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ABSTRACT
Motivation: The subcellular location of a protein is closely
correlated to its function. Thus, computational prediction of
subcellular locations from the amino acid sequence informa-
tion would help annotation and functional prediction of protein
coding genes in complete genomes. We have developed
a method based on support vector machines (SVMs).
Results: We considered 12 subcellular locations in euka-
ryotic cells: chloroplast, cytoplasm, cytoskeleton, endoplasmic
reticulum, extracellular medium, Golgi apparatus, lysosome,
mitochondrion, nucleus, peroxisome, plasma membrane, and
vacuole. We constructed a data set of proteins with known
locations from the SWISS-PROT database. A set of SVMs
was trained to predict the subcellular location of a given protein
based on its amino acid, amino acid pair, and gapped amino
acid pair compositions. The predictors based on these differ-
ent compositions were then combined using a voting scheme.
Results obtained through 5-fold cross-validation tests showed
an improvement in prediction accuracy over the algorithm
based on the amino acid composition only. This prediction
method is available via the Internet.
Availability: http://www.genome.ad.jp/SIT/ploc.html
Contact: kanehisa@kuicr.kyoto-u.ac.jp
Supplementary information: http://web.kuicr.kyoto-u.ac.jp/
∼park/Seqdata/

INTRODUCTION
Most of the proteins in a eukaryotic cell are synthesized
in the cytoplasm. Newly synthesized proteins are targeted
to the correct subcellular compartments and play their bio-
logical roles. Thus, computational methods for predicting
protein subcellular locations are valuable tools for obtaining
functional clues from the amino acid sequence information.
Nakai and Kanehisa were the first to propose a computa-
tional method, named PSORT, based on sequence motifs and
amino acid compositions reflecting sorting signals and other
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information (Nakai and Kanehisa, 1992; Nakai, 2000). They
constructed a knowledge base by organizing experimental and
computational observations as a collection of if–then rules.
When sorting signals were not well characterized experiment-
ally, various sequence features were computationally derived
from a training data set.

Reinhardt and Hubbard (1998) used neural networks
and showed that amino acid compositions alone contained
information to distinguish proteins of different subcellular
locations, although the method was not reliable enough for
eukaryotic proteins. They stated that a method based on
the amino acid composition would be more useful in prac-
tical applications, because automatically assigned protein
sequences from genome projects are often unreliable for the
5′ regions. Chou and Elrod (1999a) constructed a data set
of 12 subcellular locations, which accounted for most organ-
elles and subcellular compartments in an animal or plant cell,
and proposed a covariant discriminant algorithm to predict
the subcellular location of a query protein from its amino acid
composition. They also tried prediction of membrane protein
types and subcellular locations with another membrane pro-
tein data set (Chou and Elrod, 1999b). Furthermore, Chou
(2000, 2001) observed improvements of prediction accur-
acy when correlations of residue pairs were considered in
addition to the amino acid composition. Yuan (1999) intro-
duced a new method using Markov chain models. As for
proteins from eukaryotic cells, the prediction rates were 73.0
and 78.7% corresponding to, respectively, four and three
location categories. The four location categories were cyto-
plasmic, extracellular, nuclear and mitochondrial proteins,
and the three categories contained the mixture of cytoplasmic
and mitochondrial proteins. These accuracies were meas-
ured by the jack-knife (leave-one-out) test on the data set
used by Reinhardt and Hubbard. Emanuelsson et al. (2000)
proposed an integrated prediction method, TargetP, using
neural networks based on individual sorting signal predic-
tions. This method discriminated between proteins destined
for mitochondrial, chloroplast, secretory pathway, and other
localizations.
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Prediction of protein subcellular locations

Hua and Sun (2001a) constructed a subcellular localization
prediction system using support vector machines (SVMs)
based on amino acid compositions. They tested for four locat-
ions in eukaryotic cells: cytoplasmic, extracellular, mitochon-
drial, and nuclear. The prediction accuracy by the jack-knife
test was 79.4% using the radial basis function (RBF) kernel.
More recently, Cai et al. (2002) developed a new prediction
method also using support vector machines. They used the
data set of Chou and Elrod, and the total of 2191 proteins
were classified into 12 groups. The prediction accuracy by
the jack-knife test was 75%.

