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Abstract— In this paper, ARIMA(1,1,1) model and 

Artificial Neural Network (ANN) models like Multi 
Layer Perceptron (MLP), Functional-link Artificial 
Neural Network (FLANN) and Legendre Po lynomial 
Equation  ( LPE) were used to predict the time series 
data. MLP, FLANN and LPE gave very  accurate results 
for complex t ime series model. A ll the Artificial Neural 
Network model results matched closely with the 
ARIMA(1,1,1) model with  minimum Absolute Average 
Percentage Error(AAPE). Comparing the different 
ANN models for time series analysis, it was found that 
FLANN gives better prediction results as compared to 
ARIMA model with less Absolute Average Percentage 
Error (AAPE) for the measured rainfall data. 

 

Index Terms— Autoregressive Integrated Moving 

Average Model, ARIMA, Autocorrelat ion Function, 
FLANN, MLP, Legendre neural Network (LeNN) 

 

I. Introduction 

Rain is very important for life. All living beings need 
water to live. Rainfall is a major component of the 
water cycle and is responsible for depositing most of the 
fresh water on the Earth. It provides suitable conditions 
for many types of ecosystem as well as water for 
hydroelectric power plants and crop irrigation. The 
occurrence of ext reme rainfall in a short time causes 
serious damage to economy and sometimes even loss of 
lives due to flood. Insufficient rainfall for long period 
causes drought. This can effect to economic growth of 
developing countries. Thus, rainfall estimation is very 
important because of its effects on human life, water 
resources and water usage. However, rainfall affected 
by the geographical and regional variations and features 
is very difficult to estimate. 

Some Researchers have carried out rainfall 
estimation, Using Sigmoid Polynomial Higher Order 
Neural Network (SPHONN) Model [1] and that gives 

better rainfall estimat ion than Multiple Po lynomial 
Higher Order Neural Network (M -HONN) model and 
Polynomial Higher Order Neural Network (PHONN) 
models. [1] 

As the next step, the research will focus  more on 
developing automatic higher order neural network 
models. Monthly Rainfall are estimated Using Data-
Mining Process [2] of Isparta. The monthly rainfall of 
Senirkent, Uluborlu, Eğ ird ir, and Yalvaç stations were 
used to develop rainfall estimat ion models. When 
comparing the developed models  output to measured 
values, multilinear regression model from data-mining 
process gave more appropriate results than the 
developed models. The input parameters of the best 
model were the rainfall values of Senirkent, Uluborlu, 
and Eğirdir stations. Consequently, it was shown that 
the data-mining process, produced a better solution than 
the traditional methods, can be used to complete the 
missing data in estimat ing rainfall. Various techniques 
used to identify patterns in time series data (such as 
smoothing, curve fitting techniques and auto-
correlations). The authors proposed to introduce a 
general class of models that can be used to represent the 
time series data and predict  data using autoregressive 
and moving average models. Models for time series 
data can have many forms and represent different 
stochastic processes. When modeling variations in the 
level of a process, three broad classes of practical 
importance are the autoregressive (AR) models, the 
integrated (I) models, and the moving average (MA) 
models. These three classes depend linearly  on previous 
data points. Combinations of these ideas produce 
autoregressive moving average (ARMA) and 
autoregressive integrated moving average (ARIMA) 
models. [4] 

 

II. Motivation 

Many researchers had investigated the applicability 
of ARIMA model to find the estimat ion value of rainfall 
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in a specific area in part icular period of t ime such as 
ARIMA Models fo r weekly  rainfall in the semi-arid 
Sin jar District at Iraq [1-3].They collected weekly 
rainfall record spanning the period of 1990-2011 for 
four stations (Sinjar, Mosul, Rabeaa and Talafar) at 
Sin jar district o f North Western Iraq  to develop and test 
the models. The performance of the resulting successful 
ARIMA models was evaluated by using the data for the 
year 2011 through graphical comparison between the 
forecast and actually recorded data. The forecasted 
rainfall data showed very good agreement with the 
actual recorded data. 

This gave an increasing confidence of the selected 
ARIMA models. The results achieved for rainfall 
forecasting will help to estimate hydraulic events such 
as runoff, so that water harvesting techniques can be 
used in p lanning the agricu ltural activit ies in  that region. 
Predicted excess rain can be stored in reservoirs and 
used in a later stage, but there are so many 
disadvantages using ARIMA model so it can only  be 
used when the time series is Gaussian. However, if the 
time series is not Gaussian, a transformat ion has to be 
applied before these models can be used, however, such 
transformation does not always work. Another 
disadvantage is that ARIMA models are non-static and 
cannot be used to reconstruct the missing data.  

 

III. Present Work 

In this research work the authors propose to develop 
a new approach based on the application of an ARIMA 
with other applications like Art ificial Neural Network 
(ANN), Legendre Polynomial Equation, Functional 
Link Art ificial Neural network (FLANN) and 
Multilayer Perceptron (MLPs) to estimate yearly 
rainfall. 

 

IV. ARIMA Model 

In time series analysis, the Box–Jenkins methodology, 
named after the statisticians George Box and Gwilym 
Jenkins, applies autoregressive moving average ARMA 
or ARIMA models to find the best fit of a time series to 
past values of this time series, in order to make 
forecasts. This approach possesses many appealing 

features. To identify a perfect ARIMA model for a 
particular time series data, Box and Jenkins (1976) [12] 
proposed a methodology that consists of four phases viz.  

 
A.Model identification. 

B. Estimation of model parameters. 

C. Diagnostic checking for the identified model 
appropriateness for modelling. 

D.Application of the model (i.e. forecasting). 

 
Step A. In  the identificat ion stage, one uses the 

IDENTIFY statement to specify the response series and 
identify candidate ARIMA models for it. The 
IDENTIFY statement reads time series that are to be 
used in later statements, possibly differencing them, and 
computes autocorrelations, inverse autocorrelations, 
partial autocorrelat ions, and cross correlations. 
Stationary tests can be performed to determine if 
differencing is necessary. The analysis of the 
IDENTIFY statement output usually suggests one or 
more ARIMA models that could be fit. 

Step B & C. In the estimat ion and diagnostic 
checking stage, one uses the ESTIMATE statement to 
specify the ARIMA model to fit  to the variab le 
specified in the previous IDENTIFY statement, and to 
estimate the parameters of that model. The ESTIMATE 
statement also produces diagnostic statistics to help one 
judge the adequacy of the model. Significance tests for 
parameter estimates indicate whether some terms in the 
model may be unnecessary.  

Goodness-of-fit statistics aid in comparing this model 
to others. Tests for white noise residuals indicate 
whether the residual series contains additional 
informat ion that might be utilized by a more complex 
model. If the diagnostic tests indicate problems with the 
model, one may try another model, and then repeat the 
estimation and diagnostic checking stage. 

