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ABSTRACT

Motivation:Protein interactions are of biological interest because they

orchestratea numberof cellular processessuchasmetabolic pathways

and immunological recognition. Domains are the building blocks of

proteins; therefore, proteins are assumed to interact as a result of

their interacting domains.Many domain-basedmodels for protein inter-

action prediction have been developed, and preliminary results have

demonstrated their feasibility. Most of the existing domain-basedmeth-

ods, however, consider only single-domain pairs (one domain from

one protein) and assume independence between domain–domain

interactions.

Results: In this paper, we introduce a domain-based random forest of

decision trees to infer protein interactions. Our proposed method

is capable of exploring all possible domain interactions and making

predictions based on all the protein domains. Experimental results

on Saccharomyces cerevisiae dataset demonstrate that our approach

can predict protein–protein interactionswith higher sensitivity (79.78%)

and specificity (64.38%) compared with that of the maximum likelihood

approach. Furthermore, our model can be used to infer interactions

not only for single-domain pairs but also for multiple domain pairs.

Contact: xwchen@ku.edu

Availability: Source code is written in Java and is available upon

request from the authors.

Supplementary information: http://www.ittc.ku.edu/~xwchen/PPI/

random_forest_PPI

1 INTRODUCTION

Proteins play an essential role in nearly all cell functions such as

composing cellular structure and promoting chemical reactions. The

multiplicity of functions that proteins execute in most cellular

processes and biochemical events is attributed to their interactions

with other proteins. It is thus critical to understand protein–protein

interactions (PPIs).

In recent years, high throughput technologies have provided

experimental tools to identify PPIs systematically and have gener-

ated tremendous amount of protein interaction data. However, the

high throughput experiments are often associated with high false

positives and false negatives (Mrowka et al., 2001). The experi-

ments are also tedious and labor-intensive. In addition, the number

of possible protein interactions within one cell is enormous, which

makes experimental verification of each individual interaction

impractical. The need arises in seeking complementary in silico
methods that are capable of accurately predicting interactions.

A number of computational approaches for protein interaction

discovery have been developed over the years. These methods

differ in feature information used for protein interaction prediction.

Earlier methodologies focus on estimating the interaction sites by

recognizing specific residue motifs (Kini and Evans, 1996) or using

features and properties related to interface topology, solvent

accessible surface area and hydrophobicity (Jones and Thornton,

1997). Some other computational techniques are based on genomic

sequence analysis, e.g. analyzing correlated mutations in amino

acid sequences between interacting proteins (Pazos et al., 1997),

searching for conservation of gene neighborhoods and gene order

(Dandekar et al., 1998), using the gene fusion method or ‘Rosetta

stone’ (Enright et al., 1999; Marcotte et al., 1999), employing

genomic context to infer functional protein interactions (Huynen

et al., 2000) and exploring the principle on similarity of phylogen-

etic trees for protein interaction prediction (Goh et al., 2000; Pazos

and Valencia, 2001). Several papers propose to predict protein

interaction sites based on profiles of a residue and its neighbors

(Fariselli et al., 2002; Zhou and Shan, 2001). There is also a method

to predict PPIs based on the primary structure and associated physi-

cochemical properties (Bock and Gough, 2001).

Recently, there is a growing interest in domain-based protein

interactions prediction. Preliminary results have demonstrated

their feasibility. Protein domains are considered to be the building

blocks of proteins. Domains are structural and/or functional units of

proteins that are conserved through evolution to represent protein

functions or structures. The assumption that proteins interact with

each other through their domains is widely accepted.

