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Abstract. Commercial microwave radio links forming cel-

lular communication networks are known to be a valuable

instrument for measuring near-surface rainfall. However, op-

erational communication links are more uncertain relatively

to the dedicated installations since their geometry and fre-

quencies are optimized for high communication performance

rather than observing rainfall. Quantification of the uncer-

tainties for measurements that are non-optimal in the first

place is essential to assure usability of the data.

In this work we address modeling of instrumental impair-

ments, i.e. signal variability due to antenna wetting, base-

line attenuation uncertainty and digital quantization, as well

as environmental ones, i.e. variability of drop size distribu-

tion along a link affecting accuracy of path-averaged rainfall

measurement and spatial variability of rainfall in the link’s

neighborhood affecting the accuracy of rainfall estimation

out of the link path. Expressions for root mean squared er-

ror (RMSE) for estimates of path-averaged and point rain-

fall have been derived. To verify the RMSE expressions

quantitatively, path-averaged measurements from 21 oper-

ational communication links in 12 different locations have

been compared to records of five nearby rain gauges over

three rainstorm events.

The experiments show that the prediction accuracy is

above 90% for temporal accumulation less than 30 min and

lowers for longer accumulation intervals. Spatial variabil-

ity in the vicinity of the link, baseline attenuation uncer-

tainty and, possibly, suboptimality of wet antenna attenuation

model are the major sources of link-gauge discrepancies. In

addition, the dependence of the optimal coefficients of a con-

ventional wet antenna attenuation model on spatial rainfall

variability and, accordingly, link length has been shown.

Correspondence to: A. Zinevich

(artemsin@post.tau.ac.il)

The expressions for RMSE of the path-averaged rain-

fall estimates can be useful for integration of measurements

from multiple heterogeneous links into data assimilation

algorithms.

1 Introduction

Electromagnetic waves, especially at high (tens of GHz) ra-

dio frequencies are known to be affected by atmospheric con-

ditions in general and by precipitation in particular. The spe-

cific rainfall-induced attenuation K [dB km−1] of a radio sig-

nal at the frequencies of tens of GHz is dominated by the ef-

fects of rainfall R[mm h−1] and is governed by a well-known

power law equation

K = aRb (1)

where the parameters a and b are, in general, functions of

link frequency, polarization and drop size distribution (DSD)

(Jameson, 1991). Rainfall estimation using microwave links

has been studied over the last few decades (for example, At-

las and Ulbrich 1977; an overview can be found in Zinevich

et al., 2009), but only recently (Messer et al., 2006; Leijnse

et al., 2007a) it has been demonstrated that data recorded in

commercial cellular communication networks can be used to

estimate space-time rainfall intensities.

Microwave links, being an indirect rainfall measurement

tool, suffer from inherent inaccuracies. It was shown (Atlas

and Ulbrich, 1977) that at the frequencies of about 35 GHz,

the power-law relationship is approximately linear and is es-

sentially independent of DSD and temperature, showing em-

pirical errors of less than 10%. However, the uncertainties in

determination of path-averaged rainfall intensity due to vari-

ation in DSD increase with lowering frequency to 9 GHz to

more than 20%. Rincon and Lang (2002) have shown that the
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instantaneous estimates based on power law Eq. (1) tend to

overestimate the actual rainfall, especially at high rain rates

where variations in DSD affect the power law measurements,

even though the agreement between power law and dual fre-

quency estimates is very good during the intervals of strati-

form rain. Wet antenna attenuation has been found to have

great impact on measurement accuracy (Minda and Naka-

mura, 2005) if this effect is not taken into account. The un-

certainties in determination of clear air attenuation due to wa-

ter vapor and scintillation effects also have a direct impact on

measurement quality (Holt et al., 2003; Rahimi et al., 2003;

David et al., 2008). The effects of raindrop canting angles,

temperature, intra- and inter-storm variations of rainfall mi-

crostructure, link length and frequency, temporal sampling

strategy, power resolution and wetting of antennas have been

addressed by Aydin and Daisley (2002), Berne and Uijlen-

hoet (2007), Leijnse et al. (2007b, 2008a, b).

However, the latter studies on uncertainties have been ori-

ented toward estimation of expected errors using a simula-

tion framework, primarily to choose the optimal conditions

for measurement of path-averaged rainfall. The simulation

results represent climatological average estimates of uncer-

tainty that do not account for inter- and intra-storm variation

of rainfall intensity. The results are therefore not directly

applicable for accurate on-line variance estimation that is re-

quired, for example, for assimilation of microwave rainfall

measurements (Grum et al., 2005; Zinevich et al., 2009).

The experimental verification of the accuracy of uncertainty

quantification has received little attention by now; it has been

shown by Leijnse et al. (2008a) that experimentally measured

errors considerably exceed the predicted ones, since not all

error sources have been taken into account.

On the other hand, commercial hardware installations are

characterized by lack of control over link parameters. The

links are installed in the way that maximizes communica-

tion performance rather than the accuracy of rainfall mea-

surements; having online variance estimation is essential for

accurate integration of observations from multiple links.

This work attempts to build a framework for quantitative

estimation of uncertainties of path-averaged microwave rain-

fall measurements. The expressions for root mean squared

error (RMSE) E [ee] of the estimation error e = R−R̂ for es-

timates R̂ of path-averaged rainfall R have been derived. The

RMSE estimates take into account the major error sources:

DSD variations along a link and signal variations due to an-

tenna wetting, quantization of the signal attenuation mea-

surements and uncertainty in the determination of the base-

line (zero rainfall) attenuation. A model of rainfall spatial

variation is adopted to facilitate comparison of path-averaged

rainfall estimates with nearby rain gauges, still the most reli-

able instrument for surface rainfall measurements.

The paper is organized as follows: in Sect. 2 the model for

mean squared error (MSE) of path-averaged rainfall estima-

tion error is formulated. The calibration of model parameters

is addressed in Sect. 3. The spatial rainfall variability model

is described in Sect. 4. Experimental errors and predicted

RMSE are studied by comparing link and gauge observations

in Sect. 5. Section 6 concludes the manuscript.

2 Uncertainty models

A simplified model for microwave attenuation AM, measured

by a radio receiver is

AM = A0 +AR +Aw +nq (2)

where A0 is baseline attenuation unrelated to rainfall, AR is

path-integrated rainfall-induced attenuation, Aw is excess at-

tenuation due to wet antenna and nq is observation quantiza-

tion noise, modeled as a uniformly distributed random vari-

able (Widrow and Kollár, 2008) with variance

σ 2
q =

12

12
(3)

for 1 dB quantization interval. Equation (3) can be assumed

valid for signals AR, Aw with dispersion much higher than

1; note that this assumption does not hold for weak rainfall.

Both AR and Aw depend on DSD distribution along a link;

besides, all components are independent.

2.1 Uncertainties due to DSD variations

The path-integrated rainfall-induced attenuation AR results

from absorption and scattering of electromagnetic waves by

raindrops, distributed at a point x along the L km link as

Nd(D,x), where D is the equivolumetric raindrop diameter

and Qd(D) is the extinction cross-section at given frequency

and polarization (Atlas and Ulbrich, 1977):

AR = 0.4343

∫

L

dx





∫

D

dDNd (D,x)Qd(D)





= 0.4343

∫

D

dDN̄d (D,L)Qd(D) (4)

where N̄d (D,L) =
∫

L
dx Nd (D,x) is the path-integrated

DSD. Similarly, the path-averaged rainfall RL is given by

RL =
0.6π

L

∫

D

dDN̄d (D,L)Vd(D)D3, (5)

where Vd(D) is the raindrop terminal velocity. Since both

Vd(D) and the scattering cross-section can be approximated

by power laws Vd(D) = 3.78D0.67 , Qd(D) = CDn (Atlas

and Ulbrich 1977), both AR and RL can be considered

higher-order moments of the DSD Nd (D). The relation be-

tween AR and RL becomes linear at frequencies of about

34 GHz where the power n in the cross-section expression

equals to that of Vd(D). Commercial microwave links op-

erate at various frequencies; uncertainty in determination of
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path-averaged rain rate from attenuation measurements in-

creases as frequency lowers (Atlas and Ulbrich, 1977).

For a given link, the stochastic relationship between AR

and RL can be obtained empirically by fitting their estimates

based on the DSD measurements of N̄d (D,L) for a given

link length L. For convenience, let us write an expression for

the expected value of RL given AR according to Eq. (1) with

inverted power law coefficients β = b−1, α = (aL)−β :

R̂L(AR) = E [RL |AR ] ∼= αA
β
R. (6)

The MSE of RL due to DSD variations can be modeled

using another ad hoc power-law expression with two link-

specific parameters γ,δ (we adopt a notation σ 2 [R|A] =

E

[

(

R− R̂(A)
)2

|A

]

for MSE):

σ̂ 2
DSD [RL |AR ] = E

[

(

RL − R̂L(AR)
)2

|AR

]

∼= γAδ
R. (7)

The verification of adequacy of the power law parametric

form is addressed in the context of a model, comprising wet

attenuation effects, in Sect. 3, c.