Step D. In the forecasting stage one uses the 
FORECAST statement to forecast future values of the 
time series and to generate confidence intervals for 
these forecasts from the ARIMA model produced by the 
preceding ESTIMATE statement. 
 

 

Fig. 1: Outline of Box-Jenkins Methodology 
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The most important analytical tools used with the 
time series analysis and forecasting are the 
Autocorrelation Function (ACF) and the Partial 
Autocorrelation Function (PACF). They measure the 
statistical relat ionships between observations in a single 
data series. Using ACF gives big advantage of 
measuring the amount of linear dependence between 
observations in a time series that are separated by a lag 
k. The PACF plot is used to decide how many auto 
regressive terms are necessary to expose one or more of 
the time lags where high correlations appear, 
seasonality of the series, trend either in the mean  level 
or in  the variance o f the series [5]. In order to identify 
the model (step A), ACF and PACF have to be 
estimated. They are used not only to help guess the 
form of the model, but also to obtain approximate 
estimates of the parameters [6]. 

The next  step is to estimate the parameters in the 
model (step B) using maximum likelihood estimat ion. 
Finding the parameters that maximize the probability of 
observations is the main goal of maximum likelihood. 
The next, is checking on the adequacy of the model for 
the series (step C). The assumption is the residual is a 
white no ise process and that the process is stationary 
and independent. 

The ARIMA model is an  important forecasting tool, 
and is the basis of many fundamental ideas in time-
series analysis. An autoregressive model o f order p is 
conventionally classified as AR (p ) and a moving 
average model with q terms is known as MA (q). A 
combined model that contains p autoregressive terms 
and q moving average terms is called ARMA (p,q). If 
the object series is differenced d times to achieve 
stationary, the model is classified as ARIMA (p, d, q), 
where the symbol ―I‖ signifies ―integrated‖. Thus, an 
ARIMA model is a combination of an autoregressive 
(AR) process and a moving average (MA) process 

applied to a non-stationary data series. So the general 
non-seasonal ARIMA (p, d, q) model is as: 

 
 AR: p = order of the autoregressive part, 

 I: d = degree of differencing involved  

 MA: q = order of the moving average part. 

 

The equation for the simplest ARIMA (p, d, q) model 
is as follows: 

 

Yt =C + 1Yt-1 +  2 Yt-2 + ……+ p Y t-p + 

 et - 1 e t-1- 2 et-2 ……- p et-p                                         (1) 

 

V. ARIMA (0, 1, 0) = Random Walk 

In the models mentioned earlier, it was  encountered 
two strategies for eliminating autocorrelation in forecast 
errors. For example, suppose one initially fits the 
random-walk-with-growth model to the time series Y. 
The prediction equation for this model can be written as: 

Ŷ(t) – Y(t-1) = μ                                                      (2) 

Where the constant term (here denoted by "mu") is 
the average difference in Y. This can be considered as a 
degenerate regression model in which DIFF(Y) is the 
dependent variable and there are no independent 
variables other than the constant term. Since it includes 
(only) a nonseasonal difference and a constant term, it 
is classified  as an "ARIMA(0,1,0) model with 
constant." Of course, the random walk without growth 
would be just an ARIMA(0,1,0) 
model without constant.[12 ] 
 

 

Fig. 2: ARIMA (p,d,q) flowchart  
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VI. ARIMA (1, 1, 0) = Differenced First-Order 

Autoregressive Model 

If the erro rs of the random walk model are auto 
correlated, perhaps the problem can be fixed by adding 
one lag of the dependent variable to the prediction 
equation i.e., by regressing DIFF(Y) on itself lagged by 
one period. This would yield the fo llowing prediction 
equation:- 

Ŷ(t) – Y(t-1) = μ + Φ (Y(t - 1) – Y(t - 2))              (3) 

which can be rearranged to:- 

Ŷ(t) = μ + Y(t-1) + Φ (Y(t - 1) – Y(t - 2))               (4) 

This is a first-order autoregressive, or "AR(1)", 
model with  one order of nonseasonal differencing  and a 
constant term i.e., an  "ARIMA(1,1,0) model with 
constant." Here, the constant term is denoted by "mu" 
and the autoregressive coefficient is denoted by "phi", 
in keep ing with the terminology for ARIMA models 
popularized by Box and Jenkins. (In the output of the 
Forecasting procedure in Statgraphics, this coefficient is 
simply denoted as the AR(1) coefficient.[4] 

 

VII. ARIMA (0, 1, 1) without Constant  = Simple 

Exponential Smoothing 

Another strategy for correcting autocorrelated errors 
in a random walk model is suggested by the simple 
exponential smoothing model. Recall that for some 
nonstationary time series (e.g., one that exhibits noisy 
fluctuations around a slowly-varying mean), the random 
walk model does not perform as well as a moving 
average of past values. In other words, rather than 
taking the most recent observation as the forecast of the 
next observation, it is better to use an average of the 
last few observations in order to filter out the noise and 
more accurately estimate the local mean. The simple 
exponential s moothing model uses an exponentially 

weighted moving average of past values to achieve this 
effect. The predict ion equation for the simple 
exponential smoothing model can be written in a 
number of mathematically equivalent ways, one of 
which is: 

Ŷ(t) = Y(t-1) – θ e(t - 1)                                          (5) 

Where (t-1) denotes the error at period t-1. Note that 
this resembles the prediction equation for the ARIMA 
(1,1,0) model, except that instead of a multip le of the 
lagged difference it includes  a multiple of the lagged 

forecast error. (It also does not include a constant term 
yet.) The coefficient of the lagged forecast error is 
denoted by the Greek letter "theta" (again following 
Box and Jenkins) and it is conventionally written with 
a negative sign for reasons of mathematical symmetry. 
"Theta" in this equation corresponds to the quantity "1-

minus-alpha" in the exponential smoothing formulas . 
When a lagged forecast error is included in the 
prediction equation as shown above, it is referred to as a 
"moving average" (MA) term. The simple exponential 
smoothing model is therefore a first-order moving 
average ("MA(1)") model with one order of 
nonseasonal differencing and no constant term i.e., an 
"ARIMA(0,1,1) model without constant."  

This means that in Statgraphics (or any other 
statistical software that supports ARIMA models) one 
can actually fit a simple exponential smoothing by 
specifying it as an ARIMA(0,1,1) model without 
constant, and the estimated MA(1) coefficient 
corresponds to "1-minus-alpha" in the SES formula. 