A number of domain-based approaches have been proposed. One

of the pioneering works is an association method proposed by

Sprinzak and Margalit (2001). The association method defines a

simple measure of interaction between two domains as the fraction

of interacting protein pairs among all protein pairs containing the

domain pair. It may assign high association scores to domain

pairs with low frequency, which may not correspond well to the

interaction probability. Kim et al. (2002) improved the association

method by considering the number of domains in each protein. An

integrative approach is proposed by Ng et al. (2003a) to infer

putative domain–domain interactions from three data sources,

including experimentally derived protein interactions, protein com-

plexes and Rosetta stone sequences. The interaction scores for

domain pairs in the data sources, protein interactions and protein�To whom correspondence should be addressed.
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complexes are obtained with a calculation scheme similar to the

association method by considering frequency of each domain in the

interacting protein pairs. The aforementioned approaches do not

consider the fact that multiple domains in a protein can interact

with multiple domains in another and the possibility of a domain

pair appearing in both interacting and non-interacting protein pairs.

Han et al. (2003, 2004) proposed a domain combination-based

method. It considers all possible domain combinations as the

basic units of each protein. The domain combination interaction

probability is also based on the number of interacting protein pairs

containing the domain combination pair and the number of domain

combinations in each protein. The method considers the possibility

of domain combinations appearing in both interacting and non-

interacting sets of protein pairs. However all of these methods suffer

from a general limitation of the association method, which is ignor-

ing other domain–domain interaction information between the pro-

tein pairs.

A graph-oriented approach is proposed in Wojcik and Schachter

(2001) called the ‘interacting domain profile pairs’ (IDPP)

approach. The method uses a combination of sequence similarity

search and clustering based on interaction patterns and domain

information. Their use of domain profile pairs has provided better

predictions than methods solely based on sequence information.

The aim of the method is to infer protein interaction map of a target

organism from a large-scale interaction map of a source organism,

which can be very expensive to obtain. An optimization approach,

maximum likelihood estimation (MLE), is applied in Deng et al.
(2002). It infers domain interactions by maximizing the likelihood

of the observed protein interaction data. The probabilities of inter-

action between two domains (only single-domain pair is considered)

are optimized using the expectation-maximization (EM) algorithm.

Most of the abovementioned methods assume independency

of domain–domain interactions and single-domain interaction. In

this paper, we propose a novel domain-based random forest frame-

work to predict PPIs. Standard random forest approach (Ho, 1998;

Breiman, 2001) was used by Qi et al. (2005) in predicting PPIs.

However, their method uses other protein properties instead of

protein domains as the feature vector. In their method, the standard

random forest was simply applied to determine similarity between

protein pairs, and then this similarity is used by a k-nearest neighbor

(kNN) algorithm to classify protein pairs.

In our application, the PPI prediction is formulated as a binary

classification problem with novel feature representation. Due to the

features’ unique characteristics, the standard random forest algo-

rithm cannot be directly applied to the protein-interaction inference

problem. Instead, a new framework based on random forest is pro-

posed here for PPI prediction. In the proposed method, rather than

considering single-domain pair as the basic unit of protein interac-

tions, we explore contributions of all the possible domain combina-

tions to protein interactions. In addition, the proposed model does

not assume that domain pairs are independent of each other. Our

method is compared with the MLE method, and better results (in

terms of the specificity and sensitivity) are obtained. Furthermore,

the decision tree-based model can be used to infer domain–domain

interactions for each predicted interacting protein pair.

The paper is organized into four sections. Section 2 introduces

the standard random forest algorithm and our novel algorithm. The

experimental results are presented in Section 3. Finally, conclusions

are drawn in Section 4.