2.2 Uncertainties due to antenna wetting

A thin film of water on an antenna or a radome is known to

cause a considerable attenuation of the received signal. A

simplified empirical two-parameter model for a wet antenna

attenuation estimate Âw, originating from (Kharadly and

Ross, 2001) have been used by Minda and Nakamura (2005);

Leijnse et al. (2007b); Zinevich et al. (2009):

Âw = c1

(

1−e−c2(AR+Aw)
)

, (8)

Denoting aw(A) = c1

(

1−e−c2A
)

, let us represent the true

wet antenna attenuation as

Aw = aw(AR +Aw)+nw (9)

where nw is noise, caused by rainfall variations near the an-

tennas. Substituting unknown AR +Aw from Eq. (2) into

Eq. (8), Eq. (2) transforms into

AR +nw = AM −A0 −nq −aw

(

AM −A0 −nq

)

. (10)

Since both nw and the measurement error in RL are caused

by DSD variability along a link, they should be modeled

jointly using the same DSD data. Taking into account that

the effect of nw on rainfall estimate decreases with increase

of AR + nw according to Eq. (8) (for large AM, Aw → c1

and is weakly affected by its variations), a following ad hoc

parametric MSE model, parameterized by three link-specific

variables γ,δ,ε is proposed:

σ̂ 2
DSD+Wet [RL |AR +nw ] = E

[

(

RL − R̂L(AR +nw)
)2

|AR +nw

]

∼= γ (AR +nw)δ e−ε(AR+nw). (11)

The model given by Eq. (6) can be adopted for

R̂L(AR +nw) keeping in mind that even zero-mean nw leads

to a biased estimate of RL since

E
[

α(AR +nw)β
]

6= E
[

αA
β
R

]

(12)

due to non-linearity of the power law Eq. (6).

2.3 Uncertainties due to baseline variation

The level of baseline attenuation A0(t), where t is a time

index, varies in time due to primarily variations of water va-

por concentration in the atmosphere, ducting and scintilla-

tion; the transmission/reception analog circuitry is affected

by temperature variations that may lead to additional signal

variations (Leijnse et al., 2007b). In addition, wind effects

on the antennas and masts may also cause variations in the

baseline signal; the estimation of the latter is complicated by

signal quantization. In this work, the baseline attenuation es-

timate has been calculated as a sample mean (Â0) of attenua-

tion measurements immediately before and after a rainstorm:

the time of rainstorm starts and ends in the area has been de-

termined according to nearby rain gauges with 10 min mar-

gins, to compensate for link-gauge physical distance. Then,

the measurements of AM of 2...27 h length (depending on

data availability) have been used for calculations, described

below. For practical applications, existing rain/no rain detec-

tion techniques can be used (Rahimi et al., 2003; Upton et

al., 2005; Goldshtein et al., 2009; Schleiss and Berne, 2009).

The noise n0 due to short-time variations

n0(t) = A0(t)− Â0 (13)

is zero mean under an assumption that the average baseline

estimate, obtained from measurements before and after the

rainstorm, gives an unbiased estimate of baseline during the

rainstorm (the best guess, provided that there is no other in-

formation w.r.t. baseline variation during a rainstorm is avail-

able).

To quantify uncertainty of Â0 (MSE of n0), a sample MSE

estimate σ̂ 2
0 has been calculated over no-rain intervals as a

deviation from Â0, assuming that baseline variations during

rainy periods have similar statistical properties. Note that

the length of data samples before and after event should be

equal; otherwise, the sample MSE becomes biased towards

the longer interval. While short data intervals may lead to

inaccurate estimates of the baseline variations, they are still

unbiased as long as the unbiased sample variance estimate

(Papoulis, 1991) is used for sample MSE calculation. Mea-

surement of temporally averaged rainfall requires estimation

of baseline variability in the same temporal scale. To facil-

itate MSE prediction of accumulated rainfall amounts over

an interval of 1t samples length, the pre/post rainstorm at-

tenuation measurements have been averaged over a sliding

window of length 1t prior to calculation of σ̂ 2
0 (note that av-

eraging of rain rates is not equal to averaging attenuations,
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Fig. 1. An example of the baseline attenuation determination

(23.27 GHz, 2.19 km). AM is the measured attenuation, A0 is the

estimated baseline, and σ0 is RMSE of A0. Event endpoints, defin-

ing the beginning and the end of the rainstorm, are determined ac-

cording to the nearby Switch Ramle gauge.

due to non-linearity of Eq. (1); these differences are of sec-

ond order and are neglected for MSE prediction). An exam-

ple of the baseline and MSE is given in the Fig. 1. Note that

at frequencies around 34 GHz where the attenuation-rain rate

relation becomes nearly-linear, the difference between aver-

aging of rain rate and attenuation nearly vanishes.

In some cases, the natural short-term variations in A0 due

to the atmospheric scintillation produce a dithering effect on

the quantized signal so that sample mean represents the av-

erage baseline attenuation; for short 1t , quantization noise

in pre/post rainstorm samples is also absorbed into σ̂ 2
0 that

may lead to overestimation of baseline variability. For short

links or at low frequencies, the natural fluctuations of the

base level attenuation are comparable in magnitude to the

quantization interval 1 = 1 dB (in the present study). In this

case, quantization causes a nonlinear distortion of the signal;

the true A0 is known to within 1. Increasing sample size

does not decrease the variance of quantization error, given

by Eq. (3), and the estimation of true σ̂ 2
0 is complicated. A

possible heuristics in this case is to limit σ̂ 2
0 to the minimum

given by Eq. (3), supposing that near-zero σ̂ 2
0 indicates that

the nonlinear quantization effect dominates other variability

sources. Because of non-linear quantization effects, quan-

tization error in baseline estimate may affect an entire rain

event, introducing a bias in estimation of path-averaged rain-

fall.

Substituting Eq. (13) into Eq. (10), we get the signal dis-

tortion model

AR +nw = AM − Â0 −n0 −nq −aw

(

AM − Â0 −n0 −nq

)

. (14)

Note that, in general, signal quantization can be performed

in different ways: for example, rounding of measured sig-

nal to a nearest integer value does not introduce bias, while

flooring or ceiling do introduce negative or positive bias of

1
/

2 dB. Naturally, this bias presents in both rainy signal at-

tenuation measurement AM and the measurements of AM,

used to calculate Â0. Because of this, the quantization-

related bias, if any, is cancelled for AM–Â0, and therefore

nq in Eq. (14) can be considered zero-mean.

2.4 Uncertainties of estimation of path-averaged

rainfall

Employing the Taylor series expansion of non-linear

aw (AM − Â0 −n0 −nq) around the estimate of the rainfall-

induced attenuation AM −Â0 and taking linear terms, we can

rewrite Eq. (14) as

aw

(

AM − Â0 −nq −n0

)

∼= aw

(

AM − Â0

)

+a′
w

(

AM − Â0

)

(

−nq −n0

)

, (15)

AR +nw
∼= AM − Â0 −aw

(

AM − Â0

)

− tM ·
(

nq +n0

)

, (16)

where a′
w is the first derivative of aw w.r.t. AM − Â0, and

tM =
(

1−c1c2exp
(

−c2

(

AM − Â0

)))

is an auxiliary vari-

able. Recalling that both nq and n0 are zero-mean and in-

dependent, the estimates of the rainfall-induced attenuation

ÂR = E
[

AR +nw

∣

∣

∣
AM − Â0

]

and its MSE become

ÂR = AM − Â0 −aw

(

AM − Â0

)

, (17)

σ̂ 2
[

AR +nw

∣

∣

∣
AM − Â0

]

∼= t2
M

(

12

12
+σ 2

0

)

. (18)

Neglecting the higher-order terms of the Taylor series is plau-

sible under an assumption that the magnitude of AM − Â0

is much higher than that of the noise terms. While this

is the case for high rain rates where aw is nearly constant

(otherwise, the reduction of Eq. (14) to the conventional

Eq. (17) similar to the one used, for example, by Leijnse

et al. (2007b) would be impossible), this approximation can

lead to the additional errors in the estimation of ÂR and

σ̂ 2
[

AR +nw

∣

∣

∣
AM − Â0

]

for weak rain rates where signal

AM−Â0 to noise nq +n0 ratio is low and more Taylor expan-

sion terms may be required to accurately represent aw. The

second derivative a′′
w(x) < 0; the direct consequence of this

is that the conventional estimation of ÂR using Eq. (17) leads

to overestimation of weak rain rates due to neglecting of the

term with a′′
w(x). By retaining the term with a′′

w, Eq. (17)

transforms into

⌢

AR
∼= AM − Â0 −aw

(

AM − Â0

)

−
a′′
w

(

AM − Â0

)

2
·E
[

(

nq +n0

)2
]

. (19)