 

VIII. ARIMA (0, 1, 1) with Constant = Simple 

Exponential Smoothing with Growth 

By implement ing the SES model as an ARIMA 
model, you actually gain  some flexib ility. First of all, 
the estimated MA(1) coefficient is allowed to 
be negative: this corresponds to a smoothing factor 
larger than 1 in an SES model, which is usually not 
allowed by the SES model-fitt ing procedure. Second, 
you have the option of including a constant term in the 
ARIMA model if you wish in order to estimate an 
average non-zero trend. The ARIMA(0,1,1) 
model with constant has the prediction equation: 

Ŷ(t) = μ + Y(t-1) - θ e(t - 1)                                     (6) 

The one-period-ahead forecasts from this model are 
qualitatively similar to those of the SES model, except 
that the trajectory of the long-term forecasts is typically 
a sloping line (whose slope is equal to mu) rather than a 
horizontal line. 

 

IX. ARIMA(0,2,1) Or (0,2,2) without Constant = 

Linear Exponential Smoothing  

Linear exponential s moothing models are ARIMA 
models which use two nonseasonal differences in 
conjunction with MA terms. The second difference of a 
series Y is not simply the difference between Y and 
itself lagged by two periods, but rather it is the first 

difference of the first difference i.e ., the change-in-the-
change of Y at period t. Thus, the second difference of 
Y at period t is equal to –: 

(Y(t)-Y(t-1)) - (Y(t-1)-Y(t-2))  

= Y(t) - 2Y(t-1) + Y(t-2)                                          (7) 

A second difference of a discrete function is 
analogous to a second derivative of a continuous 
function: it measures the "acceleration" or "curvature" 
in the function at a given point in time. The 
ARIMA(0,2,2) model without constant predicts that the 
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second difference of the series equals a linear function 
of the last two forecast errors: 

Ŷ(t) - 2Y(t-1) + Y(t-2)  

= - θ1 e(t - 1) – θ2 e(t - 2)                                          (8) 

which can be rearranged as: 

Ŷ(t) = 2Y(t-1) - Y(t-2)  

- θ1 e(t - 1) – θ2 e(t - 2)                                    (9) 

Where theta-1 and theta-2 are the MA(1) and MA(2) 
coefficients. This is essentially the same as Brown's 
linear exponential smoothing model, with the MA(1) 
coefficient corresponding to the quantity 2*(1-alpha) in 
the LES model. To  see this connection, recall that 
forecasting equation for the LES model is: 

Ŷ(t) = 2Y(t-1) - Y(t-2)  -2(1-α)e(t-1)  

+ (1-α)2 e(t - 2)                                             (10) 

Upon comparing terms, we see that the MA(1) 
coefficient corresponds to the quantity 2*(1-alpha) and 
the MA(2) coefficient corresponds to the quantity -(1-
alpha)^2 (i.e., "minus (1-alpha) squared"). If alpha is 
larger than 0.7, the corresponding MA(2) term would be 
less than 0.09, which might not be significantly 
different from zero, in which case an ARIMA(0,2,1) 
model probably would be identified. 

 

X. A "Mixed" Model - ARIMA(1,1,1) 

The features of autoregressive and moving average 
models can be " mixed" in  the same model. For example, 
an ARIMA(1,1,1) model with constant would have the 
prediction equation: 

Ŷ(t) = μ + Y(t-1) + φ(Y(t-1) - Y(t-2)) - θ e(t - 1)   (11) 

Normally, the authors plan to stick to "unmixed" 
models with either only-AR or only-MA terms, because 
including both kinds of terms  in  the same model 
sometimes leads to over fitting of the data and non-
uniqueness of the coefficients. 

 

 

Fig. 3: Rainfall over INDIA in (June-Sept (2012)) [7] 
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XI. Results And Discussion  
The data was chosen as a sample of calculat ions 

followed by Fig. 4 as shown in table1.  

 

 

Fig. 4: DAILY MEAN RAINFALL (mm) OVERTHE COUNTRY AS WHOLE (Jun-sep-2012) [8] 

 

Table 1: Rainfall data (June-Sept 2012) 

Day June July Aug Sep 

1 1 4 8.6 6.3 

2 2.3 5.1 5 4.4 

3 2.8 6.6 10.2 10.5 

4 3.1 6.9 12.3 14.6 

5 2.6 7.5 9.8 13.8 

6 2.8 10.8 10.2 10.5 

7 2.5 10.6 10 8.2 

8 2.3 8.6 7 6.5 

9 1.5 8.5 7.2 7.2 

10 1.9 10 8.4 9.3 

11 2 8.8 11 7.9 

12 2.4 6.2 10 7.5 

13 3.4 5.7 8.6 8 

14 3.8 9.4 9.4 8.6 

15 3.5 9.3 6.3 10 

16 4.5 10.2 6 7.5 

17 6.2 6.2 4.5 7.6 

18 9.4 6.5 6.8 10.3 

19 8.2 7.8 10.6 5.5 

20 3.8 8.2 8.4 4.4 

21 6.4 8 8.6 5.9 

22 6.3 7.8 13.8 3.9 

23 5 7.5 8.4 5.6 

24 5.2 7.2 6.2 2.4 

25 6.6 10.1 6.2 1.6 

26 7.3 9.2 10.2 1.3 

27 5 8.4 10.6 1.5 

28 2.9 7.2 9.8 1.8 

29 2.3 9.5 5.2 2.2 

30 2.4 10.4 7.2 3.3 

31 
 

11.2 
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XII. Detail Analysis Of ARIMA(1,1,1) Model 

 
Y(t) = µ+Y(t-1)+Ø(Y(t-1))-θ(ε(t-1))                      (12) 

ARIMA(1,1,1) EQUATION:  

Y(t) = µ+Y(t-1)+Ø(Y(t-1)-Y(t -2))-θ(ε(t -1)) 

Parameter Values  

µ=0.03216,Ø= 0.5486,θ=0.9585  

Ø is the autocorrelation coefficient 

θ is the exponential smoothing   

ε = 2.718 is the error which was calculated from the 
previous value. 

 

Table 2: Predicted data using ARIMA(1,1,1) Model 

SL. 
NO . 