2 METHODS

2.1 Feature representation

We formulate the PPI prediction problem as a two-class classifica-

tion problem: each protein pair is a sample belonging to either

‘interaction’ class (the two proteins interact with each other) or

‘non-interaction’ class (the two proteins do not interact with

each other). In our application, a protein pair is characterized by

the domains existing in each protein. Among all proteins in our

dataset (both training and testing) there are 4293 unique Pfam

domains. Thus, each protein pair is represented by a vector of

4293 features where each feature corresponds to a domain. Let

D ¼ [X1, X2, . . . , Xn] represent the n training samples and Xi ¼
½xðiÞ1 ‚ x

ðiÞ
2 ‚ . . . ‚ x

ðiÞ
4293‚yi� represent the i-th sample with 4293 feature

attributes xj belonging to the class yi. In our problem formula-

tion, yi ¼ 1 stands for the ‘interaction’ class and 0 for the ‘non-

interaction’ class. Each feature xj has a discrete value of 0, 1 or 2. If

the sample protein pair does not contain the domain, then the asso-

ciated feature value is 0. If one of the proteins contains the domain,

then the value is 1. Finally, if both proteins have the domain, then

it is 2. This ternary-valued feature representation is different

from other domain-based methods. It allows us to represent each

protein pair by a feature vector with protein domain information.

The ternary-valued representation is necessary for our applications

as domains may interact with themselves. While training decision

trees with a binary-valued representation is faster than that with a

ternary-valued representation, a binary-valued representation may

not be able to distinguish between protein pairs with a domain

existing in one protein and those with the domain existing in both

proteins. A potential problem associated with the current repres-

entation is that it cannot tell whether two domains are from the same

protein or from two different proteins. To handle this situation, in

decision-making procedures, we consider the domains as an inter-

acting domain pair only if these domains (two or more) are from

different proteins and they lead to an interaction classification.

2.2 Random decision forest

In our application, the number of features for each sample is large.

When the input space is extraordinarily large, random subspace

(RS) feature selection introduced by Ho (1998) can potentially

improve classifier diversity. Breiman (2001) proposes ‘random for-

ests of classifiers’, which involves in developing an ensemble of

decision trees from randomly sampled subspaces of the input fea-

tures, and final classification is obtained by combining results from

the trees via voting. It is shown in Ho et al. (1994) and Ho (1995)

that combining multiple trees produced in randomly selected sub-

spaces can improve the generalization accuracy. It is crucial to

produce a large number of sufficiently different trees when using

the combined power of multiple trees for increase in accuracy. The

use of randomization in feature selection is a way to explore various

possibilities of subspaces. While most classification methods suffer

from the curse of dimensionality, the RS feature selection method

can take advantage of the high dimensionality. In contrast to the

Occam’s Razor, the method improves accuracy as it grows in

complexity as shown in Ho (1998).

The random decision forest constructs many decision trees and

each is grown from a different set of training data. To construct

individual decision trees, training samples are randomly selected

with replacement from the original training dataset. If the number
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of samples in the original training set is N, then N samples are

randomly drawn with replacement. At each splitting or decision

node, it determines the best splitting feature from a randomly selected

subspace of m features where m is much smaller than M total number

of features. Each tree in the forest is grown to the largest extent

possible without pruning. To classify a new object, each tree in

the forest gives a classification, which is interpreted as the tree ‘vot-

ing’ for that class. The final classification of the object is determined

by majority votes among the classes decided by the forest of trees.

2.3 Domain-based random decision

forest framework

Similar to the standard random decision forest algorithm, our indi-

vidual decision tree in the forest is also built from different set of

training data. For each tree, positive and negative samples from the

original training dataset are selected randomly with replacement. To

preserve the same proportion of positive samples among all sam-

ples, we drew samples from positive and negative sets separately.

While building a decision tree, the standard random forest randomly

selects a subspace of features to focus on at each splitting node.

However, our application is unique and this randomness introduced

may not work as well as in other applications. In other applications,

all features contain information for classification no matter what the

values are. In our application, a feature with a value 0 does not give

us any information about the protein pair’s interaction status. Con-

sider the following example. A protein pair (P1, P2) has domains

{a, b, c} and {d, e}, respectively. Assume that the true domain inter-

acting pair is (a, d) and it has appeared frequently in many different

protein pairs. With random selection, domain {a} or {d} may not be

selected properly although they are the domains that exist in many

proteins. For example, we could randomly select {a} and {e} as the

splitting attributes to classify the protein pair as interacting. Even

though the classification is correct, we have the wrong information

on the domain interacting pair.