One can see that zero-mean noise nq +n0 leads to a bias if

the last term in Eq. (19) is dropped. However, this issue can

be put aside as long as the empirical function aw is calibrated

for the model given by Eq. (17) to provide unbiased rain rate
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estimation (see Sect. 3.2). Substituting Eq. (17) into Eq. (16)

and substituting AR +nw for AR in Eq. (6), we can rewrite

the latter as

R̂L

(

ÂR

)

= E
[

α(AR +nw)β
∣

∣

∣
ÂR

]

∼= E

[

α
(

ÂR − tM
(

nq +n0

)

)β
]

. (20)

Again, using a linear approximation around ÂR, denot-

ing another auxiliary variable dM = αβÂβ−1
R

tM , the Eq. (20)

simplifies to a trivial

R̂L

(

ÂR

)

∼= E
[

αÂβ
R
−dM

(

nq +n0

)

]

= αÂ
β
R. (21)

Similarly, noticing independence of nq and n0 with DSD-

related uncertainties and substituting the Eq. (11), Eq. (18)

transforms into

σ̂ 2
[

RL

∣

∣

∣
ÂR

]

∼= E

[

(

R−αÂ
β
R +dM

(

nq +n0

)

)2
]

∼=

∼= σ̂ 2
DSD+Wet

(

RL

∣

∣

∣
ÂR

)

+d2
M

(

12

12
+ σ̂ 2

0

)

. (22)

2.5 Temporal averaging

To get a better insight into the effect of various error sources

as a function of temporal averaging intervals, let us esti-

mate the MSE of path- and time-averaged rain rate 〈RL(t)〉

over 1t minute interval, t =1,. . . ,1t , given a set of instan-

taneous attenuation measurements � = {AM(t)− Â0(t);t =

1,...,1t}. By substituting the averaging operator 〈·〉 into

Eq. (11),

σ̂ 2 [〈RL(t)〉|� ] ∼= E

[

(

〈RL(t)〉−
〈

αÂ
(t)
R

β +dM (t)
(

nq (t)+n0

)

〉)2
]

. (23)

Here, dM (t) is obtained from dM by substitutingÂR(t),

AM(t), Â0(t) for ÂR, AM, Â0. Note that n0 does not depend

on t =1,. . . ,1t (that is, the typical period of variations of n0

is assumed to be much longer than 1t ; Eq. (23) does not

account for instantaneous baseline variations due to scintilla-

tion since their effect on 〈RL(t)〉 is assumed to be minor due

to averaging). Rearranging terms on the r.h.s. of Eq. (23),

recalling independence of nq and n0 on each other and on

DSD-related errors, we get

σ̂ 2 [〈RL(t)〉|� ] ∼=
〈

σ̂ 2
DSD+Wet

(

RL

∣

∣

∣
ÂR (t)

)〉

+
1

1t

〈

dM (t)2
〉

12

12
+〈dM (t)〉2 σ̂ 2

0 . (24)

2.6 Summary of the uncertainty model

To sum up, we have derived the estimates of path-integrated

rainfall-induced attenuation ÂR and path-averaged rainfall

R̂L in Eqs. (17), (21) based on the model for the measured

signal AM given by Eq. (2), comprising baseline attenua-

tion A0, path-integrated rainfall-induced attenuation AR, wet

antenna attenuation Aw and quantization error nq . Using

the first-order approximations of nonlinear models for Aw

(Eq. 8) and the power-law relation (Eq. 1), the estimate ÂR

in Eq. (17) is equivalent to the deterministic relation (e.g.

Leijnse et al., 2007b; Zinevich et al., 2009). Next, we have

derived the Eq. (22) for MSE for path-average rainfall esti-

mates, based on an ad hoc model for uncertainty of the A– R

relation given by Eq. (11), sample MSE estimate σ̂ 2
0 of base-

line uncertainty and a simplified model for variance of quan-

tization error (Eq. 3). Finally, Eq. (24) for MSE of time- and

path-averaged rainfall has been derived.

3 Calibration of model parameters

The model parameters (rainfall attenuation and MSE model

coefficients, wet attenuation coefficients) have been cali-

brated using a DSD database and a set of rain gauge and

microwave links records.

The wet antenna attenuation coefficients have been derived

from observations of six intensive convective rainstorms (Ta-

ble 1) recorded in central Israel during the winters 2006,

2007 and 2008 by a commercial network of 21 vertically po-

larized microwave links, operating at frequencies 18–23 GHz

with lengths varying from 0.81 to 7.26 km, installed in 12

different locations. The links record quantized instanta-

neous microwave attenuation with 1 = 1 dB magnitude and

one minute temporal resolution. For comparison, five rain

gauges, recording point rain rate with 6 mm h−1 magnitude

and one minute temporal resolution, have been installed in

the vicinity of microwave links (Fig. 2).

The rest of parameters have been derived using the DSD

database consisting of 6282 DSD spectra, collected in central

Israel during 1984–1985 (courtesy of Zev Levin; see Fein-

gold and Levin (1986) for details) at the temporal resolution

of one minute.

3.1 Derivation of power law coefficients

To transform the DSD time series into spatial profiles know-

ing the rainstorm advection velocity, the Taylor’s hypothesis

of frozen turbulence is invoked (Leijnse et al., 2008a). As

a result, the integration of the space-varying Nd (D,x) along

the link can be replaced by integration of discrete point-scale

DSD time series

N̄d (D) =

L
∫

0

dx Nd (D,x) ∼=
L

[L/v]

[L/v]
∑

t=1

Nd (D,t), (25)

where [·] stands here for rounding operation, v is the rain-

storm advection velocity that has been estimated by corre-

lating multiple microwave links (Zinevich et al., 2009); the

(climatological) average for six studied rainstorms (see Ta-

ble 1) is v = 14.6 m s−1.
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Table 1. List of rainstorms, used for empirical assessment of MSE prediction accuracy.

Event Duration, Net rainfall Peak rain Average rain

h duration, h rate, mm h−1 rate, mm h−1

26 December 2006 22 9.6 84 2.97

5 January 2007 62 11.6 48 0.81

29 January 2007 38 5.7 72 0.59

4 January 2008 9.5 1.9 54 1.22

29 January 2008 51 7.1 54 1.48

14 February 2008 20 2.6 42 1.09

Total 202.5 38.5 1.22

Table 2. Conventional power-law coefficients a, b for frequency

bands in use, determined from α, β estimated using Eq. (26) for

average link length of 3.43 km.

Frequency a b

band

18 GHz 0.069 1.154

19 GHz 0.070 1.145

22 GHz 0.099 1.121

23 GHz 0.110 1.112

The parameters α, β in Eq. (6) have been obtained using

a non-linear fit of NR = 6200 DSD profiles N̄d (D), using the

T-matrix method for extinction cross-section (Mishchenko,

2000):

[α,β] = arg min
α,β

NR
∑

i=1

(

RL(i)− R̂L(AR(i))
)2

, (26)

where AR, RL and R̂L are given by Eqs. (4), (5) and (6). The

problem in Eq. (26) and the rest of non-linear minimization

problems in this study are solved using simplex optimization

(Press et al., 1992); preliminary coarse grid search has been

done to find optimal initial values, likely leading to a global

minimum.

Dealing with disdrometer records requires addressing the

sampling error issue; it was shown by Uijlenhoet et al. (2006)

that the sampling distribution of any DSD moment converges

asymptotically to Gaussian with increase of sample size. The

sampling distribution of high moments such as rain rate re-

mains skewed for sample size as large as 500 samples, which

results in biased estimates of bulk rainfall variables. In the

DSD records used in this study, a typical DSD sample size is

a few thousand drops for point rain rates of above 1 mm h−1

at one minute resolution. For this reason, the effect of the

sampling errors on power-law coefficients is assumed to be

negligible.

Fig. 2. Locations of microwave links, used for rainfall observations,

around the cities of Ramle and Modi’in (�) and rain gauges (1)

Ramle West, Switch Ramle, Kfar Shmuel, Modi’in Shimshoni and

Modi’in Center. The local topography contours are given in meters.

The duplicating links installed in parallel are denoted twice, e.g.

L22 and L23.

The resulting power law coefficients for typical frequency

bands are listed in the Table 2. The power-law functions

have been found similar to the lognormal model (Zhang and

Moayeri, 1999), especially in low rain rates that is in agree-

ment with Feingold and Levin’s (1986) conclusion regarding

Israeli DSD, even though the actual values of the coefficients

differ since non-linear minimization (Leijnse et al., 2007b)

has been applied in Eq. (26) versus linear optimization in log

domain by Zhang and Moayeri (1999).