SVMs are a new generation of machine learning algorithms,
which is gaining popularity in the analysis of biological prob-
lems such as gene and tissue classifications from microarray
expression data (Brown et al., 2000; Furey et al., 2000), pro-
tein fold recognition (Ding and Dubchak, 2001), and protein
secondary structure prediction (Hua and Sun, 2001b), as well
as protein localization prediction mentioned above. Here we
also use the SVM learning algorithm to extract sequence fea-
tures from the training data set of proteins, whose subcellular
locations are classified into 12 groups as in the work of Chou
and Elrod (1999a). Specifically, we examine the validity of
using different SVM kernel functions and parameters, and
also using different sequence features represented by the com-
positions of amino acids, amino acid pairs, and gapped amino
acid pairs.

DATA SET

Initial data collected from SWISS-PROT
All protein sequences were collected from the SWISS-PROT
database (Bairoch and Apweiler, 2000) release 39.0. We iden-
tified eukaryotic proteins with specific subcellular locations
according to the annotation information in the CC (com-
ments or notes) and OC (organism classification) fields of
SWISS-PROT. Table 1 summarizes the keywords that we used
to search against the categorization of subcellular locations
(-!- SUBCELLULAR LOCATION) in the CC field in order
to collect proteins in 12 subcellular locations: chloroplast,
cytoplasmic, cytoskeleton, endoplasmic reticulum, extracel-
lular, Golgi apparatus, lysosomal, mitochondrial, nuclear,
peroxisomal, plasma membrane and vacuolar proteins. When
multiple keywords are shown in separate lines in Table 1, pro-
teins that match any of the keywords were selected. We also
checked the OC field to remove prokaryotic proteins. Proteins
annotated with two or more subcellular locations were not
included in the current data set. For example, a protein entry
annotated with ‘SUBCELLULAR LOCATION: NUCLEAR
AND CYTOPLASMIC’ in the CC field was not included. All
protein entries computationally selected were then manually
examined.

Removal of highly similar sequences
Sequences with a high degree of similarity to other sequences
were removed by all-to-all sequence similarity search using

Table 1. Selection of proteins with known subcellular locations from
SWISS-PROT

Subcellular location Keywords

Chloroplast Chloroplast
Cytoplasmic Cytoplasmic
Cytoskeleton Cytoskeleton

Filament
Microtubule

Endoplasmic reticulum Endoplasmic reticulum
Extracellular Extracellular

Secreted
Golgi apparatus Golgi
Lysosomal Lysosomal
Mitochondrial Mitochondrial
Nuclear Nuclear
Peroxisomal Peroxisomal

Microsomes
Glyoxysomal
Glycosomal

Plasma membrane Integral membrane
Vacuolar Vacuolar

Vacuole

Keywords were used to search against the CC field of the SWISS-PROT database.

the program ALIGN, which produces an optimal global
alignment between two protein or DNA sequences, using
a modification of the algorithm described by Myers and Miller
(1988). First, we grouped all proteins by ALIGN with full
length matches of 80% similarity, and considered the proteins
in the same group as too similar to each other for use in the
SVM training. Then, we selected only one protein entry ran-
domly from each group. We did not consider protein entries
containing X, Z or B in the amino acid sequence.

After the sequence similarity check operation, we shuffled
the order of all sequence entries in the data set, because similar
SWISS-PROT entry names tend to represent similar proteins.
This operation was desirable for the cross-validation test after
construction of SVMs.

The total number of proteins in the final data set was 7589
for the 12 subcellular locations as summarized in Table 2. We
constructed the data set without restriction of organisms. The
number of different organisms in the data set was 709. The
top ranking five were 1027 yeast (Saccharomyces cerevisiae)
proteins, 1006 human (Homo sapiens) proteins, 592 mouse
(Mus musculus) proteins, 570 rat (Rattus norvegicus) proteins,
and 309 worm (Caenorhabditis elegans) proteins.

SUPPORT VECTOR MACHINE

Kernel functions
SVM is a learning algorithm (Cristianini and Shawe-Taylor,
2000), which from a set of positively and negatively labeled
training vectors learns a classifier that can be used to classify
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Table 2. The number of proteins used in the data set

Subcellular location No. of entries

Chloroplast 671
Cytoplasmic 1245
Cytoskeleton 41
Endoplasmic reticulum 114
Extracellular 862
Golgi apparatus 48
Lysosomal 93
Mitochondrial 727
Nuclear 1932
Peroxisomal 125
Plasma membrane 1677
Vacuolar 54