In order to address this problem, we introduce probability selec-

tion for the feature subspace. Each feature in the entire feature space

is assigned with a selection probability. The probability is calculated

based on the number of interacting protein pairs in the original

training dataset that include such domain feature (i.e. at least

one protein of the pair contains the domain). A Roulette wheel

representing the feature set is then created. Each domain feature

is assigned to a real number in range [0.0, 1.0], which represents

a section on the wheel. The range is calculated based on the prob-

abilities. Thus, if a domain is common among large number of

proteins, it will be selected with large chance.

Each decision tree is built level by level from the bootstrapped

training dataset starting at the root. At each splitting node of a decision

tree, in order to form the feature subspace, we spin the Roulette wheel

by generating random numbers. If the random number generated falls

in between a feature’s range, then the feature is added to the subset

unless it is already used as a splitting attribute by one of the parent

nodes in the same branch up to the root. This process continues until

log2M + 2 (M is the total number of features) features are selected for

the feature subspace. We then pick the best splitting attribute from the

subspace based on a measure called ‘goodness of split’, which

assesses how well the attributes discriminate between classes.

In this study, the information gain splitting criteria by Quinlan

(1979, 1983) is used as the ‘goodness of split’ measure, which is

based on the classic formula from information theory. The informa-

tion gain measures the theoretical information content of a code byP
i pi log(pi), where pi is the probability of the i-th message.

In traditional random forest, individual trees are completely built

without pruning. Due to the high dimensionality of our data, each

tree is expected to be extremely large if grown completely. Thus in

addition to stop splitting a node only when all samples are well

classified, we applied some early stopping criterions as a forward

pruning technique that stops pursuing branches with little statistical

significance. A node in a decision tree also stops splitting when any

of the following conditions is met: node is at the maximum level,

node impurity is smaller or equal to a certain threshold, or minimum

number of samples is remained at the node. Samples at a node are

considered to be well classified when all belong to the same class.

Node impurity is defined as the proportion of samples that are in the

minority class.

Node impurity ¼ No: of samples at the node in the minority class

Total no: of samples at the node
:

ð1Þ
A forest forms with construction of many decision trees. To

classify a protein pair, rather than using all trees in the forest to

vote as in the standard random forest algorithm, votes are obtained

only from the trees that contain at least one domain feature from

each protein of the pair as a splitting attribute. This is necessary, as a

decision tree without domains from a protein pair does not indicate

that the proteins are not interacting with each other. Therefore,

a sufficient number of decision trees need to be built to cover all

domains existed in the training samples. We determine this number

by making sure that each domain feature in the training samples is

covered by at least a certain number of trees. If no tree is able to vote

for a protein pair, we assume the protein pair to be non-interacting.

Otherwise, protein pairs are classified based on the majority votes.

A tree casts vote of value 1 for interacting pairs, and vote of value 0

for non-interacting pairs.

After training, the classifier can also be used to determine

domain–domain interactions. Since each splitting attribute repres-

ents a single domain, if an existence of two or more such attributes

from different proteins leads to an interaction classification, then we

can interpret the domains as forming an interacting domain pair

or domain combination pair (Fig. 1). For example, assuming that

Fig. 1. For illustration, assume (a) and (b) are two decision trees in the

forest. The leftmost branch is taken if feature value is 0, middle branch if

1 and rightmost branch if 2. The solid boxes represent decision nodes with

selected domain features. Shaded boxes represent domains that form inter-

acting domain or domain combination pairs. The dashed boxes represent

classification.
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(a) and (b) in Figure 1 are decision trees in the forest, we can infer

interacting domain pairs from the shaded decision nodes when a

test protein pair follows through the path and reaches prediction 1

(represented as dashed boxes) and if the domains are from different

proteins. A test protein pair follows the leftmost branch of a node

if it does not contain the domain feature, thus feature value is 0 (more

details in Section 2.1). The middle branch is followed if feature

value is 1, and otherwise the rightmost branch is chosen. From tree

(a), it classifies a protein pair to be interacting if one protein in the

pair contains domain 25 and the other protein contains domain 15.