3.2 Derivation of wet antenna attenuation coefficients

It has been shown by Leijnse et al. (2008a) that wet an-

tenna attenuation is essentially independent on frequency at

17–23 GHz, so in this study only link length dependence
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has been assumed for c1, c2 (i.e. different coefficients for

link length ranges 0. . . 1 km, 1. . . 2 km, etc.). Assuming that

nearby gauge rainfall records 〈R0〉 averaged over 1t minutes

approximate averaged link rainfall 〈RL〉, the coefficients c1,

c2 are

c1,c2 = arg min
∑

i

(

〈R0〉i −
〈

R̂L

(

ÂR

)〉

i

)2
wi, (27)

〈·〉i =
∑i+1t−1

j=i
(·)j/1t, (28)

where ÂR, R̂L

(

ÂR

)

are given by Eqs. (17) and (19); averag-

ing 〈·〉i lowers differences due to link-gauge physical separa-

tion. Summation through i goes over all available data (Ta-

ble 1), and the weights wi are chosen to give the same weight

to different rainstorm events; otherwise, estimates are biased

towards longer events. In practice, estimates of c1, c2 are re-

liable at 1t ≥10 min (i.e. c1, c2 change weakly with further

increase of 1t). Assuming that the sample mean (summa-

tion in Eq. 27) approximates the expectation operator, the

estimate of R̂L(AR) is unbiased (Papoulis, 1991); the bias

caused by nw in Eq. (12) is absorbed into the coefficients

c1,c2.

Due to the difference in the nature of observations, a sin-

gle point gauge is not necessarily representative of the link

path-averaged rain rate due to spatial rainfall variation. Spa-

tial variations may lead to considerable differences in path-

averaged rainfall amount in the link’s location and point rain-

fall amount at the gauge’s location, even though the link and

the gauge are installed in close proximity; in this case, the

link-gauge difference in rainfall intensities and baseline er-

rors will be absorbed into the wet antenna attenuation coef-

ficients when the latter are calibrated using Eq. (27). How-

ever, in the climatological scale, the gauge records can be

considered representative of the areal average rain rate; the

link-gauge differences in the recorded rainfall amount will

decrease with increase of the number of different realiza-

tions used for calibration. Eq. (27) requires therefore min-

imization over much data that comes from multiple links,

oriented in various directions. The Fig. 3 demonstrates that

for the link length ranges where much data are available (e.g.

2. . . 3 km), the link-gauge differences in total recorded rain-

fall amount per event are widely scattered around zero, that

indicates that realization-specific differences in rainfall in-

tensity at link-gauge locations have little effect on the result-

ing wet attenuation coefficients.

The list of the coefficients c1,c2 is given in Table 3. One

can see that, in general, the coefficient c1that determines

maximum (saturation) value of the wet attenuation correc-

tion (Eq. 8) lowers for longer links, due to increase of the

spatial rain rate variability along longer links and increase of

chances that rainfall, captured by a link in the middle, does

not affect one or both antennas. The coefficients c1 lie close

to the range of 3.32–8 dB, reported in the literature by Minda

Fig. 3. Differences between total link path-averaged rainfall amount

and a nearby rain gauge measurements per link-gauge pair, as a

function of link length, over the entire database.

Table 3. Wet antenna attenuation coefficients c1, c2for various link

lengths.

Link lengths c1, dB c2, dB−1

range

0...1 km 8.707 0.196

1...2 km 7.441 0.149

2...3 km 8.876 0.112

4...5 km 6.409 0.136

5...6 km 4.227 0.289

7...8 km 4.631 0.203

and Nakamura (2005), Leijnse et al. (2007b), Kharadly and

Ross (2001). Note that the latter reported relatively high

c1 = 8 dB by directly measuring wet antenna attenuation, ex-

cluding variations of rainfall along a link, that is similar to

the case of short links in Table 3.

The records of 9 out of 13 available link-gauge pairs in-

cluding 7.16 km links lead the optimization in Eq. (27) to

excessively large values of c1 (tens of dB) due to rainfall in-

tensity variations. The long links, installed roughly orthog-

onally to the typical rainstorm advection direction capture

parts of rainstorm missed by the gauges, located apart. This

leads to underestimation of rare high-intensity peaks since

the optimization (Eq. 27) concentrates on link-gauge mis-

match (rainfall captured by a link but missed by a gauge)

in more abundant (low) rain rates. This indicates impossi-

bility of calibration of long links for wet antenna attenuation

using Eq. (27) in the present setup due to either high spatial

rain rate variations or, possibly, baseline variations that are

not represented by pre/post rainstorm measurements. These

link-gauge pairs have been excluded from further considera-

tion. As a result, the variation of link-gauge differences for

7.16 km links is small (Fig. 3) since only similar link-gauge

records have been retained.

www.atmos-meas-tech.net/3/1385/2010/ Atmos. Meas. Tech., 3, 1385–1402, 2010



1392 A. Zinevich et al.: Prediction of rainfall intensity measurement errors

Fig. 4. An example of the power-law fit (Eq. 6) and predicted RMSE (Eq. 11) of path-integrated attenuation (Eq. 4) and path-averaged rain

rate (Eq. 5) of the DSD database, including variations in DSD and wet antenna attenuation, for a 4 km 20 GHz link. The right figure is a

zoomed version of the left one.

Note that the errors in the determination of Âw have less

impact on the measurement accuracy for longer links since

the relative contribution of Aw into the total measured AM is

lower.

3.3 Derivation of coefficients of path-averaged rainfall

MSE model

Firstly, for each of NR path-integrated DSD profiles N̄d (D),

calculated according to Eq. (25) from the available DSD data,

the path-integrated attenuation AR is computed using Eq. (4).

The instantaneous DSD spectra, multiplied by link length

L ·Nd (D,1) and L ·Nd (D,[L/v]) at two ends of each pro-

file are substituted into Eq. (4) to calculate path-integrated

attenuation valuesAR(j), j = 1,2, simulating constant DSD

along the link. Then, the wet antenna attenuations for two

antennas Aw(j),j =1,2 are obtained by solving

Aw(j) = aw(AR(j)+Aw(j)). (29)

Equation (29) is inverted for unknown Aw(j) by golden sec-

tion search; the value aw = (Aw(1)+Aw(2))
/

2 is the sim-

ulated wet antenna attenuation. Finally, the path-integrated

ÂR(i) is calculated from the full i-th DSD profile as

ÂR(i) = AR +Aw −aw(AR +Aw). (30)

The above estimation is valid under the assumption that aw

with c1, c2 calibrated using Eq. (27) is applicable for the case

of constant DSD along the link. With real data, this assump-

tion, in general, does not hold due to non-linearity of aw:

E [Aw −aw(AR +Aw)|Aw] 6= 0. (31)

The bias increases with link length and rain rate. Over the

available DSD data, the average bias (ÂR underestimates true

AR) is about 5% of AR (maximum 10% for high rain rates)

for links shorter than 3 km (two thirds of the studied data)

and reaches 7% (maximum 17%) for 7.16 km links as rain-

fall variability along the link increases. These results suggest

dependence of parameters of the Eq. (8) on rainfall spatial

variability; the model, given by Eqs. (29), (30) is better suited

for stratiform, homogeneous rainfall, or short links. The op-

timal wet attenuation coefficients (i.e. producing least biased

estimates of rainfall) may therefore be different for different

types of rainfall (e.g. convective or stratiform). In general,

a more accurate model for wet antenna is needed (e.g. Lei-

jnse et al., 2008a). The latter, however, requires calibration

with gauges, installed at both antenna locations for each link

that are unavailable. Equations (29), (30) has been used in

the present study despite biasedness, assuming that they still

allow estimating the typical scale of wet antenna-related er-

rors.

Next, R̂L

(

ÂR(i)
)

, i = 1,. . . ,NR are calculated for all

DSD profiles using Eq. (21), and the parameters of the

model for MSE of DSD-related uncertainties are calibrated

as

[γ,δ,ε] = arg min
γ,δ,ε

NR
∑

i=1

(

(

RL(i)− R̂L

(

ÂR(i)
))2

(32)

−σ̂ 2
DSD+Wet

[

RL|ÂR(i)
])2

.

As in Eq. (24), the i-th sample RL(i) and R̂L(i) are given by

Eqs. (5), (6). Examples of R̂L

(

ÂR

)

and σ̂DSD+Wet

[

RL

∣

∣

∣
ÂR

]

are shown in Figs. 4, 5. RMSE increases substantially with

link length, due to increased variability between antenna lo-

cations. Conversely, excluding wet antenna-related variabil-

ity from consideration (using Eq. 7 instead of Eq. 11) leads

to decrease of MSE for longer links (not shown here); for in-

stantaneous measurements, wet antenna effects mostly dom-

inate the effect of DSD variability along a link. Increas-

ing frequency directly leads to accuracy improvement; thus,
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Table 4. The performance statistics SDSD+Wet Eq. (33) for various rain rates and frequencies.

R, mm h−1 2 km 2 km 2 km 2 km 0.5 km 4 km 8 km 8 km

16 GHz 20 GHz 24 GHz 38 GHz 20 GHz 20 GHz 20 GHz 38 GHz

1–10 0.99 0.99 1.00 1.14 1.00 0.99 1.00 0.98

10–100 0.96 0.97 0.98 0.96 0.99 0.97 0.99 1.04

Fig. 5. The predicted RMSE of rain rate estimates σ̂DSD+Wet(RL |AR +nw ) (Eq. 11) as a function of link length for a 22 GHz vertically-

polarized link (left) and as a function of link frequency for a 2.2 km link (right).