Total 7589

Chloroplast proteins exist only in a plant cell, and vacuolar proteins exist in a plant or
fungal cell. The animal cells contain lysosomes that are corresponding to vacuoles in
fungal or plant cells.

new unlabeled test samples. SVM learns the classifier by map-
ping the input training samples {x1, . . . , xn} into a possibly
high-dimensional feature space, and seeking a hyperplane in
this space which separates the positive examples from the
negative ones with the largest possible margin, i.e. distance
to the nearest point (Fig. 1). If the training set is not linearly
separable, SVM finds a hyperplane, which optimizes a trade-
off between good classification and large margin. In Figure 1
the SVM method defines a mapping �, and builds a linear
SVM in the high-dimensional feature space. Black circles are
positive examples, and white circles are negative examples.
Support vectors are indicated by extra circles.

Instead of explicitly mapping the objects to the possibly
high-dimensional feature space H , SVM usually works impli-
citly in the feature space by only computing the corresponding
kernel K(�x, �y) between any two objects x and y, defined by:

K(�x, �y) = �(�x) · �(�y),

where � is the mapping to the feature space H .
Popular kernels used in most SVM packages include the

linear kernel, the polynomial kernel, and the RBF kernel. The
linear kernel is defined by

K(�x, �y) = �x · �y,

which is not really mapping the objects to a high-dimensional
feature space because �(�x) = �x. The polynomial kernel is
defined by

K(�x, �y) = (�x · �y + 1)d .

We tested this kernel with various values of the degree d. The
shape of the decision boundary in the input space becomes

Fig. 1. An illustration of the SVM training method. Given a non-
linear classification problem in the input space, the SVM method
defines a mapping �, and constructs the optimal separating hyper-
plane in the high-dimensional feature space H . Black and white
circles indicate positive and negative samples to be classified, each
of which is characterized by a vector. Support vectors are indicated
by extra circles.

more complex as the degree increases. We also tested the
RBF kernel, which is defined by

K(�x, �y) = exp(−γ‖�x − �y‖2),

where γ = 1/σ 2 is a parameter and σ is called the width of the
kernel. A smaller γ or a larger σ makes the decision boundary
smoother.

For actual implementation we used the SVM-light package
version 5.00 by Joachims (1999), which could be down-
loaded from http://svmlight.joachims.org/ for scientific use.
SVM-light consists of a learning module (svm_learn) and
a classification module (svm_classify). The classification
module can be used to apply the learned model to new
examples. We tested linear, polynomial and RBF kernels
with various parameters. The parameter C, which controls
the trade-off between training error and margin, was always
set to its default value, namely

C = N
∑N

i=1 K(xi , xi)
,

where N is the size of the training set.

Compositions of amino acids and amino
acid pairs
Each protein in the training data set of N proteins is char-
acterized by a vector �xi(i = 1, . . . , N) representing certain
sequence features, together with the positive label ‘+1’ or the
negative label ‘−1’ for discriminating two different subcel-
lular locations. In addition to the amino acid composition,
which has been often utilized for protein localization pre-
dictions (see Introduction), we consider the amino acid pair
composition and the gapped amino acid pair compositions
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corresponding, respectively, to two adjacent amino acids
(dipeptides) and two amino acids separated by one or more
intervening residue positions. We expect that these additional
compositions will detect different sequence features. In par-
ticular, the gapped amino acid pair composition will detect
periodic appearance of certain amino acids in the sequence.
In the present study, we examined the gapped amino acid
pair composition with 1–3 intervening residues. The vector �xi

has 20 coordinates for the amino acid composition and 400
coordinates for the four kinds of amino acid pair compositions.

Voting scheme
In the training of SVMs, we use the method of one versus
the others, or one versus the rest. For example, an SVM for
the chloroplast protein group is trained with the chloroplast
protein sequences used as positive samples and proteins in the
other 11 subcellular location groups used as negative samples,
because SVMs basically train classifiers between only two
different samples. Thus, we build 60 SVM classifiers corres-
ponding to 12 subcellular locations and five different types
of compositions: amino acids, amino acid pairs, one gapped
amino acid pairs, two gapped amino acid pairs, and three
gapped amino acid pairs. For each of the five different com-
positions, a query protein is tested against 12 SVM classifiers
and assigned to the subcellular location that corresponds to
the highest output value. After repeating this step for the five
different compositions, the results are combined by a voting
scheme.