T 
ACTUAL 

Y(T) 
PREDICTED 

Y’(T) 
ERRO R 

(E) 

1 1 6.3 6.3 0 

2 2 4.4 9.7 5.3 

3 3 10.5 1.7 8.7 

4 4 14.6 8 6.6 

5 5 13.8 16.18 -2.4 

6 6 10.5 19.1 -8.6 

7 7 8.2 8 0.2 

8 8 6.5 12.5 -6 

9 9 7.2 4.3 2.9 

10 10 9.3 8.4 0.9 

11 11 7.9 13.57 -5.67 

12 12 7.5 6.82 0.68 

13 13 8 11 -3 

14 14 8.6 10.34 -1.74 

15 15 10 11.68 -1.68 

16 16 7.5 13.9 -6.4 

17 17 7.6 5.5 2.1 

18 18 10.3 9.78 0.52 

19 19 5.5 15.4 -9.9 

20 20 4.4 1 3.4 

21 21 5.9 3.58 2.32 

22 22 3.9 6.94 -3.04 

23 23 5.6 3.15 2.45 

24 24 2.4 6.3 -3.9 

25 25 1.6 0.01 1.59 

26 26 1.3 1 0.3 

27 27 1.5 1.11 0.39 

28 28 1.8 1.98 -0.18 

29 29 2.2 2.64 -0.4 

30 30 3.3 3.05 0.25 

Absolute value of Average % of Error 47.7 

Table 3: ARIMA Model: C1 estimates at each iteration 

ITERATIO N SSE PARAMETERS 

0 361.973 0.1 0.1 0.152 

1 354.918 0.047 0.153 0.058 

2 350.117 0.196 0.303 0.049 

3 344.932 0.342 0.453 0.041 

4 339.027 0.485 0.603 0.033 

5 331.42 0.621 0.753 0.025 

6 319.289 0.738 0.903 0.019 

7 295.975 0.588 0.974 0.035 

8 294.094 0.567 0.969 0.028 

9 293.744 0.558 0.965 0.03 

10 293.605 0.553 0.962 0.031 

11 293.564 0.55 0.96 0.032 

12 293.564 0.55 0.96 0.032 

13 293.564 0.549 0.959 0.032 

14 293.564 0.549 0.958 0.032 

 

Unable to reduce sum of squares any further 

Final Estimates of Parameters  

 

Type Coef SE  Coef T P 

AR   1 0.5486 0.0988 5.55 0 

MA   1 0.9585 0.0467 20.51 0 

Constant  0.03216 0.01453 2.21 0.029 

 

Differencing: 1 regular difference 

Number of observations:  Orig inal series 91, after 
differencing 90 

Residuals:  

SS = 291.059 (backforecasts excluded) 

MS = 3.346  

DF = 87 

 

Table 4: Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 

Chi-Square  10.7 30.2 45.8 74 

DF 9 21 33 45 

P-Value  0.298 0.087 0.069 0.004 
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Period Forecast Lower Upper  Actual  

92 8.3439 4.7582 11.9296 

93 9.0036 4.8402 13.167 

94 9.3977 5.0332 13.7621 

95 9.646 5.1962 14.0957 

96 9.8143 5.321 14.3077 

97 9.9389 5.4187 14.459 

98 10.0393 5.4999 14.5788 

99 10.1266 5.5714 14.6818 

100 10.2067 5.6375 14.7758 

101 10.2827 5.7006 14.8648 

102 10.3566 5.7621 14.9511 

103 10.4293 5.8227 15.036 

104 10.5014 5.8828 15.12 

105 10.573 5.9426 15.2035 

106 10.6445 6.0023 15.2868 

107 10.7159 6.062 15.3699 

108 10.7872 6.1216 15.4529 

109 10.8585 6.1812 15.5358 

110 10.9298 6.2409 15.6187 

111 11.001 6.3006 15.7015 

112 11.0723 6.3603 15.7843 

113 11.1435 6.42 15.8671 

114 11.2148 6.4798 15.9498 

115 11.286 6.5396 16.0325 

116 11.3573 6.5994 16.1152 

117 11.4285 6.6592 16.1979 

118 11.4998 6.7191 16.2805 

119 11.571 6.779 16.3631 

120 11.6423 6.8389 16.4457 

121 11.7135 6.8988 16.5282 

 

Forecasts from period 91 

95% Limits 

The first step in the application of the methodology is 
to cheek whether the time series (monthly rainfall) is 
stationary and has seasonality. The monthly rainfall 
data (Fig. 5) shows that there is a seasonal cycle of the 
series and it is not stationary. The entire ARIMA Model 
is developed by using Matlab 16. 

The plots of ACF and PACF of the original data (Fig. 
6 & 7) show that the rainfall data is not stationary. 

A stationary time series has a constant mean and has 
no trend over time. However it could satisfy stationary 
in variance by having lag transformat ion and satisfy 
stationary in the mean by having differencing of the 
original data in order to fit an ARIMA model. The 
Autocorrelation Function for monthly Rainfall and the 
Partial Autocorrelation Function for monthly Rainfall 
are shown in Fig.7. 
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Fig. 5: T ime series rainfall data for the period (Jun-Sep in 2012) 

 

222018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e

la
ti

o
n

ACF of Residuals for Rain Fall Data
(with 5% significance limits for the autocorrelations)

 

Fig. 6: ACF for monthly rainfall data 
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Fig. 7: PACF for monthly rainfall data 
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Fig. 8: Represents Trend Analysis of the rainfall data 
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Fig. 9: Represents Residuals associated with ARIMA Model 

 

 

XIII. Artificial Neural Network (ANN) 

Neural networks are composed of simple elements 
operating in parallel. These elements are inspired by 
biological nervous systems. As in nature, the network 
function is determined largely by the connections 
between elements. A neural network can be trained to 
perform a part icular function by adjusting the values of 
the connections (weights) between the elements. 
Commonly  neural networks are adjusted, or trained, so 
that a particular input leads to a specific target output. 
Such a situation is  shown in Figure 10.  

 

Fig. 10: Basic principle of artificial neural networks 

 

Here, the network is ad justed, based on a comparison 
of the output and the target, until the sum of square 
differences between the target and output values 
becomes the minimum. Typically, many such 
input/target output pairs are used to train a network. 
Batch training of a network proceeds  by making weight 
and bias changes based on an entire set (batch) of input 
vectors. Incremental training changes the weights and 
biases of a network as needed after presentation of each 
individual input vector. Neural networks have been 
trained to perform complex functions in various fields 
of application including pattern recognition, 
identification, classificat ion, speech, vision, and control 
systems. 

 

 

Fig. 11: Working principle of an artificial neuron  



10 Prediction of Rainfall in India using Artificial Neural Network (ANN) Models   

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 12, 1-22 

An Artificial Neural Network (ANN) is a 
mathematical model that tries to simulate the structure 
and functionalities of bio logical neural networks. Basic 
building block of every artificial neural network is 
artificial neuron, that is, a simple mathematical model 
(function).Such a model has three simple s ets of ru les: 
multip licat ion, summation and activat ion. At the 
entrance of artificial neuron the inputs are weighted 
what means that every input value is multiplied with 
individual weight. In the middle section of artificial 
neuron is sum function that sums all weighted inputs 
and bias. 

At the exit of artificial neuron the sum of previously 
weighted inputs and bias is passing through activation 
function that is also called transfer function (Fig.11). 