18 GHz link is almost twice more uncertain than 24 GHz one

(Fig. 5, right). These results are in agreement with conclu-

sions of Atlas and Ulbrich (1977), Leijnse et al. (2008a).

To assess the accuracy of the approximation of σ̂ 2
DSD+Wet

by Eq. (11), the statistics

SDSD+Wet =

√

√

√

√

√

√

√

√

NR
∑

i=1

σ̂ 2
DSD+Wet

[

RL(i)

∣

∣

∣
ÂR(i)

]

NR
∑

i=1

(

RL(i)− R̂L

(

ÂR(i)
))2

. (33)

has been calculated for various frequencies 16. . . 38 GHz and

link lengths 0.5. . . 8 km. Values SDSD+Wet close to one indi-

cate validity of Eq. (11). One can see that in most cases,

the error does not exceed few percents, with maximum of 14

percent (Table 4).

The model for σ̂ 2
DSD (Eq. 7) can be verified similarly to

Eq. (11) using statistics in Eq. (33), producing results, similar

to ones in Table 4.

In the case of temporal averaging, the coefficients γ , δ, ε

differ from ones in Eq. (11) as they are calibrated over time-

averaged data to take into account correlation between adja-

cent time frames

[γ,δ,ε] = arg min
γ,δ,ε

NR
∑

i=1

(

(

〈RL〉i −
〈

R̂L

〉

i

)2
−
〈

σ̂ 2
DSD+Wet

[

RL

∣

∣

∣
ÂR

]〉

i

)2

(34)

where 〈·〉i is given by Eq. (28). Accuracy of the model for

1t = 1 and 30 min is comparable.

4 Estimation of point rainfall from path-averaged

measurements

To compare path-averaged rainfall with the point scale rain

gauges, one can address modeling of rainfall spatial variabil-

ity through the use of geostatistics methods (Schabenberger

and Gotway, 2005) to obtain an MSE expression for rainfall

estimation at an arbitrary point in space.

4.1 Semivariogram modeling

Under the assumption of stationarity of a two-dimensional

rainfall field and its isotropy (covariance between rainfall at

two points depends only on distance between them; the va-

lidity of this assumption is discussed in the Sect. 5.2), an

empirical semivariogram γ (h) describes the spatial correla-

tion of rainfall r between two points, separated by distance

h

2γ (h) = E
[

(

rx −rx(h)

)2
]

, (35)

where x (h) =
{

x
′ :
∥

∥

x −x
′
∥

∥= h
}

. In practice, an empirical

semivariogram γE (h) is firstly calculated from rainfall data

by replacing the expectation operator in Eq. (35) by sample

mean and then is approximated by Gaussian semivariogram

model (subjectively chosen as it fits Eq. (35) best)

γM (h) = (s −n)

(

1−exp

(

−
h2

r2

))

+n. (36)
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where sill s, nugget n and range r are estimated by non-linear

least square fit.

Equation (36) does not assume any a-priori information

except for climatologically averaged positive spatial autocor-

relation that decreases with distance; in particular, it does not

distinguish between weak and strong rainfall. To take this

into account, let us assume that the path-averaged rainfall RL

represents the local areal average rainfall in the vicinity of a

link (e.g. over a circular area with diameter equal to the link

length). Consequently, one can consider an optimal estimate

of γ (h) given RL. The conditional semivariogram is defined

as

2γ (h|RL ) = E
[

(

rx −rx(h)

)2
|RL

]

. (37)

Modeling of γ (h|RL ) has been done in two steps. Firstly,

empirical conditional semivariograms have been calculated

over a series of Nq rainfall intensity ranges {qi}i=1,...,Nq
=

{

[0,...,p0),...,[pi−2,...,pi−1),...
}

as

2γE (h|qi) =
〈

(

rx1
−rx2

)2
|h,RL

〉

, (38)

where 〈·〉 denotes averaging over all possible

{x1,x2:‖x1 −x2‖ = h, RL(x1,x2) ∈ qi}, RL(x1,x2) is

the local areal average rainfall intensity in the vicinity of

x1, x2. The parameter p =1.5 has been chosen to maximize

Nq provided that no rainfall bins qi are empty, given the

available rain gauge data. The average rainfall estimate
(

rx1
+rx2

)/

2 is substituted for unknown RL(x1,x2). Then,

the models γM

(

h|R̄L(i)
)

, i =1,. . . ,Nq have been fitted

with these empirical semivariograms, producing a set of

parameters 3i = {si,ni,ri}, i=1,...,Nq

3i = arg min
∑

h

(

γE (h|qi)
1/2 −γM

(

h|R̄L(i)
)1/2

)2
, (39)

where average R̄L(i) = 〈RL(x1,x2) ∈ qi〉. Taking square

root of semivariograms in Eq. (39) is necessary to give more

weight to small h (small γ ) w.r.t. large h (considerably larger

values of γ ) in numerical optimization.

The empirical semivariograms have been calculated at

three different h (1.47, 6.1 and 11 km) from the records of

four rain gauges over three rainstorms (Fig. 2 and Table 1).

In general, it is possible to get the experimental data over

a denser range of distances from even single rain gauge

record at 1 min resolution, by invoking the Taylor hypoth-

esis (using climatological average rainfall advection velocity

14.6 m s−1) and transforming the time series into a spatial

profile at the spatial resolution of 0.88 km. To generate tem-

porally averaged data for a 1t minutes interval, one should

pass the time series via a rectangular moving average filter

of 1t samples length. However, this operation introduces

unrealistic correlation between adjacent samples. To avoid

this, one can subsample the filtered time series at 1t samples

rate, but then the temporal (and, accordingly, spatial) reso-

lution becomes 1t-dependent. To preserve the consistency

between experimental semivariograms for different 1t , sep-

arate realizations using different rain gauge pairs have been

used instead of applying Taylor hypothesis.

Special attention has been given to the values of

γE (h = 0|RL) that are crucial for stability of optimization

in Eq. (39) but there is no field data available. Consider-

able differences of rain rate due to spatial variability ap-

pear already at h = 0.4 km, for 0.81 km link L7 and Switch

Ramle gauge (Sect. 5), that should be modeled by a non-

zero nugget. To force the non-zero nugget in Eq. (36), it

has been set γE (h = 0|RL) = γE (h = 1.47|RL). An exam-

ple of semivariogram model γM (h|RL) for 10 min average is

drawn in Fig. 6. Note that γE for RL=19.9 mm h−1exhibits

decrease at h = 11 km that violates an assumption behind

the non-decreasing model in Eq. (36); this is attributed to

limited amount of available high-intensity data for model-

ing. As a result, multiple peaks, appearing in a specific event

(December 2006, Table 1) express in the model. The val-

ues of γM (h|RL) for RL different from R̄L(i), i=1,...,Nq are

obtained by linear interpolation of the family γM

(

h|R̄L(i)
)

,

and for RL > R̄L

(

Nq

)

by means of linear extrapolation.

4.2 Spatial discretization of a microwave link

Representation of a link in a discrete form is done by divid-

ing it into a set of N short intervals where the rainfall inten-

sity is assumed to be constant; the length of an interval is

chosen 0.5 km (Goldshtein et al., 2009). The measured path-

averaged rainfall in this model is approximated by averaging

point rain rates R (xi), i=1,..,N

RL = α

(

a

∫

dxR(x)b
)β

∼=
1

N

N
∑

i=1

R(xi) (40)

where the power law coefficients a, b, α, β are taken from

Eqs. (1) and (6); the integration is done over all points x

along the link. The deviation of RL from the true path-

averaged rainfall for b 6=1 is about a few percents (Atlas and

Ulbrich, 1977) and is neglected for MSE estimation.

4.3 MSE of rainfall estimation

A trivial estimator of the rainfall at the point x0from a nearby

link’s measurement is the link’s path-averaged rainfall itself,

R̂(x0) = R̂L

(

ÂR

)

. The MSE expression for the estimate of

R(x0) is

σ̂ 2
[

R(x0)

∣

∣

∣
ÂR

]

= E

[

(

R(x0)− R̂L

(

ÂR

))2
]

. (41)

By denoting the error in estimation of path-averaged rainfall

e = RL − R̂L

(

ÂR

)

, substituting Eq. (40) into Eq. (41) and

denoting hij =
∥

∥

xi −xj

∥

∥, i,j =0,...,N, Eq. (41) transforms

into
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Fig. 6. Examples of empirical and model conditional semivariograms for different values of RL (left) and the resulting three-dimensional

function γ (h|RL) (right), 10 min average.