The voting scheme utilized here is the following. When
a single location receives five, four or three votes out of five
votes, or it receives only two votes but the rest of the votes are
split, the query protein is predicted to belong to this location.
When two locations receive two votes each, the prediction
is either of these locations. When all votes are split in five
ways, the subcellular location is unknown. We expect that
such a voting scheme would capture different sequence fea-
tures for different locations, and that it is more stable to the
change of data sets than the method using, for example, the
amino acid composition alone.

5-fold cross-validation test
The prediction performance was examined by the 5-fold cross-
validation test, in which the data set of 7589 proteins for
the 12 subcellular locations was divided into five subsets of
approximately equal size. This means that the data was parti-
tioned into training and test data in five different ways. After
training the SVMs with a collection of four subsets, the per-
formance of the SVMs was tested against the fifth subset. This
process is repeated five times so that every subset is once used
as the test data.

In order to assess the accuracy of prediction methods we
use two measures, the total accuracy defined by

TA =
∑k

i=1 Ti

N
,

and the location accuracy defined by

LA =
∑k

i=1 Pi

k
,

where

Pi = Ti

ni

.

Here N is the total number of proteins in the data set
(N = 7589), k is the number of subcellular locations
(k = 12), ni is the number of proteins in each location i

(Table 2), and Ti is the number of correctly predicted proteins
(true positives) in each location i. When the correct location
is one of the two alternative locations predicted in the vot-
ing scheme mentioned above, the score of 0.5 is given when
counting Ti . In previous studies the total accuracy TA has
usually been mentioned as the performance of the predictors,
but TA depends on the location groups with large numbers
of entries. For example, if a prediction method is optimized
for the plasma membrane group (1677 entries in our data set),
the total accuracy TA will rise dramatically. In contrast, the
location accuracy LA has opposite aspects reflecting the per-
formances of small groups equally important to those of large
groups. We try to consider both measures to find the best
condition of the prediction method.

RESULTS
Kernel selection
We begin by selection of a kernel from the three possibilities:
the simple linear kernel, the polynomial kernel, and the RBF
kernel. A typical result of prediction accuracies for 7589
protein sequences with different types of kernel functions is
summarized in Table 3. The performance of each classifier
was measured by examining how well the classifier identified
positive examples in the test sets, or by Pi at each subcel-
lular location, according to the 5-fold cross-validation test.
To judge the overall performance, both TA (total accuracy)
and LA (locations accuracy) were computed. The result of
Table 3 was obtained based on the amino acid composition
information only. We also examined the performance of dif-
ferent kernel functions based on the information about each of
the four types of amino acid pair compositions, and observed
a similar tendency. In Table 3 we chose the parameter d = 5
for the polynomial kernel, which gave the best result when
d was changed from 1 to 6. Various values of the parameter γ

were also tested for the RBF kernel ranging from 0.01 to 0.1,
and our choice was γ = 0.02 or 0.03. In general, RBF kernel
SVM classifiers performed better than linear and polynomial
kernel SVM classifiers, as indicated by the TA and LA values
in Table 3.

However, when individual locations were examined the
prediction ability became worse with the RBF kernel for
some small groups, such as peroxisomal, Golgi apparatus,
and vacuolar protein groups. It appeared that the balance
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Table 3. Prediction accuracies (%) for the 12 subcellular locations with different
types of SVM kernels based on amino acid composition information

Location (No. of entries) Linear Polynomial
d = 5

RBF

γ = 0.02 γ = 0.03 Mixture

Chloroplast (671) 35.0 51.0 62.3 62.7 64.5
Cytoplasmic (1245) 34.1 49.2 65.9 67.8 63.9
Cytoskeleton (41) 29.3 58.5 51.2 53.7 53.7
ER (114) 11.4 36.8 46.5 46.5 51.8
Extracellular (862) 34.7 60.6 75.8 73.9 72.6
Golgi apparatus (48) 37.5 41.7 25.0 22.9 27.1
Lysosomal (93) 54.8 60.2 57.0 61.3 63.4
Mitochondrial (727) 24.9 35.2 48.8 43.9 51.7
Nuclear (1932) 54.2 71.3 82.5 85.2 83.4
Peroxisomal (125) 36.8 45.6 23.2 24.0 24.8
Plasma membrane (1677) 81.3 83.1 87.7 87.4 86.6
Vacuolar (54) 38.9 37.0 31.5 25.9 37.0