Although the working principles and simple set of 
rules of artificial neuron looks like nothing special the 
full potential and calculation power of these models 
come to life when interconnected into artificial neural 
networks (Fig.12). These art ificial neural networks use 
simple fact that complexity can be grown out of merely 
few basic and simple rules. 

 

 

 

Fig. 12: Example of simple Artificial Neural Network 

 

In order to fully harvest the benefits of mathemat ical 
complexity that can be achieved through 
interconnection of individual artificial neurons and not 
just making system complex and unmanageable we 
usually do not interconnect these artificial neurons 
randomly. In the past, researchers have come up with 
several ―standardized‖ topographies of artificial neural 
networks. These predefined topographies can help us 
with easier, faster and more efficient problem solving. 
Different types of artificial neural network topographies 
are suited for solving different types of problems. After 
determining the type of given problem we need to 
decide for topology of artific ial neural network we are 
going to use and then fine-tune it. One needs to fine-
tune the topology itself and its parameters. Fine tuned 
topology of art ificial neural network does not mean that 
one can start using our artificial neural network, it  is 
only a precondition. Before one can use artificial neural 
network one need to analyze it solving the type of given 
problem. Just as biological neural networks can learn 
their behavior/responses on the basis of inputs that they 
get from their environment the artificial neural networks 
can do the same. There are three major learning 
paradigms: supervised learning, unsupervised learning 
and reinforcement learn ing. Learning paradigms are 
different in their princip les they all have one thing in 
common; on the basis of ―learning data‖ and ―learning 

rules‖ (chosen cost function) art ificial neural network is 
trying to achieve proper output response in accordance 
to input signals. After choosing topology of an artificial 
neural network, fine-tuning of the topology and when 
artificial neural network has learnt a proper behavior 
one can start using it for solving a given problem. 
Artificial neural networks have been in use for some 
time now and one can find them working in areas such 
as process control, chemistry, gaming, radar systems, 
automotive industry, space industry, astronomy, 
genetics, banking, fraud detection, etc. and solving of 
problems like function approximation, regression 
analysis, time series prediction classificat ion, pattern 
recognition, decision making, data processing, filtering, 
clustering, etc.[9 ] 

 

XIV. Types of Activation Functions in ANN 

There are a number of activation functions that can 
be used in ANNs such as sigmoid, threshold, linear etc. 
An activation function is defined by Φ(𝑣) and defines 
the output of a neuron in terms of its input 𝑣. There are 
three types of activation functions. 

 

1. Threshold function an example of which is  
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1

0

if

if

   
      

                                                 (13) 

This function is also termed the Heaviside function. 

 

2. Piecewise Linear 

1     

V    

     

if

if

if

   
        
    

                             (14) 

 

3. Sigmoid Examples include 

3.1 Logistic function whose domain is  [0,1] 

1

exp
 

 
                                           (15) 

 

3.2 The hyperbolic tangent whose domain is  [-1,-1] 

1 exp( )
( ) tanh( )

1 exp( )

 
      

 
                   (16) 

 

3.3 Algebraic sigmoid function whose domain is [ -1,-1] 

2

  
 

 


                                                  (17) 

 

 

Fig. 13: Working principle of Activation Function 

 

The Back-Propagation Algorithm 

The Back-propagation algorithm [10] is used in 
layered feed-forward ANNs. This means that the 
artificial neurons are organized in layers, and send their 
signals ―forward‖, and then the errors are propagated 

backwards. The network receives inputs by neurons in 
the input layer, and the output of the network is given 
by the neurons on an output layer. There may be one or 
more intermediate hidden layers as shown in (Fig.12). 
The Back-propagation algorithm uses supervised 
learning, which means that the algorithm is provided 
with examples of the inputs and outputs that the 
network is expected to compute, and then the error 
(difference between actual and expected results) is 
calculated. The idea of the Back-propagation algorithm 
is to reduce this error, until the ANN learns the training 
data. The train ing begins with random weights  and the 
goal is to adjust them so that the error will be minimal. 

 

XV. Multi Layer Perceptron (MLP) 

An MLP is a network of simple neurons called 
perceptron. The perceptron computes a single output 
from multip le real-valued inputs by forming a linear 
combination according to its input weights and then 
possibly putting the output through some nonlinear 
activation function. Mathematically this can be written 
as 

y= φ
1

 + b) =
n

i i

i

x


  φ (WT x + b)                          (18) 

Where W denotes the vector of weights, X is the 
vector of inputs; b is the bias and α is the activation 
function. A signal-flow graph of th is operation is shown 
in Fig. 14. 

The original Rosenblatt's perceptron used a Heaviside 
step function as the activation function α. Nowadays, 
and especially in multilayer networks, the activation 
function is often chosen to be the logistic sigmoid 1/ 

(1+e-x) or the hyperbolic tangent tanh(x). 

They are related by (tanh(x)+ 1)/2=1/(1+e-2x) .These 
functions are used because they are mathemat ically 
convenient and are close to linear near origin while 
saturating rather quickly when getting away from the 
origin. Th is allows MLP networks to model well both 
strongly and mildly nonlinear mappings.  

 

 

Fig. 14: Signal-flow graph of the perceptron 
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A single perceptron is not very useful because of its 
limited mapping ability. No matter what activation 
function is used, the perceptron is only able to represent 
an oriented ridge-like function. The perceptron can, 
however, be used as building blocks of a larger, much 
more practical structure. A typical multilayer perceptron 
(MLP) network consists of a set of source nodes 
forming the input layer, one or more hidden layers of 
computation nodes, and an output layer of nodes. The 
input signal propagates through the network layer -by-
layer. The signal-flow of such a network with one 
hidden layer is shown in Figure 14. 

The computations performed by such a feed forward  
network with a single hidden layer with nonlinear 
activation functions and a linear output layer can be 
written mathematically as  

X = f(s) = B φ (As + a) + b                                    (19) 

Where S is a vector of inputs and X a vector of 
outputs. A is the matrix of weights of the first layer, a  is 
the bias vector of the first layer. B and b are, 
respectively, the weight matrix and the bias vector of 
the second layer. The function φ denotes an element 
wise nonlinearity. The generalization of the model to  
more hidden layers is obvious. 

While single-layer networks composed of parallel 
perceptron are rather limited in what kind of mappings 
they can represent, the power of an MLP network with 
only one hidden layer is surprisingly large. MLP 
networks are typically  used in supervised 

learning problems. Th is means that there is a training 
set of input-output pairs and the network must learn to 
model the dependency between them. The training here 
means adapting all the weights and biases 
(A,B,a and b) in Equation (19) to their optimal values 
for the given pairs  (S(t),X(t)). The criterion to be 
optimised is typically the squared reconstruction 
error   ∑t | || f(s (t)) – x (t) ||2.

