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ABSTRACT
Motivation: Defining regulatory networks, linking transcrip-
tion factors (TFs) to their targets, is a central problem in
post-genomic biology. One might imagine one could readily
determine these networks through inspection of gene expres-
sion data. However, the relationship between the expression
timecourse of a transcription factor and its target is not obvious
(e.g. simple correlation over the timecourse), and current ana-
lysis methods, such as hierarchical clustering, have not been
very successful in deciphering them.
Results: Here we introduce an approach based on support
vector machines (SVMs) to predict the targets of a transcrip-
tion factor by identifying subtle relationships between their
expression profiles. In particular, we used SVMs to pre-
dict the regulatory targets for 36 transcription factors in the
Saccharomyces cerevisiae genome based on the microarray
expression data from many different physiological conditions.
We trained and tested our SVM on a data set constructed
to include a significant number of both positive and neg-
ative examples, directly addressing data imbalance issues.
This was non-trivial given that most of the known experi-
mental information is only for positives. Overall, we found that
63% of our TF–target relationships were confirmed through
cross-validation. We further assessed the performance of
our regulatory network identifications by comparing them with
the results from two recent genome-wide ChIP-chip experi-
ments. Overall, we find the agreement between our results
and these experiments is comparable to the agreement (albeit
low) between the two experiments. We find that this network
has a delocalized structure with respect to chromosomal posi-
tioning, with a given transcription factor having targets spread
fairly uniformly across the genome.
Availability: The overall network of the relationships is avail-
able on the web at http://bioinfo.mbb.yale.edu/expression/
echipchip
Contact: Mark.Gerstein@yale.edu

∗To whom correspondence should be addressed.

INTRODUCTION
Understanding of transcriptional regulatory networks is cru-
cial in the understanding of fundamental cellular processes,
such as growth control, cell-cycle progression, and devel-
opment, as well as differentiated cellular function such as
hormone secretion and cell–cell communication (Alberts
et al., 1994). On a fundamental level, transcription determ-
ines when and which genes are expressed. The determination
of factors that control expression can offer further insight into
the misregulated expression that is common in many human
diseases (Tupler et al., 1999; Ly et al., 2000).
Much research has been done related to transcription factors

(TFs): somehave tried to identifyTFs in genomes using differ-
ent methods, such as through sequence similarity or structural
comparisons (Riechmann et al., 2000a,b; Wingender et al.,
2001). Given known TFs, others have tried to find their bind-
ing motifs in the regions upstream of genes (Roulet et al.,
1998; Krivan and Wasserman, 2001; Grabe, 2002; Halfon
et al., 2002). For a TF whose binding motif is known,
some researchers have started to predict gene targets of tran-
scription factors using genome-wide sequence searches of
promoter regions (Schuldiner et al., 1998; Zhu et al., 2002).
Lastly, others have tried to determine targets of a transcrip-
tion factor whose binding motif is unknown (Kel et al.,
2001; Tan et al., 2001). This final area is the research we
pursue here.
The determination of target genes of TFs has been done

with different approaches. The most popular method is prob-
ably ChIP-chip, which combines the techniques of chromatin
immunoprecipitation and microarray hybridization. DNA
that binds specifically to a TF is purified and amplified. Gen-
omic target loci are identified by comparative hybridization
of the immunoprecipitated and control DNA probes to a DNA
microarray. In yeast researchers have used this method to
identify the targets of TFs such as Gal4, Ste12, MBP and
SBP (Ren et al., 2000; Iyer et al., 2001).
In this work, we want to identify the targets of TFs

using computational approaches. We focus on mining
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gene-expression data since these data provide a direct meas-
urement of the transcriptional program in the cell. Past
analyses of microarray data have focused on clustering genes
with similar expression profiles to predict protein function and
interaction (Eisen et al., 1998; Gerstein and Jansen, 2000).
However, the gene expression relationship between a TF and
its targets is complex. In most cases, they do not have a
correlated expression profile over a timecourse (see below).
Sometimes, in fact, there is a lag time between the expression
of the TF and its target (Qian et al., 2001).
To tackle this problem we employed support vector

