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Abstract 

 This article adopts Support Vector Machine (SVM) and Relevance Vector 

Machine (RVM) for prediction of rainfall in Vellore (India). SVM is firmly based on the 

theory of statistical learning theory. RVM is a probabilistic basis model. SVM and RVM 

use air temperature (T), sunshine, humidity and wind speed (Va) as input variables.  This 

article uses SVM and RVM as a regression technique. Equations have been also 

developed for prediction of rainfall. The developed RVM gives variance of the predicted 

rainfall. This study shows the RVM is more robust model than the SVM.  
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Introduction 

 

 Rain is one of nature’s greatest gifts and in third world countries like India; the 

entire agriculture depends upon rain. It is generally accepted that rainfall is unpredictable. 

However, there are certain periodicities in its long-term behavior (Nicholson and 

Entekhabi, 1986). Most of the deviations in the periodicity are related to solar cycles; 

variations in ocean currents and wind directions; sea surface temperature anomalies, etc. 

(Bhalme and Mooley, 1981; Ramage, 1971; Ananthakrishnan and Parthasarathy, 1984). 

Water resources assessment is defined by UNESCO and WMO (1988) as the process of 

assessing the source, scope, reliability, quantity and quality of water resources for the 

purposes of water resources utilization and management. Water resources assessment,  

which is important for water resources planning, is usually conducted using information 

that has been collected over a long period of time (over 20 years) and by normalizing 

historic series of observe driver discharges using water use data and water balance 

equations (Miloradov and Marjanovic,1998). Real-time water resources assessment can 

be defined as a rapid assessment of the water resources generated in a rainfall event or in 

a past period from a particular day of the year to the current rainfall event.  

 

 Applications of synthetic rainfall data may then be made in such diverse fields as 

flood modelling and urban drainage (Moretti and Montanari, 2004; Brath et al., 2006; 

Dawson et al., 2006; Hall et al., 2006), pesticide fate modelling (Nolan et al., in press), 

landslide modelling (Bathurst et al., 2005), desertification vulnerability (Bathurst and 

Bovolo, 2004), water resource assessment (Fowler et al., 2005) and flood risk assessment 
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(Kilsby et al., 2000). Rainfall prediction has been the subject of extensive research in the 

recent past (Annamalai, 1995; Krishnakumar, 1994; Parthasarathy and Sontakke, 1988a; 

Parthasarathy et al., 1988b; Prasad and Singh, 1992; Navone and Ceccatto, 1994). 

Application of neural networks for rainfall analysis and prediction is not new (Amin 

Talei et al., 2010, Nayak et al., 2006), Navone and Ceccatto, 1994; Sunyounget et al., 

1998). Navone and Ceccatto (1994) gave a brief introduction to neural networks and its 

application to predicting Indian monsoon rainfall in particular. They compared their 

results with conventional methods and showed that neural network based methods are 

able to produce reasonably accurate predictions compared to linear models popularly 

used for this purpose. 

 

 In this paper, we present support vector machine (SVM) and relevance vector 

machine (RVM) for studying and predicting the long-term variations in rainfall 

phenomena based on past observations. To illustrate the method, we have used the 

rainfall of Vellore town in Tamil Nadu State, India as an example. An hourly rain-fall 

flow data is been collected by Automatic Weather Station (AWS) at VIT-University 

campus (ISRO119 located at latitude: 120 91’N and longitude: 790 14’E measured at 

different ground levels) Vellore (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1:  Location map of study area. 
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Details of SVM 

 This study adopts SVM as a regression technique for prediction of rainfall. ε-

insensitive loss function has used in this analysis. The expression of ε-insensitive loss 

function is given below: 

 

( ) 0yεL =  for ( ) εyxf <−  otherwise ( ) ( ) εyxfyεL −−=                                            (1) 

Where x is input and y is output.  

 

This defines an ε tube (Fig. 2) so that if the predicted value is within the tube the loss is 

zero, while if the predicted point is outside the tube, the loss is the magnitude of the 

difference between the predicted value and the radius, ε, of the tube. 

Suppose f(x) takes the following form: 

 

( ) ( ) bw.xxf +=  nRw ∈ , rb ∈                                                                                   (2) 

 

Where, w = is an adjustable weight vector, b = scalar threshold, R
n
=n dimensional vector 

space and r=one dimensional vector space. 