 

The supervised learning problem of the MLP can be 
solved with the back-propagation algorithm. The 
algorithm consists of two steps. In the forward pass, the 
predicted outputs corresponding to the given inputs are 
evaluated as in Equation (18). In the backward pass, 
partial derivatives of the cost function with respect to 
the different parameters are propagated back through 
the network. The chain rule of d ifferentiation gives very 
similar computational rules for the backward pass as the 
ones in the forward  pass. The network weights can then 
be adapted using any gradient-based optimisation 
algorithm. The whole process is iterated until the 
weights have converged.  

The MLP network can also be used for unsupervised 
learning  by using the so called auto-

associative structure. This is done by setting the same 
values for both the inputs and the outputs of the 
network. The ext racted sources emerge from the values 
of the hidden neurons. This approach is computationally 

rather intensive. The MLP network has to have at least 
three hidden layers for any reasonable representation 
and training such a network is a time consuming 
process. 

 

 

Fig. 15: Signal-flow graph of an MLP 

 

XVI. Functional-Link Artificial Neural Network 

(FLANN) 

Neural Network (NN) represents an important 
paradigm for classifying patterns or approximating 
complex non-linear process dynamics. These properties 
clearly indicate that NN exhibit some intelligent 
behavior, and are good candidate models for non-linear 
processes, for which no perfect mathematical model is 
available. Neural networks have been a powerful tool 
for there applications for more than last two decades 
[11-15]. Multilayer Perceptron (MLP), Radial Basis 
Function (RBF), Support vector machine (SVM) etc. 
are the types of Neural Network Model, where these 
models have better prediction competence with high 
computational cost. Generally, these models have high 
computational cost due to the availability of h idden 
layer. To min imize the computational cost, structures 
like, functional link art ificial neural network (FLANN) 
[16] and Legendre Neural Network (LeNN) [17-18] 
were proposed. Three types of functional based 
artificial neural networks were applied to  estimate  rain 
fall. These included: Mult i layer Perceptron (MLP), 
Functional Link Artificial Neural Network (FLANN) 
and Legendre Neural Network (LeNN).In general the 
functional link based neural network models were 
single-layer ANN structure possessing higher rate of 
convergence and lesser computational load than those 
of an MLP structure. The mathemat ical expression and 
computational calculation is evaluated as per MLP.  

J. C Patra (2008) originally proposed Functional link 
artificial neural network (FLANN) and it is a novel 
single layer ANN structure capable of forming 
arbitrarily complex decision reg ions by generating 
nonlinear decision boundaries .In FLANN, the h idden 
layers are removed. Further, the FLANN structure 
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offers less computational complexity and higher 
convergence speed than those of an MLP because of its 
single layer structure. The FLANN structure is depicted 
in Fig. 16. Here, the functional expansion block make 
use of a functional model comprising of a subset of 
orthogonal sin and cos basis functions and the original 
pattern along with its outer products. For example, 
considering a two-d imensional input pattern X = 

[x1x2]T . The enhanced pattern is obtained by using the 
trigonometric functions as X*= [x1 cos (πx1) 
sin(πx1) . . . x2 cos(πx2) sin(πx2) . . . x1x2]T which is 
then used by the network for the equalizat ion purpose. 
The BP algorithm, which is used to train the network, 
becomes very simple because of absence of any hidden 
layer. 

 
 

 
Fig. 16:  FLANN structure 

 

XVII.Legendre Polynomial Equation in ANN 

Structure of the Legendre Neural Network [16-18] 
(LeNN) (Fig.17) is similar to FLANN. 

In contrast to FLANN, in which trigonometric 
functions are used in the functional expansion, LeNN 
uses Legendre orthogonal functions. LeNN offers faster 
training compared to FLANN. 

The performance of this model may vary from 
problem to problem. The Legendre polynomials are 
denoted by Ln(X), where n is the order and -1<x<1 is 
the argument of the polynomial. The zero and the first 
order Legendre polynomials are, respectively, given by 
L0(x) = 1 and L1(x) = x. The h igher order polynomials 
are given by:L2(x) = 1/2(3x2-1), L3(x) = 1/2 (5x3 -3x) 
etc. 

Polynomials are generated by using the following 
mathematical expression 

Ln+1(x)= 1/n+1[(2n + 1) x Ln(x) − nLn−1(x)]           (20) 

Similar to FLANN, the two d imensional input pattern 
X=[x1 x2]T is enhanced to a seven dimensional pattern 
by Legendre functional expansion 

Xe = [1, L1(x1), L2(x1), L3(x1),  

L1(x2),L2(x2), L3(x2)]                                    (21) 

For Legendre neural network, the train ing is carried 
out in the same manner as FLANN and PPN. In all 
models, supervised learning is used. As in normal 
Artificial Neural Network techniques, presence of 
hidden layers increases the complexity in the rea l time 
system, therefore, FLANN and LeNN is suitably used 
due to less computational cost. 

 

 

 
Fig. 17: Legendre Neural Network Structure 
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XVIII. Development of ANN Based Rainfall 

Estimation Model 

The artificial neural network-based rainfall 
estimation models consist of three input parameters: 
Initialize the input data Ø, θ, Yt-1 and the desired output 
patterns are: d(t), d2(t), d3(t) · ·  ·  dn(t) ∈  R. During 
training period, the desired network output was 
calculated with ARIMA(1,1,1) model. Since the 
procedures of these three models were similar; therefore, 
one algorithm is presented here to emphasize the 
development of functional-based artificial neural 
network-based rainfall estimat ion models. Fig.18 
graphically represent the algorithm of functional-based 
artificial neural network based rainfall estimation 
models. 

 

Step-1: Start  

Step- 2: Initialize the input data are Ø, θ, Yt-1 

where Ø =0.5486, θ =0.9585, µ =0.03216 

X1 = [Yt-1, θ, Ø, µ, ε (t-1), ε (t-2)] 

Y(t) = µ + Y(t-1) + Ø (Y(t-1)) – θ (ε (t-1))           (22) 

Step-3: Init ialize the weighting parameters wi, for i  = 
1, 2, . . . l, where ―i‖ is the number of functional  
elements. 

Step-4: (Produce functional blocks). For FLANN the 
functional block was made as follows: 

Xi = [1, x1, sin(πx1), cos(πx1),  

x2, sin(πx2), cos(πx2) . . .]                           (23) 

For MLP the functional block was  made as follows 
by initialize the weighting parameters  

wm
i,j ,for  i=1,2,…n. and m=2 (number of layers) 

wm
i,j                  w

m
i,j(0)                                                 (24) 

 

For LeNN the functional block was  made as follows: 

Xi = [1, x1, L1(x1), x2, L1(x2), . . .],                       (25) 

Where L1(x) = 1/2(3x2 -1), L2(x) = 1/2 (5x3 -3x), and 
so forth. 