σ̂ 2
[

R(x0)

∣

∣

∣
ÂR

]

∼= C(0)+
1

N2

N
∑

i=1

N
∑

j=1

C
(

hij

)

−
2

N

N
∑

i=1

C(hio)+2E
[

(RL −R(x0))e

∣

∣

∣
ÂR

]

+E
[

e2
]

(42)

Here C
(

hij

)

is a covariance function

C
(

hij

)

= E
[

R(xi)R
(

xj

)]

−ηiηj (43)

and C(0) = σ 2
R is a-priori climatological variance of rainfall

intensities, under an assumption of constant expected value

of rainfall intensity ηi = ηj ≡ η∀xi,xj in the area. This as-

sumption is similar to the one of ordinary kriging (Schaben-

berger and Gotway, 2005); in the climatological scale, the

expected rainfall intensity in an area depends on the loca-

tion (constant per link-gauge pair and over the studied area)

and the area size (determined by the link length and the link-

gauge distance, constant per link-gauge pair as well).

The term 2E
[

(RL −R(x0))e

∣

∣

∣
ÂR

]

in Eq. (42) describes

covariance between e and local rainfall variation RL −

R(x0). While the former is mostly measurement error, the

latter is due to difference between path-averaged rainfall

and rainfall intensity at a single location x0. This term

can be neglected under the assumption of independence of

e and RL − R(x0) (E [e] can be assumed zero according

to Eq. 27). However, some components of e (mostly, the

errors, related to wet antenna attenuation) do depend on

local rainfall variation. Numerical simulation of Eq. (42)

using the DSD database (Sect. 3) shows that neglecting

2E
[

(RL −R(x0))e

∣

∣

∣
ÂR

]

in Eq. (42) may lead to errors in

σ̂ 2[R(x0)

∣

∣

∣
ÂR ], depending on x0. Thus, locating x0 near one

of the antennas leads to overestimation of σ̂ 2[R(x0)

∣

∣

∣
ÂR ]

by up to 12% at 1t=1 min for long (7.16 km links) L22,

L23, since the wet antenna-related errors become more se-

vere for longer links; locating x0 in the middle of a long link

leads to underestimation of σ̂ 2[R(x0)

∣

∣

∣
ÂR ] by up to 15%

(the correlation between e and RL − R(x0) is negative in

this case). The maximum error, introduced by dropping the

term 2E
[

(RL −R(x0))e

∣

∣

∣
ÂR

]

, becomes negligible (about

2% on the average, maximum 4%) for 1t above 30 min, for

all links besides L22, L23.

The calculation of E
[

(RL −R(x0))e

∣

∣

∣
ÂR

]

is complicated

since the models of RL −R(x0) and e are calibrated using

different datasets – the point gauge records (Table 1) and

the DSD database (Sect. 3), respectively; the dependence of

E
[

(RL −R(x0))e

∣

∣

∣
ÂR

]

on x0 requires development of an

additional model. In this study, we neglect this covariance

term, keeping in mind the consequences – overestimation of

σ̂ 2[R(x0)

∣

∣

∣
ÂR ] at short temporal averaging intervals (1t less

than 30 min) and for long links L22, L23.

Substituting into Eq. (42)

C
(

hij

)

= C(0)−γ
(

hij

)

(44)

and Eq. (11) for E
[

e2
]

, we get the MSE expression in terms

of semivariogram

σ̂ 2
[

R(x0)

∣

∣

∣
ÂR

]

∼=
2

N

N
∑

i=1

γ (hi0)

−
1

N2

N
∑

i=1

N
∑

j=1

γ
(

hij

)

+ σ̂ 2
[

RL

∣

∣

∣
ÂR

]

. (45)

In the case of the conditional semivariogram, γ (h|R0) is

directly substituted into Eq. (45) instead of γ (h); this can be

done since the condition

C
(

hij |R0

)

= C(0|R0)−γ
(

hij |R0

)

(46)

holds under the assumption of constant mean rainfall R0 in

the vicinity of the link, i.e. E
[

R
(

xj

)

|R0

]

= E [R(xi)|R0] =

R0 for all pairs of i,j =0,. . . ,N.
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4.4 Verification of the spatial uncertainty model

To verify the proposed semivariogram-based spatial uncer-

tainty model, one can conduct a self-consistency check, sim-

ilar to the one in Sect. 3.3, using gauge point records.

Since we are interested in evaluation of the model at gauge

separation distances different from the ones defined by ac-

tual rain gauge installations, used in the Sect. 4.1 for build-

ing of the semivariogram model, let us transform the point

rain gauge measurement into spatial profiles according to the

Taylor hypothesis using climatological average rainstorm ad-

vection velocity (14.6 m s−1). Then the rain gauge samples

at 1 min temporal resolution can be considered as spatially

distinct point measurements at separations h of 0.88, 1.75,

2.64, ..., 10.51 km between the virtual locations x0, x1. Note

that simulation of accumulation intervals longer than 1 min

becomes complicated, since application of a moving average

filter to the rain gauge time series introduces unrealistic cor-

relation between adjacent samples.

The estimate of MSE σ̂ 2 [R(x0)|R(x1) ] in the location

x0 from a point measurement at x1 can be obtained from

Eq. (45) by setting N = 1 and dropping the term σ̂ 2[RL

∣

∣

∣
ÂR ],

related to the link measurement uncertainty. The spatial vari-

ability prediction statistics Ssp(h,i) is then calculated per

each rainfall intensity range qi , i = 1,...,Nq and each sep-

aration distance h as

p(h,i) =
〈

σ̂ 2
[

R(x0)j |R(x1) j

]

〉

j(h,i)

∼=
〈

2γ
(

h10|R̂av j

)

−γ
(

h11|R̂avj

)〉

j(h,i)
(47)

e(h,i) =
〈

(

R(x0)j −R(x1)j
)2
〉

j(h,i)
,

Ssp(h,i) =

√

p(h,i)
/

e(h,i) (48)

where R̂av j =
(

R̂(x0)j + R̂(x1)j

)/

2, similarly to the

Sect. 4.1, and p(h,i) and e(h,i) are the average predicted

and measured errors in the rainfall intensity range qi , i =

1,...,Nq and at gauge separation h. The summation over the

index j (h,i) goes through all available rain gauge data at the

separation h and in the range qi .

The distribution of Ssp(h,i) is plotted in the Fig. 7. The

graph shows that the accuracy lowers (statistics increases up

to 1.25 and higher) at high rainfall intensities (where only

a few data samples available) and at low rainfall intensity

levels. In case of weak rainfall, the rain gauge signal quanti-

zation (6 mm h−1) leads to non-linear signal distortions that

possibly results in the mismatch between predicted and mea-

sured errors. At the moderate rain rates of 5–10 mm h−1, the

model shows statistics Ssp(h,i) close to one, indicating ac-

curate prediction of the variability.

Fig. 7. The spatial variability prediction statistics Ssp(h,i) (Eq. 48),

as a function of gauge separation distance h = 0.88, 1.75, 2.64, ...,

10.51 km, at rainfall intensity ranges qi , i = 1,..., Nq , 1t = 1 min.

An estimate of the expected S̄sp over the entire database is

S̄sp =

√

∑

h,i

p(h,i)N (h,i)/
∑

h,i

e(h,i)N (h,i), (49)

where N(h,i) is the number of samples, falling into the range

qi at separation h can give a quantitative estimate of the mod-

eling accuracy for the given experimental setup. Here, S̄sp

equals to 1.04 that indicates a small overestimation of the

spatial variability-related errors.

5 Results and discussion

Performance of the uncertainty quantification models have

been evaluated using records of 96 link-gauge pairs (Sect. 3,

Fig. 2) over three convective rainstorms (Table 1). The statis-

tics Sj for the accuracy of MSE prediction pj (Xu and Wilke,

2005) w.r.t. measured error ej (j =1. . . 96) are

ej =

√

√

√

√

1

Tj

Tj
∑

t=1

(

R(t,j)− R̂(t,j)
)2

, pj =

√

√

√

√

1

Tj

Tj
∑

t=1

σ̂ 2
tj ,

Sj = pj

/

ej , (50)

where t =1,. . . ,Tj is the index of a sample (averaging over

1t minute interval) for the j -th link-gauge pair, R(t,j) and

R̂(t,j) are the gauge measurement and link estimate at time

t , and σ̂ 2
tj is the predicted MSE, given by Eq. (45). The val-

ues of Sj close to one indicate correct prediction of measure-

ment errors. To examine relative role of each one of the error

sources, the results have been calculated at various temporal

averaging intervals (1t = 1, 5, 10, 15, 30, 60 and 120 min).

To get insight into the respective contribution of each com-

ponent of the measured attenuation model into the predicted

error, statistics in Eq. (50) have been computed excluding

some error sources (i.e. zeroing their respective MSE esti-

mates in Eq. 45):
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1. Spatial+Link – prediction of the total error, including

all error sources.

2. Spatial – prediction of error in rainfall estimation at the

rain gauge location due to spatial rainfall variability in

the link’s neighborhood only, assuming link measure-

ments are perfect.