 

Then, we have to solve the following optimization problem: 

Minimize:
2

w
2

1
 

 Subjected to: ( ) εb
i

w.x
i

y ≤+− , i = 1, 2,...,l 

  ( ) ε
i

yb
i

w.x ≤−+ , i = 1, 2,...,l                                                              (3)  

In the case where the constraints are infeasible, we introduce slack variables iξ  and 

*
i
ξ (see Fig. 2) in optimization problem (3). The above optimization problem (3) can be 

written in the following way: 
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=
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ξ ≥  and 0*

i
ξ ≥ , i = 1, 2,...,l                                                            (4) 

The constant called capacity factor 0<C<∞ determines the trade-off between the flatness 

of f and the amount up to which deviations larger than ε are tolerated (Smola and 

Scholkopf, 2004). This optimization problem (4) is solved by Lagrangian Multipliers 

(Vapnik, 1998), and its solution is given by: 
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( ) ( )∑
=

+

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
 −=
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Where [ ]sxrxw.
2

1
b +








−=  , αi, 

*
i
α  are the Lagrangian Multipliers and nsv is the 

number of support vectors. An important aspect is that some Lagrange multipliers 

(αi,
*
i
α ) will be zero, implying that these training objects are considered to be irrelevant 

for the final solution (sparseness). The training objects with nonzero Lagrange 

multipliers are called support vectors.  

  

 When linear regression is not appropriate, then input data has to be mapped into a 

high dimensional feature space through some nonlinear mapping (Boser et al. 1992). The 

two steps that are involved are first to make a fixed nonlinear mapping of the data onto 

the feature space and then carry out a linear regression in the high dimensional space. The 

input data is mapped onto the feature space by a map Ф. The dot product given by 

( ) ( )
ji xx ΦΦ . is computed as a linear combination of the training points. The concept of 

kernel function [ ( ) 




=







j
x.Φ

i
xΦ

j
x,

i
xK ] has been introduced to reduce the 

computational demand (Cristianini and Shwae-Taylor 2000; Cortes and Vapnik 1995). 

So, equitation (5) becomes written as: 
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 Some common kernels have been used such as polynomial (homogeneous), 

polynomial (nonhomogeneous), radial basis function, Gaussian function, sigmoid etc for 

non-linear cases.  

 

 This study employs the above SVM model for prediction of rainfall in Vellore 

Town. We have collected 128 datasets. The data are normalized between 0 and 1. For 

developing SVM, the data are divided into the following two groups:  

 

Training dataset: This is required to develop SVM model. This study uses 89 data for 

training.  

Testing Dataset: This is required to evaluate the performance of the developed model. 

The remaining 39 data are used for testing dataset.   

Radial basis function ( ( )
( )( )











 −−
−=

22
exp,

σ

T

kk

k

xxxx
xxK , Where σ is the width of 

radial basis function) has been used as a kernel function for the SVM model. The design 



 
Open access e-Journal 

Earth Science India,  eISSN: 0974 – 8350 
Vol. 4(IV), October, 2011, pp. 188 - 200 

http://www.earthscienceindia.info/  

 

192 

 

value of C and s will be determined by trail and error approach during training of SVM. 

The program of SVM has been constructed by using MATLAB.   

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Prespecified Accuracy ε and Slack Variable ξ in support vector regression;   

Scholkopf (1997). 

Details of RVM 

The RVM was introduced by Bishop and Tipping (2000). The RVM uses the following 

generative model: 

( ) ( ) nε

1

,
i

wwx;y +∑
=

=
N

i
i

xxk                                                                                            (7) 

Where N is number of data points, [ ]Nwww ,...,1=  is weight, k(x,xi) is kernel function 

and ( )2σ0,Nnε =  is error term with zero mean Gaussian process. The likelihood of the 

complete data set can be written as: 

 
f(x) 

x 

Lεεεε((((y)))) 

y-f(x) 
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xΦ = .  

 

To prevent overfitting, automatic relevance detection (ARD) prior is set over the weights. 

An explicit zero-mean Gaussian prior probability distribution over the weights, w with 

diagonal covariance of α is proposed as follows: 

 

( ) ( )∏
=

−=
N

0i

1
i
α0,

i
wNαwp                                                                                              (9) 

 

With α is a vector of N+1 hyperparameters. Consequently, using Baye’s rule, the 

posterior over all unknowns could be computed given the defined noninformative prior 

distribution: 

 

( ) ( ) ( )

( ) ( )∫
=

 2dσ dα dw2σα,w,p2σα,,wtp

σα,w,.p2σα,w,yp
t2σα,w,p                                                      (10) 

 

Full analytical solution of this integral (6) is obdurate. Thus decomposition of the 

posterior according to ( ) 










= t2σα,p2σα,t,wpt2σα,w,p  is used to facilitate the 

solution (Tipping, 2001). The posterior distribution over the weights is thus given by: 

 

( ) ( ) ( )

( )2σ,αtp

αw.p2σ,wtp2σα,,twp =                                                                                   (11)  

 

The resulting posterior distribution over the weights is the multi-variate Gaussian 

distribution: 

 

( ) ( )∑= µ,2σα,,twp N                                                                                                    (12) 

 

Where the mean and the covariance are respectively given by: 

 

( ) 1T2 AΦΦσ
−− +=∑                                                                                                         (13) 

tΦσµ T2 ∑= −                                                                                                                   (14) 

With diagonal )α,...,diag(αA N0= . 

