usage of existing methods [32–34] or newly developed ones

could further improve results.

Finally, the aggregation of interacting residues noticed by Ofran

and Rost [5] might also be the beneficial approach. One way of

using this information is described in the paper by Yan [9].

Methods

Dataset
For training and testing, we used a dataset of transient hetero

interactions derived by Ofran and Rost [5]. The dataset consists of

1134 chains in 333 complexes. A residue was defined to be

involved in a protein–protein interaction if any of its atoms were

within 6 Å of any atom in a neighbouring non homologous chain.

In our work, we used the PSAIA application [26] for the

extraction of interacting residues. The main reason why we used

the same dataset and the same method for definition of interacting

residues as the above mentioned authors was for the purpose of

comparing our results since their results are currently the best

achievement in the field of proteins’ interaction prediction from

sequence alone.

Input Features Vector
The input vector of features was defined on a sliding window of

nine residues. The window was defined as positive, if the central

residue and at least N21 other residues were interacting residues.

We used a value for N in a range of 1 to 9. For determination of

true negatives we used a method similar to the one of Ofran and

Rost. We made an alignment of all homologous chains (at least 90

percent of sequence similarity) in the 3D structure of a complex. If

all aligned chains at a particular site had the same nine residues in

Figure 7. Model of the Raf–Ras complex. The amino acid residues found as possible interacting sites are labelled using the three letters type
name for Raf and the one letter type name for Ras. The Ras residues are shown in stick representation, and Raf in ball and stick representation.
doi:10.1371/journal.pcbi.1000278.g007

Figure 8. Precision–recall graph for prediction based on
sequence alone and 3 –fold cross validation. The figure presents
precision–recall curves of the following methods: prediction of
interacting residues when a positive class is labelled if at least the
central residue is an interacting residue (red curve) and randomization
testing (green curve).
doi:10.1371/journal.pcbi.1000278.g008

Prediction of Protein Interaction Sites
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the window and none of them had a central residue in contact with

a neighbouring non homologous chain we defined this window as

a true negative.

The input vector consists of nine residues’ names, and min, max

or average values for features that belong to residues in the

window. In this paper we used the following features:

N Secondary structure of the central residue

N Average hydrophobicity [35]

N Average ASA (accessible surface area)

N Average relative ASA

N Average backbone ASA

N Average relative backbone ASA

N Average backbone ASA

N Average relative backbone ASA

N Average non-polar ASA

N Average relative non-polar ASA

N Average polar ASA

N Average relative polar ASA

N Average depth index (DPX)

N Average protrusion index (CX)

N Minimal protrusion index

N Maximal protrusion index [25]

N Maximal depth index [24]

The average value of a particular feature k was calculated as:

k~

PN

i~1

ki

N

where i was the ordered number of a residue in the window of

N = 9 residues. The secondary structure information was extracted

by DSSP [36], while for extraction of all other features PSAIA was

used [26].

Length of the Sliding Window
The length of the sliding window can influence the classification

of results. For determination we used a method based on entropy.

First we defined the interacting residues for all proteins in the

datasets. Secondly, we calculated the number of interacting

residues using sliding windows of different lengths. Only the

windows with a central interacting residue were taken in

consideration. Finally, the entropies for different window lengths

were calculated, and subtracted from entropies calculated for a

uniform distribution of numbers of interacting residues in the

window. As the best result we defined the one with a highest

calculated entropy difference. The calculation can be shown as

following:

{
XN

i~1

pi|log2 pi{log2 N

where N is the length of a window, pi is the frequency appearance

of i interacting residues in a window of N residues, given a central

interacting residue.

The uniform distribution of a particular set has the highest

entropy, so data that has the highest difference from that value has

more structure than others and it is easiest to describe.