Step-5: (Calcu lation of the system outputs). For 
functional based neural network models, the output was 
calculated as follows: 

Oi=
1

N

i
 wi*Xi                                                        (26) 

For MLP Calculate the output of the system  

am
i,j = (w

1
i,j)

T 
* Xk and  yi =  (w

2
i,j)

T 
* a

m
j                     (27) 

Step-6: (Calcu lation of the output error). The error 
was calculated as 

ei = di−Oi 

Where dj was the desired output and oj was the 
estimated output of the system. 

The error was calculated by a MLP as e j = dj – yj  

Where dj was the desired output and yj was the 
estimated output of the system 

Step-7: (Updating the weight vectors). The weight 
matrixes were updated next using the following 
relationship: 

wi(k + 1) = wi(k) + αei(k)Xi(k),                              (28) 

where k was the time index and α was the momentum 
parameter. 

Step-8: If error ≤ ε(0.01) then go to Step 9 otherwise, 
go to Step 3. 

Step-9: After the, learn ing was complete, the weights 
were fixed, and the network can be used for testing. 

Step-10: End 

 

XIX. Simulation Result and Discussion 

The proposed system models for rainfall estimat ion 
were validated using simulation studies. The studies 
were carried out by using MATLAB simulation 
environment. For validation of the models, the rainfall 
data was collected from India meteorological 
department (IMD) over o f time period June to 
September 2012(India). The entire simulation was 
based on the algorithm of  Functional-link Artificial 
Neural Network (FLANN), Multi Layer Perceptron  

(MLP) & Legendry polynomial equation(LPE) as per 
flow-chart given in Fig.18. 
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Fig.18: Systematic algorithm based neural network based Rainfall Estimation Model 

 

Initialize the weighting parameters  
w1, i=1…n 

Calculate the output of the system  
am

i,j = (w
1

i,j)
T x Xk 

yi = = (w
2

i,j)
T x am

j 

 

Calculate the error of the system 
Ej = dj – yj  

Where dj is the desired output  
and yj is the estimated output of 

the system 
 

Initialize the input data are Ø, θ, Yt-1 
As selected input  

X1=[Yt-1, θ, Ø,µ, ε (t-1), ε (t-2)] 
Y(t)=µ  + Y(t-1) + Ø (Y(t-1)) –                         

θ (ε (t-1)) 

 

Start  

 Is error  
Within the 

limit  
 

End 

Make the functional block (FLANN) 
as  

Xi =[1,x1 , sin( x1), cos( x1), x2, 
sin( x2), cos( x2)…] 

 

Calculate the output  

of the system Oi =  

N

i=1
 wi * Xi 

Make the functional block (Legendre 
NN) as Xi = [1, x1 , L1 (x1), x2, L1 

(x2),…] 
Where L1 (x) = ½(3x2 – 1) 

            L2(x) = ½(5x3 -3x)… 
 

. Make the functional block (MLP)  
by initialize the weighting 
parameters wm

i,j , i=1,2,…n 
And m=2 (number of layers) 

 

Calculate the error of the system 
ej = di – oi   

Where di is the desired output  
and oi is the estimated output of the 

system 
 

Updating the weights 
W i (k+1) = wi (k) + αei (k)xi (k) 

Where k is the time index  
and α is the momentum parameter 

 

YES 

NO 
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XX. Algorithm of Multi Layer Perceptron (MLP) 

Step-1: Start 

Step-2: Randomly select the init ial values of the 
weight vectors wm

i,j, for i = 1, 2…n1, and m=2(number 
of layers).  

Step-3: Initialization all the weights w
m

i,j were 
initialized to random number and given as wm

i,j (0)  

wm
i,j ←− wm

i,j (0). 

Step-4: Calculate the output of the system  

am
i,j = (w

1
i,j)

T x Xk 

yi = = (w
2

i,j)
T x am

j 

Where  a
m

i,j was the output of the hidden layer(m=1) 
and yi is the output layer. w1

i,j  is the weight associated 
for h idden layer and w2

i,j is the weight associated for 
output layer. In the model, the weight associated with 
the hidden layer were basically n i X 2 matrix as two 
inputs were selected and the weight associated with the 
out layer is 1 x ni as this model is a MISO(Mult i input 
and single output) system. 

Step-5: Calculate the error of the error. 

The error was calculated as ej = dj – yj .It may be seen 
that the network procedure a scalar output. 

Step-6: Calculate of the derivative of network output 
of each layer for hidden layer (m=1). 

The derivative of activation function of hidden layer 
can be represented as 

f1 (n1) = d/dn(1/1+exp-n)  

= (1- 1/1+exp-n)  x (1/1+exp-n)= (1-am
i,j)( am

i,j) 

For output layer (m=2) 

The derivative of activation function of output layer 
can be represented as 

f2 (n2) = d/dn(n)=1 

Where n was the output of each neuron of hidden and 
output layer. 

Step-7: Back-propagation of error by sensitivities at 
each layer was calculated as follows: 

For output layer (m=2) 

S2
j = -2F2(n2)(dj - yj) = -2 f2 (n2) x (ej) 

For hidden layer (m=1) 

Step-8: Updating the weight vectors  

The weight matrices were updated next using the 
following relationship 

w2
i,j(new) = w2

i,j(old) + ns2
j(a

1
ij)

T 

w1
i,j(new) = w1

i,j(old) + ns1
j 

Where η was  the momentum parameter or tuning 
parameter of the system 

Step-9: If erro r <= ε (0.01) then go to step 10, 
otherwise go to step 3 

Step-10: After the learn ing was completed, the 
weights were fixed and network can be used for testing. 

 

XXI. Algorithm of Functional-Link Artificial  

Neural Network (FLANN) 

Step-1: start 

Step 2:  Initialize the inputs data are Ø, θ, Yt-1. 

Step-3: Randomly select the init ial values of the 
weight vectors wi, for i = 1, 2…n.  

Step-4: Make the functional block (FLANN) as  

Xi =[1,x1 , sin( x1), cos( x1), x2, sin(x2), cos(x2)…] 

Step-5: Calculate the output of the system 

Oi=
1

N

i
 wi*Xi 

Step-6: Calculation of the output error. The error was 
calculated as 

ei = di−Oi 

Where di was the desired output Where Oi estimated 
output of the system. 

Step-7: Updating the weight vectors. The weight 
matrixes were updated next using the 
followingrelationship: 

wi(k + 1) = wi(k) + αei(k)Xi(k),                             (29) 

Where k was the time index and α is the momentum 
parameter. 

Step-8: If error <= ε (0.01) then go to step 9, other 
wise go to step 2. 
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Step-9: After the, learning was completed, the 
weights were fixed, and the network can be used for 
testing. 