Based on the interaction prediction, one can also conclude that

domains 15 and 25 may interact with each other because they

contribute to an interaction prediction. Similarly in tree (b), domains

38, 269 or 848 may form interacting domain combination pairs.

3 EXPERIMENTAL RESULTS

3.1 Data sources

PPI data for the yeast organism were collected from the DIP (Data-

base of Interacting Proteins) (Salwinski et al., 2004; Deng et al.,
2002; Schwikowski et al., 2000, Xenarios et al., 2001, http://

dip.doe-mbi.ucla.edu). The dataset used by Deng et al. (2002) is

a combined interaction data experimentally obtained through two-

hybrid assays on Saccharomyces cerevisiae by Uetz et al. (2000)

and Ito et al. (2000). Schwikowski et al. (2000) gathered their data

from yeast two-hybrid, biochemical and genetic data.

Initially, we obtained 15 409 interacting protein pairs in the yeast

organism from DIP, 5719 pairs from Deng et al. (2002) and 2238

pairs from Schwikowski et al. (2000). The datasets are then com-

bined by removing the overlapping interaction pairs. Because

domains are the basic units of protein interactions, proteins without

domain information cannot provide any useful information for our

prediction. Therefore, we excluded the pairs where at least one of

the proteins has no domain information. Finally, 9834 protein inter-

action pairs remained among 3713 proteins, and it is separated

evenly (4917 pairs each) into training and testing datasets. Since

non-interacting protein data are not available, the negative samples

are randomly generated. A protein pair is considered to be a neg-

ative sample if the pair does not exist in the interaction set. Total

of 8000 negative samples were generated and also separated into

two halves. Both final training and testing datasets contain 8917

samples, 4917 positive and 4000 negative samples.

The protein domain information is gathered from Pfam (Bateman

et al., 2004), which is a protein domain family database that con-

tains multiple sequence alignments of common domain families.

In Pfam, hidden Markov model profiles were used to find domains in

new proteins. The Pfam database consists of two parts: Pfam-A and

Pfam-B. Pfam-A is manually curated, and Pfam-B is automatically

generated. Both Pfam-A and Pfam-B families are used here. In total,

there are 4293 Pfam domains defined by the set of proteins.

3.2 Evaluation criteria

To evaluate the methods for predicting PPIs, we use both specificity

and sensitivity. The specificity SP is defined as the percentage

of matched non-interactions between the predicted set and the

observed set over the total number of observed non-interactions.

The sensitivity, denoted by SN, is defined as the percentage of

matched interactions over the total number of observed interactions.

3.3 Predicting PPI

The accuracy of a random forest depends on the strength of indi-

vidual tree classifier, which may be affected by tree size. In our

implementation, we have set three stopping criteria to limit the tree

size, and they are maximum tree level, impurity and minimum node

size thresholds. Minimum node size defines the minimum number

of samples to be classified by each node. In our forest, each decision

tree is constructed with node impurity threshold of 0.01, and the

minimum number of samples at a node is three. Among those early

stopped nodes, <10% reached impurity and minimum node size

thresholds. The maximum tree level criterion has the most impact

in restricting the tree size. Thus, we grow forests of trees with

different heights to make an appropriate parameter choice on max-

imum tree level threshold. We used 5-fold cross-validation and

found that classification error rates over the validation sets decrease

first as the tree levels increase. This is due to the increased per-

formance of each individual tree. Because of majority voting, if

each individual tree in a forest performs better, then the entire forest

will also perform better. As shown in Figure 2, the forest classi-

fication error rate reaches the minimum for the heights of 350 and

450 and increases slightly after 450. We will select the maximum

tree size at 450 levels.