3. DSD – prediction of path-averaged rainfall measure-

ment error due to DSD variability along the link only.

4. Wet – prediction of error due to antenna wetting only.

5. Quant – prediction of quantization error only.

6. Baseline – prediction of baseline-related errors only.

An example time series of the measured error ej vs. pre-

dicted RMSE pj for 10-min average rainfall is shown in

Fig. 8, bottom. For clarity, the results are presented in the

form of measured and predicted RMSE of accumulated rain-

fall estimates. One can see that at about 4 January 2008,

13:30 LT the link overestimates rainfall w.r.t. Switch Ramle

rain gauge, while at about 18:30 the gauge records a strong

peak, partially missed by the link (Fig. 8, top). As a result,

the error prediction Spatial+Link, based on the link measure-

ments and closely following the measured error until 13:30,

overestimates measurement error between 13:30 and 18:30

and underestimates starting from about 18:30 (Fig. 8, bot-

tom). This shows that even at short spatial distance (link

length 0.81 km and the link-gauge distance is 0.41 km), spa-

tial rainfall variability strongly affects the error prediction ac-

curacy, and even a single peak may cause considerable mea-

surement errors.

Taking into account this dominating effect of spatial vari-

ability and simplifying assumptions made in Sect. 4 (e.g. in-

ferring local areal-average rainfall from link measurements,

semivariogram modeling with gauge records), one should ex-

pect that the error predictions should be correct only on the

average. The total statistics S̄ is used to estimate the accuracy

of MSE prediction:

ē =

√

√

√

√

∑

j∈J

Tj
∑

t=1

σ̂ 2
tj , p̄ =

√

∑

j∈J

∑

t=1

Tj

(

R(t,j)− R̂(t,j)
)2

,S̄ = p̄
/

ē (51)

where J is a chosen subset of link-gauge pairs to represent a

specific interval of link lengths or rain rates.

5.1 Accuracy of error predictions at various

temporal resolutions

Figure 9 shows the performance statistics S̄ for various error

sources at different temporal resolutions (accumulation in-

tervals) 1t . At all temporal averaging intervals, spatial vari-

ability uncertainty dominates the link-related uncertainties

(Fig. 9, bottom), even though the role of the latter increases

with 1t . The baseline uncertainty is the major error source

Fig. 8. Time series of accumulated gauge rainfall vs. microwave

rainfall (upper plot) and measured vs. predicted RMSE (Eq. 50) of

accumulated microwave rainfall estimates (lower plot). Contribu-

tion of various error sources into the total predicted error is shown

in the lower plot, for L7 link and Switch Ramle gauge in 3 January

2008 rainstorm. Link length is 0.81 km, frequency is 23.27 GHz,

1t = 10 min. Note the different scales of the upper and lower plots.

Fig. 9. Performance statistics S̄ (top), measured ē and predicted

accumulated errors p̄ (Eq. 51) for various error sources (bottom),

as a function of temporal averaging interval.

among link-related ones. The predicted wet antenna-related

errors decrease with increasing 1t : p̄(Wet) changes from

0.28 mm h−1 at one minute resolution up to 0.06 mm h−1 at

120 min (Fig. 9, bottom). The predicted quantization errors,

independent for different observations, also lower with in-

creasing 1t (from 0.31 to 0.03 mm h−1). The DSD-related

errors p̄(DSD) exhibit similar dependence, but to less extent

(from 0.24 to 0.07 mm h−1), due to inter-storm variability in

the DSD.
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Fig. 10. Scatter plots of the total microwave measured rainfall vs. rain gauge measurements (left) and Spatial + Link estimates of the predic-

tion error vs. measured error (right) for all link-gauge combinations, 1t = 60 min. The method of total least squares, assuming uncertainties

in both independent and dependent variables (Krystek and Anton, 2007) has been used to draw regression lines.

The statistics S̄ varies with 1t from 1.00 to 0.82 (Fig. 9,

top) that shows more accurate error prediction than it has

been reported in the literature (the simulation by Leijnse et

al. (2008a) has allowed prediction of 32% normalized RMSE

vs. 94% measured one, that equals S̄ = 0.34), due to inclusion

of uncertainties, related to the difference in link-gauge phys-

ical locations and baseline estimation uncertainty.

Note that the semivariograms, calculated from the records

of two point rain gauges, absorb 6 mm h−1 quantization

rain gauges errors twice, while in link-gauge comparison

it presents only once. This modeling error as well as S̄

modeling errors (see Sect. 4.4; the validation statistics S̄sp

(Eq. 49) equals to 1.04) may mask underestimation, leading

to S̄ = 1.00 at 1t = 1 min. For longer 1t , this effect quickly

diminishes (only amount of water in a bucket before and after

the accumulation interval is uncertain). For most link-gauge

pairs, the gauge is located at one of the link ends (Fig. 2);

this also leads to overestimation in MSE prediction at short

1t (less than 30 min) due to the neglected covariance term

in Eq. (42). The approximation of a link by its midpoint (i.e.

setting Nw =1 in Eq. 40) leads to RMSE overestimation: S̄

values reach 1.05 at 1t = 1 min that justifies modeling rain-

fall variability along a link according to Eq. (42).

The scatter plot (Fig. 10, left) shows that the rainfall esti-

mation is overall unbiased (the regression line is close to 1:1).

There are a few groups of points in the graph, correspond-

ing to different events (Table 1); microwave links slightly

overestimate gauges for moderate rainstorms (around aver-

age gauge rainfall of 1.3 mm h−1), but underestimate for

strong December, 2006 rainstorm (average gauge rainfall

or around 3 mm h−1); a detailed this effect is analyzed in

Sect. 5.2. This expresses also in the error comparison scatter

plot (Fig. 10, right): high measurement errors (around mea-

sured RMSE of 2 mm h−1) tend to be underestimated at the

accumulation interval 60 min. The effect becomes prominent

with increase of 1t to 120 min, leading to lowering of the

regression slope coefficient from 0.77 to 0.52. For 1t = 1,

the regression equation is close to ideal (y = 0.94x−0.19);

the slope parameter lower than 1 is compensated by a small

positive intersect parameter. At other temporal accumula-

tion intervals the accuracy of error prediction gradually low-

ers (Fig. 9, top). Thus, for 1t = 5 min, the regression equa-

tion is y = 0.91x +0.13 and the overall bias remains small,

S̄ = 0.97...1.02. For 1t = 10. . . 30 min, the slope parameter

lowers from 0.92 to 0.72, and S̄ changes from 0.95 to 0.90

(Fig. 9). The degradation of the prediction accuracy with in-

crease of 1t is analyzed below for 1t = 60 min.

5.2 Accuracy of error predictions as a function of link

length and rain rate

The dependence of the performance statistics S̄ for major er-

ror sources as well as measured and predicted errors as a

function of link length are shown in the Fig. 11. The spa-

tial variability errors increase with link length; their relative

contribution also increases. In most cases, lengths are cor-

relative with link-gauge separation distances (Fig. 2), that

contributes as well. Quantization and baseline-related errors

behave inversely: for longer links, their contribution low-

ers. The DSD- and wet antenna- related errors increase for

longer links but for different reasons: wet antenna-related er-

rors naturally grow with link length due to increased spatial

variability (Fig. 5, left), while the errors due to DSD variabil-

ity along the link also grow due to lowering frequency band

(from 22 GHz for short links to 18 GHz for 4.21–5.92 km

links L11/ L27, L4/L24, L13/L17).

The regression line in Fig. 11 (top left) shows general over-

estimation of Sj for long links; thus, 20 link-gauge pairs

with links longer than 4 km overestimate the predicted er-

rors, versus 10 link-gauge pairs in the same length range

showing Sj less than 1. One of the reasons for the overesti-

mation is the neglected covariance term in Eq. (42); another
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Fig. 11. Performance statistics Sj , j = 1,.., 96 (Eq. 50) for total predicted error, measured errors and various error sources (spatial variability,

DSD and wet antenna, quantization and baseline), as a function of link length, 1t = 60 min.

one is the suboptimality of isotropic semivariogram models,

discussed next. In general, Israeli convective rainstorms ex-

hibit sequences of fronts driven by western winds (Zinevich

et al., 2009), in parallel to the long links L22/L23, L11/L27,

L4/L24, L13/L17 (Fig. 2); the variability of rainfall along the

front is much lower than predicted. The empirical semivar-

iograms in Eq. (38) have been calculated at h = 6 km from

the records of Switch Ramle and Kfar Shmuel gauges; the

semivariograms therefore model the variability roughly or-

thogonally to the fronts that is much higher. In this case,

the assumption behind the isotropic semivariogram has been

violated. Note also that only few records from 7.16 km links

where the link-gauge differences are minimal have been cho-

sen (see Sect. 3.2); this is an additional reason for error over-

estimation. Apparently, these effects overcome the increase

of measurement errors for high rain rates for longer links due

to suboptimal wet attenuation coefficients (Sect. 3.2).