Total accuracy, TA 48.9 62.2 72.4 72.7 72.4
Location accuracy, LA 39.4 52.5 54.8 54.6 56.7

between large groups and small groups was not optimal
with a single parameter value of γ. The differences between
γ = 0.02 and 0.03 tended to be larger for smaller groups in
Table 3 while the prediction ability for large groups, such
as cytoplasmic, nuclear, plasma membrane, and extracel-
lular protein groups, was relatively stable. Thus, we tried
the parameter mixture in the RBF kernel where a smaller γ

value was used for smaller groups to avoid over-fitting and a
larger γ value was used for larger groups to better capture
a more complex decision boundary. In particular we used
γ = 0.03 for the four large groups (cytoplasmic, extracel-
lular, nuclear, and plasma membrane protein groups), and
γ = 0.02 for the rest. As the result we could obtain a modest
improvement of the LA while the TA was not much affected
(see Table 3).

Use of amino acid pair compositions
Table 4 shows the result of the 5-fold cross-validation tests for
the RBF kernel SVM classifiers with the parameter mixture
(γ = 0.02 and 0.03), using five different types of compos-
itions: amino acids, amino acid pairs, one gapped amino
acid pairs, two gapped amino acid pairs, and three gapped
amino acid pairs. Although there was not a large difference,
TA became somewhat better for the amino acid pair com-
positions than for the amino acid composition, and it was
opposite for LA. We had expected that known signals of
amphipathic helices, for example, in mitochondrial proteins
would be reflected in two or three gapped amino acid pairs,
but there was not such a clear pattern probably because we
computed compositions for the entire amino acid sequence.
In any case, the information about amino acid pair composi-
tions was potentially as useful as the information about amino

Table 4. Comparison of different composition information

Location Amino
acid

Amino
acid
pair

One gapped
amino acid
pair

Two gapped
amino acid
pair

Three gapped
amino acid
pair

Chloroplast 64.5 68.7 67.1 66.9 67.1
Cytoplasmic 63.9 69.6 66.4 67.3 67.8
Cytoskeleton 53.7 61.0 58.5 58.5 63.4
ER 51.8 49.1 43.9 45.6 42.1
Extracellular 72.6 73.3 77.0 74.6 73.3
Golgi apparatus 27.1 14.6 20.8 10.4 12.5
Lysosomal 63.4 55.9 58.1 49.5 58.1
Mitochondrial 51.7 51.2 54.1 51.3 48.4
Nuclear 83.4 88.7 88.8 88.2 87.5
Peroxisomal 24.8 24.8 20.0 24.8 20.8
Plasma membrane 86.6 91.1 91.3 90.8 91.2
Vacuolar 37.0 33.3 24.1 13.0 16.7

TA (%) 72.4 75.9 75.8 75.0 74.7
LA (%) 56.7 56.8 55.8 53.4 54.1

Table 5. Results of voting for predicting different numbers of subcellular
locations

Accuracy 12 locations
(7589 entries)

11 locations
for plant cells
(7496 entries)

10 locations
for fungal cells
(6825 entries)

10 locations
for animal cells
(6864 entries)

TA (%) 78.2 ± 0.9 78.5 ± 0.9 79.5 ± 0.9 79.6 ± 0.9
LA (%) 57.9 ± 2.1 57.9 ± 1.3 56.8 ± 1.9 59.9 ± 3.3

The average and the SD were computed by the 5-fold cross-validation test.

acid compositions in distinguishing subcellular locations of
proteins.

Improvement by voting
In order to best utilize the potentials of the five different com-
positions in Table 4, we devised a voting scheme as described
above. As shown in Table 5 there was a definite trend of the
improved TA, from 72.4% without voting (amino acid com-
position only shown in Table 4) to 78.2% with voting (five
types of compositions), while the LA remained at a similar
level, 56.7% without voting and 57.9% with voting. The aver-
age and the SD of the TA or the LA were computed from five
trials.

Our voting scheme involves 60 SVM classifiers, 12 classi-
fiers for each of the five compositions. In the first step a vote
is cast by the best score among a set of 12 classifiers and in
the second step the final prediction is made by the most votes.
Apparently, this scheme was able to better capture sequence
features that might be different in different subcellular loca-
tions. Voting was also effective in alleviating the dependency
of SVM training on the data set. Changes or updates of entries
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within our training data set could cause large changes of the
prediction accuracy in some types of composition information
used separately, especially for small groups including cyto-
skeleton and Golgi apparatus (data not shown). The voting
scheme apparently averaged out such large changes.