To determine an appropriate number of trees in a forest, we set a

limit on minimum coverage of each domain feature at 30 trees. In

other words, it makes sure that each domain feature appeared in the

training dataset is one of splitting attributes in at least 30 trees. In

this way, we guarantee that at least a certain number of trees will

vote to classify each protein pair. From the experiment, we found

that with 100 trees in the forest, each domain feature is covered by

at least 74 trees.

Training the forest of decision trees is the most computationally

intensive part of the entire prediction process. Running on a 3.2 GHz

Xeon computer, it takes �2–3 min to construct a decision tree. After

the model is trained, predictions can be carried out very quickly.

The result of our method is compared with the MLE results (Deng

et al., 2002). In their paper, different values of the false positive and

false negative rates are evaluated. Their results show no significant

accuracy change among the various values. Therefore, we picked

Fig. 2. Classification error comparison of different tree sizes in 5-fold

cross-validation.
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one of the values to train the MLE method over our training dataset,

where the false positive rate fp ¼ 1.0E � 5 and the false negative rate

fn ¼ 0.85. For our application, we chose a forest of 150 trees and

each with maximum height equal to 450. Impurity and minimum

node size are set to 0.01 and 3, respectively. Figure 3 compares

the ROC curves of our method and the MLE on the test dataset.

The ROC curve of our model is constructed by changing threshold

we place on interaction prediction. Typically, majority votes win

where the threshold is 0; however, the threshold can be changed.

For example, a threshold at 5 implies that at least five more inter-

action votes than non-interaction votes are necessary to classify a

protein pair as interacting. Otherwise, the pair is classified as non-

interacting. Therefore, with different thresholds, our model would

perform differently in terms of specificity and sensitivity. It is

clearly shown in Figure 3 that our method outperforms the MLE

method in prediction accuracy. Table 1 shows the results of our

method and the MLE over the test dataset. With comparable sens-

itivities fixed at approximately the same level 79%, our method can

achieve 64.38% in specificity and the MLE can only reach 37.53%

in specificity.

3.4 Inferring domain–domain interactions

For each correctly predicted PPI pair, we can derive domains

involved in the decision process by tracing the branch or path

the protein pair took to reach the prediction from trees that made

the correct classification. The branch or path contains domains from

the protein pair that contribute to the correct classification. Thus,

these domains are said to be interacting with each other.

The total number of single-domain pairs (one domain from one

protein) that are predicted to form interactions is 4366. Among

them, 1891 pairs are found with Pfam-B domains for which inter-

action information is not available on Pfam or other sources. The

remaining 2475 single-domain pairs contain Pfam-A domains.

Among the 2475 predicted single Pfam-A domain pairs, 95 of

them are found in the iPfam database (Finn et al., 2005) and

2239 of them are found in the InterDom database (a database of

putative interacting domains, developed by Ng et al., 2003b).

Table 2 lists some of the single-domain interacting pairs identified

by our method. Those domain pairs are also identified by the iPfam

as interacting domain pairs. The iPfam contains domain–domain

interactions observed in PDB entries by mapping Pfam domains

onto the PDB structures. For example, the domain biotin_lipoyl

(PF00364) in Table 2 is annotated as biotin-requiring enzyme

and it has a conserved lysine residue, which binds to biotin or

lipoicacid. Biotin performs catalysis in some carboxyl transfer reac-

tions and is covalently attached to a lysine residue via an amide

bond. The pyr_redox_dim (PR02852) domain is annotated as pyr-

idine nucleotide-disulphide oxidoreductase, dimerization domain

and determined to involve in oxidation–reduction reaction.