Step-10: End 

 

XXII. Algorithm of Legendre Polynomial Equation 

(LPE) 

Step-1: Start 

Step 2:  Initialize the inputs data are Ø, θ, Yt-1. 

Step-3: Randomly select the init ial values of the 
weight vectors wi, for i = 1, 2…n.  

Step-4: For LPE the functional block is made as 
follows: 

Xi = [1, x1, L1(x1), x2, L1(x2), . . .]                           (30) 

Where L1(x) = 1/2(3x2 -1), L2(x) = 1/2 (5x3  -3x), and 
so forth. 

Step-5: Calculate the output of the system 

Oi=
1

N

i
 wi*Xi 

Step-6: Calculation of the output error. The error was 
calculated as 

ei = di−Oi 

Where di was the desired output Where Oi estimated 
output of the system. 

Step-7: Updating the weight vectors. The weight 
matrixes were updated next using the following 
relationship: 

wi(k + 1) = wi(k) + αei(k)Xi(k),                             (31) 

where k was the time index and α is the momentum 
parameter. 

Step-8: If error <= ε (0.01) then go to step 9, 
otherwise go to step 2. 

Step-9: After the, learning is complete, the weights 
were fixed, and the network can be used for testing. 

Step-10: End 

 

In this problem, the system is a MISO (multi input 
and output system) system. The system architectures of 
these proposed Artificial Neural Network models are 
same, whereas only the input pattern or functional 

blocks are different. To design these models, total 
number of 121 dataset were selected. Out of 121, 91 
dataset were selected for training process and 30 data 
were selected for testing process. In this proposed 
systems, both iteration and epoch based training 
methods were applied. 

In the proposed work, supervised learning methods 
were applied. From the simulation results Mean Square 
Error Plots of entire system was derived and plotted. 

 

 

Fig. 19: Represents Mean Square Error for MLP 

 

 

Fig. 20: Mean Square Error for FLANN 

 

 

Fig. 21: Mean Square Error for LPE 
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Similarly Fig.20 & 21 represents Mean Square Error 
for FLANN and LPE respectively. Including this, 
performance studies of the proposed model for testing 
sample (30 samples) was made. After a good training 
result, having high convergence MSE plot was the 
updated weight associated with the erro r remains fixed 

and the model was freezed  for its testing performance. 
The system was called a good system if its testing 
performance is within its error limit. 

 

 

 

Fig. 22: The testing performance of the MLP system for 30 number of testing samples 

 

 

Fig. 23: The testing performance of the FLANN system for 30 number of testing samples 
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Fig. 24: represents the testing performance of the Legendre system for 
30 number of testing samples 

 

The Absolute Average Percentage Error (AAPE) was 
used as the performance index and was calculated as 
follows: 

Average Percentage Error= 

30

0

30

(data)  - (Estimation)

(data)

n

i i

i

N

i

i











   ;                         (32) 

 

 

Table 3: Absolute Error Analysis of MLP, FLANN & LPE over Actual Rainfall data (Sept -2012) ERROR PREDICTION TABLE 

SL.NO  t Actual Y(t) ARIMA Error MLP Error FLANN Error Legendre Polynomial Error 

1 1 6.3 0 9.6682 4.6963 6.0814 

2 2 4.4 5.3 8.6335 5.204 6.0814 

3 3 10.5 8.7 11.7657 6.9045 6.0814 

4 4 14.6 6.6 13.5263 8.5951 6.0814 

5 5 13.8 -2.4 13.2059 6.9045 6.0814 

6 6 10.5 -8.6 11.7657 6.9045 6.0814 

7 7 8.2 0.2 10.6519 6.9045 6.0814 

8 8 6.5 -6 9.7743 5.204 6.0814 

9 9 7.2 2.9 10.141 1.9123 6.0814 

10 10 9.3 0.9 11.1955 4.1676 6.0814 

11 11 7.9 -5.67 10.5002 4.1676 6.0814 

12 12 7.5 0.68 10.2959 6.9045 6.0814 

13 13 8 -3 10.5509 8.5951 6.0814 

14 14 8.6 -1.74 10.8518 8.5951 6.0814 

15 15 10 -1.68 11.5311 8.5951 6.0814 

16 16 7.5 -6.4 10.2959 7.9936 6.0814 

17 17 7.6 2.1 10.3472 9.5055 6.0814 

18 18 10.3 0.52 11.6724 10.9826 10.1277 

19 19 5.5 -9.9 9.2384 11.2159 10.1277 

20 20 4.4 3.4 8.6335 8.5951 6.0814 

21 21 5.9 2.32 9.4544 9.5055 6.0814 

22 22 3.9 -3.04 8.3537 9.5055 6.0814 

23 23 5.6 2.45 9.2926 9.6794 6.0814 

24 24 2.4 -3.9 7.4982 9.6794 6.0814 

25 25 1.6 1.59 7.0334 9.5055 6.0814 

26 26 1.3 0.3 6.8578 10.9698 10.1277 

27 27 1.5 0.39 6.975 9.6794 6.0814 

28 28 1.8 -0.18 7.1501 6.9045 6.0814 

29 29 2.2 -0.4 7.3825 5.204 6.0814 

30 30 3.3 0.25 8.0143 6.9045 6.0814 

Absolute value of Average % of Error 47.7 31.0983= 14.92db 3.2093 = 4.94 db 12.716 =11.04 db 
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Table.3 summarized the results for Rainfall 
Estimation  by proposed models and compared  it  with 
real t ime data. The Absolute Average Percentage Error 
was then represented in decibel to determine the exact 
performance between the proposed model. It was  found 
that for Mult ilayer Perceptron (MLP) Absolute Average 
Percentage error (AAPE) is 31.0983 and corresponding 
14.9db. Similarly for FLANN  Absolute Average 
Percentage error(AAPE) was 3.2 and corresponding 
4.94db and for Legendry Polynomial Equation(LPE) 
Absolute Average Percentage error(AAPE) was 12.716 
and corresponding 11.04db.From the simulation result it 
was observed that the FLANN model had lower AAPE 
in db than the other two models. 

 

XXIII. Conclusion 

In this study, rain fall estimat ion was predicted using 
a complex statistical model ARIMA(1,1,1) and three 
different kind of Artificial Neural Network (ANNs) 
models, MLP, FLANN and LPE. The best statistical 
model for time series model was ARIMA and 
ARIMA(1,1,1) model was used for analysis for Rainfall 
Estimation data. Artificial Neural Network models viz 
MLP, FLANN and LPE were successfully applied for 
the complex time series models. Comparing the 
different ANN models for time series analysis, it was 
found that FLANN gives very close and better 
prediction result as compared to ARIMA model with 
less Absolute Average Percentage Error (AAPE). 
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