We also tested for more realistic repertoires of subcel-
lular locations in different cell types, 11 subcellular locations
excluding lysosome for a plant cell, 10 locations excluding
chloroplast and lysosome for a fungal cell, and 10 locations
excluding chloroplast and vacuole for an animal cell. Note
that vacuoles in fungi or plants are thought to correspond to
lysosomes in animals. We performed identical procedures for
training and testing with smaller data sets, 7496, 6825, and
6864 entries for the 11 (plant), 10 (fungal), and 10 (animal)
locations, respectively. Here we constructed the data sets
without considering actual organism groups; for example, the
data set for the animal cell type of 10 locations actually con-
tained entries from plants or fungi. The result is shown in
Table 5. Overall, the accuracy of prediction was comparable
to the case of 12 locations.

Implementation
The prediction method presented in this paper is implemen-
ted as a computer program named PLOC and the web service
is made available at http://www.genome.ad.jp/SIT/ploc.html.
Given an amino acid sequence and a cell type (plant, fungal,
or animal cell) the program reports the most probable subcel-
lular location according to the voting of five predictions based
on the compositions of amino acids and four types of amino
acid pairs, using the SVM classifiers with the RBF kernel and
the parameter mixture of γ = 0.02 and 0.03. The predicted
location is marked on a schematic drawing of the cell, and the
result is associated with the details of five votes and 60 SVM
classifiers. The data sets used in this paper are also available
at http://web.kuicr.kyoto-u.ac.jp/∼park/Seqdata/

DISCUSSION
Measure of prediction accuracy
Because there was a large difference, up to 45 times, in the
data size of each subcellular location group (Table 2), we tried
to balance the TA and the LA when selecting an optimal con-
dition for our prediction method. If the number of proteins in
our data set corresponds to the actual frequency of proteins
in the 12 subcellular locations in living cells, TA would rep-
resent an expected degree of prediction accuracy in practical
applications. In fact TA has usually been utilized in previ-
ous methods as a measure of prediction accuracy. However,
TA could easily be optimized too much for large groups at
the expense of small groups. Thus, we used LA to measure
the balance of prediction accuracies between large and small
groups.

We found two ways to improve trade-off between TA and
LA. One was the parameter mixture for the RBF kernel. By

Table 6. Prediction accuracy with nine subcellular locations

Location 12 locations 9 locations

Chloroplast 72.3 70.3
Cytoplasmica 72.2 73.9
Cytoskeleton 58.5 59.8
ER 46.5 39.0
Extracellular 78.0 77.1
Golgi apparatus 14.6 —
Lysosomal 61.8 62.4
Mitochondrial 57.4 53.5
Nuclear 89.6 89.0
Peroxisomal 25.2 —
Plasma membrane 92.2 91.9
Vacuolar 25.0 —

TA (%) 78.2 79.1
LA (%) 57.9 68.5

aGolgi apparatus, peroxisomal and vacuolar proteins are included in cytoplasmic
proteins (total of 1472 entries) in the prediction of nine locations.

assigning a larger γ value for the four largest groups and a
smaller γ value for the rest, LA was improved without much
affecting TA (Table 3). The other was the voting scheme.
By combining five predictions based on different types of
compositions, TA was improved without much affecting LA
(Tables 4 and 5). Both seemed to be related to dependency of
SVM training with small data sets. A smaller γ, that is, a lar-
ger σ(γ = 1/σ 2) for the RBF kernel was effective to avoid
overfitting, and the voting represented a type of averaging to
lessen the dependency on training data.

Prediction of nine locations
Despite the improvements obtained by the parameter mixture
and the voting scheme, prediction rates were not satisfactory
for some groups, especially Golgi apparatus, peroxisomal,
and vacuolar protein groups. When details of the prediction
results were examined, these proteins were often assigned to
cytoplasmic proteins and vice versa (data not shown). Thus,
we constructed a data set of nine subcellular locations where
cytoplasmic, Golgi apparatus, peroxisomal, and vacuolar pro-
teins were combined into a single group. Table 6 shows the
result of the 5-fold cross-validation test with the same voting
scheme and the RBF kernel mixture SVMs. As expected, the
LA exhibited a large increase, from 58 to 69%. We did not,
however, include this prediction scheme in the Web service of
our PLOC program because our intention is to increase, rather
than decrease, the number of subcellular locations in future
updates (see later).