Measuring Performance
The results reported in this paper concern the evaluation of

residue classification based on the following quantities: the number

of true positives (TP) (residues correctly classified as interacting),

the number of true negatives (TN) (residues correctly classified as

non-interacting), the number of false positives (FP) (non-interacting

residues incorrectly classified as interacting), and the number of

false negatives (FN) (interacting residues incorrectly classified as

non-interacting). These values are usually presented in a confusion

matrix. We use the following measures of performance:

Precision~
TP

TPzFP

Recall~
TP

TPzFN

F{measure~
2: precision:recallð Þ
precisionzrecall

Accuracy~
TPzTN

TPzFPzTNzFN

In addition we used a precision-recall graph and area under the

ROC curve (AUC) [21] for comparison of the results of our

method with a random classifier. Although we believe that

accuracy is not an appropriate measure in the event of imbalanced

data we used it as a directly comparable measure to results of other

prediction methods. In Random Forests there is no need for cross-

validation or a separate test set to get an unbiased estimate of the

test set error. It is estimated internally with the out of bag error

estimate [18]. When estimating the test error using both methods

we achieved a very slight difference in results, but for comparison

to other results we present results obtained by 10-fold cross

validation. For cross validation we divided a set of 333 proteins

into 10 subsets, so that we would not use data from the same

proteins in test and training sets. Performances of classifiers were

estimated by the ROCR R package [37].

Randomisation Testing
Classification methods are sensitive to over-fitting so it was

important to measure the significance of obtained AUC values and

precision-recall graphs. Randomisation testing has been found to

be very effective at assessing over-fitting [38,39]. Here, the original

training set was copied and class labels were replaced with random

class labels. The ratio between positive and negative class labels

was preserved. Then the Random Forests were trained with these

data using the same methodology that was used with the original

data.

Random Forests
Random Forests [18] is an ensemble method that combines

several individual classification trees in the following way: from the

original sample several bootstrap samples are drawn, and an

unpruned classification tree is fitted to each bootstrap sample. The

feature selection for each split in the classification tree is conducted

from a small random subset of predictor variables (features). From

the complete forest the status of the response variable is predicted

as an average or majority vote of the predictions of all trees.

Random Forests is often used when we have very large training
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datasets and a very large number of input features (hundreds or

even thousands of input features). A random forest model is

typically made up of tens or hundreds of decision trees. In this

paper we used 200 trees. As part of the algorithm, Random Forests

returns few measures of feature importance. The most reliable

measure is based on the decrease of classification accuracy when

values of a feature in a node of a tree are permuted randomly and

this is the measure of feature importance that we used in this

paper. PARF (parallel Random Forests) [40] implementation of

the random forest method and the randomForest R package [41]

were used for classification.

Random Forest method is a discrete classifier. When such a

classifier is applied to a test set, it yields a single confusion matrix,

which in turn corresponds to a single point on a ROC curve.

However, it is possible to use, as output, the percentage of votes for

a particular class. Using different threshold values for producing

positive or negative response variables it is possible to produce

ROC and precision-recall curves.

Combining Classifiers
A simple method for combining classifiers was used in this

paper. The method takes output of the first stage classifiers as

input values for the second stage. The output of the second stage is

a positive class if at least one of the input values was positive. This

method achieves good results with imbalanced data (Šikić and

Jeren, manuscript in preparation). In this paper we labelled a

sliding window instance with a positive class if it contained equal

or more interacting residues than a value defined by the threshold

and if the central residue was an interacting residue. We made

classifications with threshold values from 1 to 9. The outputs of all

of these classifiers were combined as explained above.

To better describe this method let us take one example. We start

the prediction process by selecting a sliding window of nine

residues. First we make a prediction using the classifier for

threshold 1. This classifier is trained to predict interaction sites if at

least the central residue is in an interaction. Second we make a

prediction using the classifier for threshold 2. This classifier is

trained to predict interaction sites if the central residue and at least

one other residue inside the window are in an interaction. Using

same method we make a prediction for thresholds 3 to 9. It can be

easily seen that instances labelled positive (windows) for classifiers

that use thresholds 2 to 9 are subsets of positive instances for

classifiers that use threshold one. If we assume that it is possible

that some classifiers can in some cases more accurately predict

subsets than the original set we can combine classifiers using the

OR rule. Hence, the output class label would be positive if at least

one classifier labelled that instance as positive.
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