On the other hand, the errors are underestimated for

0.81 km links L7, L26, most likely because there are no

data available to accurately estimate semivariogram at short

gauge separation (that is, non-zero nugget is underestimated

in Eq. 36). Note that the effects of overestimation in error

prediction for long links remain consistent across all accu-

mulated intervals between 1 to 120 min.

The dependences of S̄, ē and p̄ on average rainfall in-

tensity (as recorded by gauges) are shown in Fig. 12. The

contribution of all error sources increases with rain rate, but

the growth of spatial variability errors is most prominent.

The general trend of RMSE underestimation for the strong

rain storm 26 December 2006 (Fig. 12, top left) appears at

1t = 15 min and longer, for six (L12, L7, L4/L24, L11, L31)

out of seven link-gauge pairs including Switch Ramle gauge

record (average rain rate of 3.06 mm h−1). The RMSE un-

derestimation follows from rain rate underestimation by links

with respect to the gauge. All six links have shown negative

bias: 9% for 0.81–2.56 km links L12, L7 and L31, and 17%

for 5.26–5.92 km links L4/L24 and L11, which may be ei-

ther rainfall overestimation by the gauge or underestimation

by the links due to high spatial rainfall variability, charac-

terizing this extremely intense event. Comparison of these

links with another nearby rain gauge Ramle West (not shown

here) demonstrates a similar trend which suggests that it is

the links that underestimate rather than the gauge that over-

estimates. As it has been shown in Sect. 3.3, optimal wet

antenna attenuation coefficients lower for intensive highly-

variable events; use of climatologically averaged wet antenna

attenuation coefficients leads to underestimation of rain rates

for these intensive highly-variable events and overestimation

of more homogeneous and uniform rainfall. One can suggest

that the prediction of uncertainties due to DSD variations

along a link (specifically, antenna wetting, see Sect. 3.3) is

not accurate enough for highly intense convective rainstorms

(or, possibly, the DSD data used for modeling is not rep-

resentative for the 26 December 2006 rain storm). On the

other hand, at 1t = 1 min, a similar trend (decrease of error

prediction accuracy with increase of rainfall intensity) arises

from overestimation of measured errors for the weakest event

29 January 2007, characterized by very few peaks, highly

correlated between rain links and gauges and therefore does

not exhibit considerable spatial variability (not shown here).

Accordingly, similar trends are observed for other temporal

accumulation intervals.
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Fig. 12. Performance statistics Sj , j=1,..,96 (Eq. 50) for total predicted error, measured errors and various errors sources (spatial variability,

DSD and wet antenna, quantization and baseline), as a function of rain rate recorded by a nearby rain gauge, 1t = 60 min.

6 Conclusions

Various error sources affecting accuracy of rain rate estima-

tion using commercial microwave links have been examined,

and an analytical expression for MSE of rainfall estimation

from attenuation, measured by a single link has been derived.

Even though a number of simplifying assumptions have been

made (e.g. isotropy of the semivariograms and covariance

functions, second-order stationarity of distribution of rain-

fall intensities in space and time), the experimental errors are

mostly in agreement with the predicted ones for various link

lengths, rain rates and temporal averaging intervals. The ac-

curacy of the link-gauge error prediction is higher than that

reported in the literature (Leijnse et al., 2008a), since ad-

ditional error sources (baseline variability and spatial rain-

fall variability) have been taken into account in the proposed

model. On the other hand, the considered dataset is limited

and verification of most of the presented models shows er-

rors of approximately 5–20%, so that the quantification made

is not very accurate; however, it still allows understanding

typical magnitude and relative contribution of various error

sources.

The major source of errors in estimating path-averaged

rainfall by a link is the baseline uncertainty that dominates

other instrumental (quantization error) and environmental

(DSD variability along a link) effects; use of climatologically

average wet antenna attenuation coefficients may serve as an

additional source of errors. It is known that DSD variability

is the major error source in radar backscattering measure-

ments; its effect on forward scattering and absorption mea-

surements by a link is much smaller (Jameson, 1991) and

is masked by other error sources. For this reason, the ac-

curacy of prediction of DSD variability-related errors can-

not be comprehensively assessed in the presence of other er-

ror sources but only based on the point DSD records; it has

been shown that its accuracy is likely insufficient for an ex-

tremely intense rainstorm. Spatial rainfall variability is the

primary source of discrepancy between link-gauge measure-

ments, suggesting that effect of spatial variability will re-

main major in extrapolation of path-averaged observations

into areal averages.

The error calculation has been validated over only six con-

vective rainstorms in Israeli climate; studying stratiform and

other types of rainfall is desirable as it may reveal a differ-

ent relative contribution of the error sources and prediction

accuracy. The rest of discrepancies is likely to arise from

modeling errors (e.g. a number of simplifying assumptions

have been made for spatial variability modeling) and other

unaccounted error sources – for example, effects of natural

temperature variations (Leijnse et al., 2007a) and anomalous

propagation (ducting). It is assumed that the baseline vari-

ation during the rainstorm can be adequately described by

pre- and post- rainstorm measurements, while plausibility of

this assumption is verified only indirectly. On the other hand,

some assumptions (e.g. adequacy of quantization error model

in Eq. (3), effect of quantization on accuracy of baseline vari-

ance estimation, suboptimality of wet antenna-related error

model in Eq. (31) and wet attenuation calibration errors) can-

not be thoroughly examined in the present setup, since these

error sources are minor and are masked by others.

In addition, the presented results are based on an as-

sumption that the wet antenna coefficients and semivari-

ogram models are known perfectly: they have been estimated

from link-gauge records over the same events, used subse-

quently for evaluation. A direct drawback of such approach
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is overfitting: the wet attenuation coefficients may have ab-

sorbed a part of other link-gauge differences (e.g. baseline

errors, differences due to spatial variability and errors due to

inappropriateness of power law coefficients) that in turn may

result in overestimation of error prediction accuracy. It has

been shown that for long (7.16 km) links calibration of wet

antenna attenuation model with a single rain gauge may be

complicated for convective rainstorms; to overcome this, ac-

curate tracking of baseline along the rainstorm and filtering

out parts of an event with low link-gauge correlation may be

needed. It is assumed that for short links these effects are

limited because of large amount of calibration data and vari-

ous link-gauge combinations. It has been shown that the wet

attenuation model is not invariant to the differences in spatial

rainfall variability that requires further research.

For practical real-time applications, either climatologi-

cally average or forecasted semivariogram models should

be used; the baseline attenuation should also be predicted

from past dry estimates, and forecast-related errors should be

studied as well. In addition, high temporal resolution mea-

surements are not always available; other temporal sampling

strategies lead to additional errors (Leijnse et al., 2008a). The

MSE expressions for path-averaged rainfall assume specific

climatology (the ad hoc parametric model of σ̂ 2
DSD in Eq. (7)

has been built according to Israeli DSD data).

The MSE expressions for path-integrated rainfall measure-

ments can further be used in data assimilation algorithms

(e.g. Grum et al., 2005; Zinevich et al., 2009) as variance

estimates (it has been shown that the bias of rainfall estima-

tion is overall very limited), providing means for weighing

observations according to their uncertainty. Similarly, since

spatial variability is a major error source, its modeling is es-

sential for reconstruction of spatial rainfall distribution from

multiple links. The isotropic semivariogram model allows

explaining most of the errors; the experimental results sug-

gest that an anisotropic model would allow higher error pre-

diction accuracy for Israeli convective rainstorms.
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Uijlenhoet, R., Porrà, J., Torres, D., and Creutin, J.-D.:

Analytical solutions to sampling effects in drop size dis-

tribution measurements during stationary rainfall: Estima-

tion of bulk rainfall variables, J. Hydrol., 328, 65–82,

doi:10.1016/j.jhydrol.2005.11.043, 2006.

Upton, G. J. G., Cummings, R. J., Rahimi, A. R., and Goddard, J. W.

F.: Microwave links: the future of urban rainfall measurement?

Atmos. Res., 77(1–4), 300–312, 2005.

Widrow, B. and Kollár, I.: Quantization noise: roundoff error in

digital computation, signal processing, control, and communica-

tions, Cambridge University Press, Cambridge, UK, 2008.

Xu, K. and Wilke, C.: A kernel-based spatio-temporal dynamical

model for nowcasting weather radar reflectivities, J. Am. Stat.

Assoc., 100(472), 1133–1144, 2005.

Zhang, W. and Moayeri, N.: Power-law parameters of rain specific

attenuation, IEEE 802.16cc-99/24, 1999.

Zinevich, A., Messer, H., and Alpert, P.: Frontal rain-

fall observation by a commercial microwave communica-

tion network, J. Appl. Meteorol. Clim., 48(7), 1317–1344,

doi:10.1175/2008jamc2014.1, 2009.

Atmos. Meas. Tech., 3, 1385–1402, 2010 www.atmos-meas-tech.net/3/1385/2010/