Comparison with other methods
In order to check the performance of our method, we made
comparisons with other methods, especially the method by
Cai et al. (2002) who had also used SVMs and a data set
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Table 7. Comparison of our method with a previous method

Location Cai et al. (2002) Our method

No. of entries
(total 2191)

Jack-knife
(%)

No. of entries
(total 7589)

5-Fold cross
(%)

Chloroplast 145 57 671 72
Cytoplasmic 571 88 1245 72
Cytoskeleton 34 44 41 59
ER 49 31 114 47
Extracellular 224 57 862 78
Golgi apparatus 25 12 48 15
Lysosomal 37 54 93 62
Mitochondrial 84 42 727 57
Nuclear 272 73 1932 90
Peroxisomal 27 4 125 25
Plasma membrane 699 91 1677 92
Vacuolar 24 25 54 25

TA 75 78
LA 48 58

of 12 locations by Chou and Elrod (1999a). The comparison
is summarized in Table 7. Although the size of the data set
was different (2191 and 7589 entries) and the test method
was different (jack-knife test and 5-fold cross-validation test),
our method achieved a significant improvement in the LA,
from 48 to 58%, together with a small increase in the
TA, from 75 to 78%. Their method is apparently optim-
ized for large groups, especially plasma membrane (91%)
and cytoplasm (88%), at the expense of small groups, such
as peroxisome (4%), Golgi apparatus (12%), and vacuole
(25%). In contrast, our method is more balanced, although the
poor performance for the three problematic groups remains
the same.

Because the repertoire of subcellular locations was different
in different prediction methods, the reported values of predic-
tion accuracy (see Introduction) cannot be readily compared.
In addition, different levels of sequence similarities in differ-
ent data sets also complicate the comparison. We removed
highly similar sequences and the level of sequence similarity
was, at most, 80% in the data set reported here. In contrast,
the data set used by Cai et al. (2002) apparently contained
a large number of similar sequence pairs above the 80% level,
although it was not possible to entirely reconstruct their data
set (Chou and Elrod, 1999a) because some of the SWISS-
PROT identifiers no longer existed. In order to estimate the
effect of similarity level on the prediction accuracy we pre-
pared our data sets with different similarity thresholds, 70
or 60%, for the four largest groups, cytoplasmic, extracel-
lular, nuclear, and plasma membrane protein groups, while
keeping the 80% level for the rest. The TA decreased from
78.2 (Table 5) to 76.0 and 73.5%, respectively, with the 70
and 60% levels, and the LA varied from 57.9 to 57.9% and

56.5%. Perhaps we should not emphasize too much about
the absolute value of the prediction accuracy, which is diffi-
cult to compare among different studies, but we can conclude
our approach to optimize both TA and LA was successful
to cover one of the largest repertoires of subcellular loca-
tions with prediction accuracy as good as the previous best
methods.

Further improvements
In the training of SVM classifiers, we adopted the one-versus-
others method. For each of the 12 subcellular locations, an
SVM was trained with positive data in that location and
negative data in the other 11 locations. Therefore, a protein
in the test set is checked against 12 SVM classifiers. We also
tested the all-versus-all method as a different way of SVM
training. In this method each pair of subcellular locations
is used as positive and negative data. A protein in the test
set is now checked against 66(12 × 11/2) SVM classifiers.
However, this method showed lower prediction accuracy as
a whole. We have examined, in a fairly comprehensive way,
various SVM kernels and parameters, and it is unlikely that a
significant improvement will be obtained by changing train-
ing methods alone. There is still room for improvements in
defining sequence features, but our voting scheme with the
compositions of amino acids and four types of amino acid
pairs is already an improvement over other methods mostly
based on the amino acid composition.

Perhaps further improvements can best be obtained by pre-
paring data sets of higher quality. It should be possible to
increase the number of data entries from updated databases,
especially for the small groups with low prediction accuracies,
including Golgi apparatus, peroxisomal, and vacuolar pro-
tein groups. Adding new subcellular locations or defining
finer classifications, such as subdividing mitochondrial pro-
teins into inner/outer membrane and matrix proteins, will
also be important in practical applications of gene annota-
tions and functional predictions. At the same time it would
become necessary to consider protein groups that inher-
ently belong to multiple locations, such as those that move
between cytoplasm and nucleus under different conditions.
We think that our method is general enough to cope with
these different data sets and also simple enough to automate
retraining of SVMs so that we can update our Web service
accordingly.
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