For uniform hyperpriors over α and σ2, one needs only maximize the term ( )2σ,αtp : 
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 Maximization of this quantity is known as the type II maximum likelihood 

method (Berger, 1985; Wahba, 1985) or the “evidence for hyper parameter” (Mackay, 

1992). Hyper parameter estimation is carried out in iterative formulae, e.g. gradient 

descent on the objective function (Tipping, 2001). The outcome of this optimization is 

that many elements of α go to infinity such that w will have only a few nonzero weights 

that will be considered as relevant vectors. 

 

 This study uses the above RVM model for prediction of rainfall in Vellore Town. 

In RVM model, the same training dataset, testing dataset, kernel function and 

normalization technique have been used as used in SVM model. The design value of σ 

has been determined by trail and error approach. The program of RVM has been 

constructed by using MATLAB.  

 

Results and Discussion 

 

 This study adopts Coefficient of Correlation(R) to asses the performance of the 

developed SVM and RVM models. The value of R has been determined from the 

following equation: 

 

( )( )

( ) ( )∑∑

∑

==

=

−−

−−

=
n

i

ppi

n

i

aai

n

i

ppiaai

rrrr

rrrr

R

11

1                                                                                     (16) 

 

Where rai and rpi are the actual and predicted r values, respectively, ar  and pr  are mean 

of actual and predicted E values corresponding to n patterns. For good model, the value 

of R should be close to one. 

 

 For SVM, the design value of C, ε and σ is 100, 0.02 and 1.1 respectively. For 

Best SVM model, the number of support vector is 84. Fig. 3 depicts the performance of 

training dataset. The performance of testing dataset has been illustrated in Fig. 4. The 

performance of training as well as testing dataset is almost same. So, the developed SVM 

does not show any overtraining. Therefore, it has good generalization capability. The 

developed SVM gives the following equation (by putting 
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The value of ( )*

ii αα −  has been given Fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Performance of training dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Performance of testing dataset. 
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Fig. 5: Values of ( )*

ii αα −  for SVM model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Values of w for RVM model. 
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Fig. 7: Variance of training dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Variance of testing dataset. 
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For RVM model, the design value of σ is 0.2. The developed RVM model produces 33 

relevance vectors for best performance. Fig. 3 illustrates the performance of training 

dataset. It is observed from Fig. 3 that the value of R is close to one. Therefore, the RVM 

has captured relation between input and output for training dataset very well. Now, the 

trained RVM model has been used to determine the performance of testing dataset.  

 

 The performance of testing dataset has been depicted in Fig 4. Fig. 4 also shows 

that the value of R is close to one. So, the developed RVM can predict r reasonable well.  

The following equation has been developed for prediction of r from the RVM.  

 

 
( )( )

∑
= 









 −−
−=

89

1 08.0
exp

i

T

ii

i

xxxx
wr                                                                                  (18) 

Fig. 6 shows the value of  w.  

 

 The developed RVM has been also used to determine the variance of predicted r. 

Figs. 7 and 8 illustrate the variance of training and testing dataset respectively.   The 

predicted variance can be used to determine prediction uncertainty.   

 

 Table- 1 shows the comparison between the SVM and RVM models. The value of 

R from RVM model is greater than the value of R from SVM. The performance of the 

RVM is better than the SVM. The developed RVM uses 33 training data as relevance 

vector. Whereas, the SVM uses 84 training data as support vector. So, the RVM produces 

more sparse solution than the SVM.  The SVM uses three variables(C, ε and σ) as tuning 

parameter. However, RVM uses only one tuning parameter (σ).  

 

Table-1:  Comparison between the SVM and RVM models. 

 

Conclusion 

 

 This paper has successfully applied SVM and RVM for prediction of rainfall at 

Vellore. The both models show good generalization capability. However, the 

performance of RVM is better than the SVM. User can use the developed equation for 

prediction of rainfall at Vellore. The developed RVM gives variance of the predicted 

rainfall. The chance of overfitting in RVM is less than that of SVM due to the use of 

smaller number of training data. This study gives a robust model based on RVM for 

prediction of rainfall.  

Models  Training 

Performance(R) 

Testing 

Performance 

(R) 

Number of 

training data 

used for final 

prediction  

Number of 

tuning 

parameters  

SVM 0.848 0.842 84 3(C,ε,σ) 

RVM  0.945 0.917 33 1(σ) 
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