Table 3 lists some identified single-domain interaction pairs that

are not found in iPfam. Those domain pairs are found to be inter-

acting pairs with a high confidence by the InterDom (Ng et al.,
2003b). For example, SH3 (PF00018) and Pkinase (PF00069) in

Table 3 are derived from a PPI only involving single-domain pro-

teins. A protein is considered as a single-domain protein if it has

only one domain and the domain accounts for at least 50% of the

protein length (Ng et al., 2003b). The domain interactions derived

from single-domain protein interactions are usually considered to be

highly likely. The SH3 domain is also found to interact with Pki-

nase_Tyr (PF07714) by iPfam (Finn et al., 2005). Pkinase and

Pkinase_Tyr are both members of the protein kinase superfamily

clan. A complete list of domain interaction pairs is available on the

Supplementary page.

While most of the existing domain-based methods can only infer

the interaction for single-domain pairs, our method is capable of

retrieving more than two domains for each protein from a branch.

This is attractive, as in some PPI it is highly probable that more

than two domains form a combination in a protein to interact

Fig. 3. ROC curves of our method and the MLE method.

Table 1. Accuracy comparison

Our Method MLE

True positive (TP) 3923 3850

False positive (FP) 1425 2499

True negative (TN) 2575 1501

False negative (FN) 994 1067

Sensitivity (SN) 79.78% 78.30%

Specificity (SP) 64.38% 37.53%

Table 2. Examples of inferred single-domain pairs also identified by Pfam

Domain A Domain B

Pfam id Name Pfam id Name

PF00069 Pkinase PF00023 Ank

PF00069 Pkinase PF02984 Cyclin_C

PF00069 Pkinase PF00134 Cyclin_N

PF00364 Biotin_lipoyl PF02852 Pyr_redox_dim

PF00117 GATase PF02786 CPSase_L_D2

PF00117 GATase PF02787 CPSase_L_D3

PF00117 GATase PF00289 CPSase_L_Chain

PF00071 Ras PF00996 GDI

PF00560 LRR_1 PF00076 RRM_1

PF00183 HSP90 PF00515 TPR_1
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with another domain or domain combination in another protein.

A domain combination is defined as two or more domains func-

tioning as a whole during interaction. Some of our identified domain

combinations are listed in Table 4. Domains in combination dem-

onstrate strong association. For example, domains in the combina-

tion {PF00006, PF02874, PF00306} listed in Table 4 (row #11) are

annotated by Pfam as ATP synthase alpha/beta family, nucleotide-

binding domain; ATP synthase alpha/beta family, beta-barrel

domain; and ATP synthase alpha/beta chain, C-terminal domain,

respectively. Identified in iPfam, the three domains cooperate with

each other to bind to the ATP synthase (PF00231). Another domain

combination {PF00612, PF02736, PF00063} in Table 4 (row #3)

is annotated as IQ calmodulin-binding motif; Myosin N-terminal

SH3-like domain; and Myosin head (motor domain), respectively.

The iPfam found that the domains work together to form bonds with

the EF hand (PF00036). The domains of the combination {PF02779,

PF02780} in the second row are Transketolase, pyridine binding

domain, and Transketolase, C-terminal domain, respectively. The

two domains are identified by iPfam to be binding together in

proteins to interact with the dehydrogenase E1 component

(PF00676). The total number of 867 domain combination pairs is

identified and a complete list can be found on the Supplementary

page. Verifying those predictions is a challenging task because

currently there are not enough resources available on domain

combination pairs.

With the putative domain–domain interactions, we can also pre-

dict PPIs. To exemplify this, we select some predicted domain–

domain interactions and then find proteins that contain these

domains to see if these proteins interact with each other or not.

For example, identified by Pfam (Bateman et al., 2004), cell divi-

sion control protein 7 (CDC7) contains protein kinase domain

(PF00069). Both our model and Pfam identify the domain to be

interacting with ankyrin repeat (PF00023) domain. Regulatory pro-

tein SWI6 is known to contain the Ankyrin repeat. Our model

predicts the proteins, CDC7 and SWI6, to be interacting. Indeed,

the protein CDC7 is a conserved Dbf4-dependent protein

kinase (DDK). Bailis et al. (2003) has demonstrated that Schizosac
charomyces prombe Hsk1 (CDC7) regulates replication initiation,

interacts and phosphorylates the heterochromatin protein 1 (HP1),

which is equivalent of SWI6. Another example, cell cycle protein

kinase DBF2 contains the protein kinase domain (PF00069), and

protein G2/mitotic-specific cyclin 2 (CLB2) contains Cyclin,

N-terminal domain (PF00134). The PF00069 and PF00134 domain

pair is inferred by our model and verified by Pfam as an interacting

domain pair. The cell cycle protein kinase DBF2 and G2/mitotoic-

specific cyclin 2 protein is predicted by our model to be an inter-

acting protein pair. The DBF2 protein kinase is found to control the

inactivation of the CLB2 (G2/mitotic-specific cyclin 2) kinase in

late mitosis (Lee et al., 2001). This clearly demonstrates the poten-

tial of the proposed method for PPI prediction.

4 CONCLUSION

Proteins perform biological functions by interacting with other

molecules. It is hypothesized that proteins interact with each

other through specific intermolecular interactions that are localized

to specific structural domains within each protein. Often, protein

domains are structurally conserved among different families of

proteins. Thus, understanding protein interactions at the domain

level gives detailed functional insights into proteins. Most of the

existing domain-based computational approaches for predicting

protein interaction assume that domain pairs are independent of

each other and consider the interactions between two domains only.

In this paper, we introduce a new method, domain-based random

decision forest framework, to predict PPIs. Major advantages of

Table 3. Examples of inferred single-domain pair also identified by InterDom

Domain A Domain B

Pfam id Name Description Pfam id Name Description

PF00153 Mito_carr Mitochondrial carrier protein PF01423 LSM LSM domain

PF00248 Aldo_ket_red Aldo/keto reductase family PF00106 adh_short short chain dehydrogenase

PF00155 Aminotran_1_2 Aminotransferase class I and II PF00735 GTP_CDC Cell division protein

PF00018 SH3_1 SH3 domain PF00069 Pkinase Protein kinase domain

PF00241 Cofilin_ADF Cofilin/tropomyosin-type actin-binding protein PF00400 WD40 WD domain, G-beta repeat

PF00694 Aconitase_C Aconitase C-terminal domain PF01028 Topoisom_I Eukaryotic DNA topoisomerase I, catalytic core

PF00330 Aconitase Aconitase family (aconitate hydratase) PF01336 tRNA_anti OB-fold nucleic acid binding domain

PF00501 AMP-binding AMP-binding enzyme PF01253 SUI1 Translation initiation factor SUI1

PF00022 Actin Actin PF01853 MOZ_SAS MOZ/SAS family

PF00249 Myb_DNA-binding Myb-like DNA-bindingdomain PF00098 zf-CCHC Zinc knuckle

Table 4. Examples of interacting domain combination pairs discovered

Domain Combination

in protein A

Domain Combination in protein B

PF00083 PF00397; PF00168

PF00676 PF02779; PF02780

PF00036 PF00612; PF02736; PF00063

PF00009 PF02798; PF00043; PF00647

PF00459 PF00627; PF00442; PF00443

PF00026 PF00176; PF00271; PF00097; PB019909

PF01412 PF02826; PF00389; PF01842; PB042699

PF00076; PF00806 PF00248

PF00249; PF00569 PF00628

PF00004; PB030344; PF01426 PF02178

PF00006; PF02874; PF00306 PF00231

PF00169; PF00620; PF00617 PF00252
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this method are no assumption of domain independence is made and

it can infer interacting single-domain and domain combination

pairs. The system is capable of utilizing all the possible interactions

between domains. We compared our results with the MLE method

(Deng et al., 2002). The experimental results have shown that our

method can predict protein–protein interactions with higher speci-

ficity and sensitivity than the MLE method. In addition, our method

is particularly useful because domain–domain interactions can be

inferred from the domains involved in predicting protein inter-

actions, especially, this method allows for discovering interactions

of domain combinations.
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