machines (SVMs). SVMs are a form of supervised machine
learning. They use a training set to learn in advance which
gene pairs have a regulatory relationship (Vapnik, 1998). The
first gene in a pair is a TF, while the second is the target gene
it potentially regulates. After the training stage, the machines
determine probabilities for each TF–target pairing and these
probabilities, with appropriate thresholds, can then be used to
construct parts of a regulatory network.
This work is focused on the budding yeast Saccharomy-

ces cerevisiae. Recent work has estimated that yeast has
6128 genes and 209 transcription factors (Riechmann et al.,
2000a,b; Snyder and Gerstein, 2003). Given this, we have
potentially 1 280 752 (i.e. 209 × 6128) combinations. Our
task is to find which pairs among these 1 280 752 represent a
true regulatory relationship.

METHODS
Support vector machines
In order to determine the relationship between TFs and their
targets, we use SVMs. In general, the SVM is a stand-
ard supervised machine-learning algorithm, based on recent
developments in statistical learning theory (Vapnik, 1998). It
is designed for pattern recognition and regression and used
in fields such as writing recognition, text categorization, and
image classification (Vladimir and Vapnik, 1995; Joachims,
1998).
The SVM builds a hyperplane separating positive examples

and negative examples in multiple-dimensional space. Unfor-
tunately, most real-world problems involve non-separable
data for which there does not exist a hyperplane that success-
fully separates the positive from the negative examples. One
solution to the inseparability problem is to map the data into a
higher-dimensional space and define a separating hyperplane
there. This higher-dimensional space is called the feature
space. A kernel function of the dot product of the vectors
is used to avoid representing the space explicitly. For details
of SVM, please refer Burges, 1998; Vapnik, 1998.
TheSVMcreates the separatinghyperplane from the labeled

training data that can then be used for prediction. Given that
there are a large number of TFs with known targets to form a
training set, the SVM represents an appropriate algorithm for
regulatory network prediction.

Here we use an implementation of SVM by Brown et al.
(2000). Our focus is not in developing the SVM methodo-
logy but seeing the degree to which it can be applied to gene
expression data.

Encoding of gene expression data
To encode our regulatory network prediction problem in a
form suitable for trainingSVMs, we construct TF–target pairs.
These pair a known transcription factorR and a putative target
gene T that may be regulated by this factor. For instance,
the pairing (R ⇒ T ) means transcription factor R regulates
gene T . To connect this pairing with expression information,
we note that each gene in the pair is characterized by a set of
expression experiments, which comprise data from samples
collected at various time points during the diauxic shift, the
mitotic cell cycle, sporulation, andheat shock (Spellman et al.,
1998; Gasch et al., 2000). In total, we used 79 gene expression
data points to characterize each gene. Then putative TF–target
pairing corresponds to a 158-element gene expression vector,
in which the first 79 expression data points are for the (TF)
while the second 79 are for the regulated gene.

Positive training examples
Positive examples were obtained from two transcription
databases: TRANSFAC (Wingender et al., 2001) and SCPD
(Zhu and Zhang, 1999). These two databases bring together
information from the biochemical literature on TFs and their
regulated genes. In this study, we only include sequence-
specific TFs and exclude general TFs, such as the RNA
polymerases and the TATA-binding protein. In total, we used
175 TF–target pairings as positive examples.

Negative training examples
As with other supervised machine learning methods, negative
examples are needed to train properly. In our case, a negative
example would be a gene pair that we know definitely has no
regulatory relationship. Note that this is distinct from a gene
pair about which we have no positive information. Unfortu-
nately, there are essentially no papers on definitive negative
relationships in the biochemical literature. Consequently, we
employed a number of strategies to come up with appropriate
negative examples.
In the onset, one can easily make negative examples

in a number of ways. For example, two genes encoding
ribosomal proteins would have no regulatory relationship
between (though theymay, of course, be regulated by the same
factor). Another possibility is creating two artificial gene-
expression profiles using randomized numbers. However,
while easy to construct, such examples may not be optimal
for machine learning. In principle, SVMs find the boundary
between the positive and negative examples. If the negative
examples are made too different from the positive examples,
the learned boundary is loose and thus it would be problematic
to detect subtle cases.
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In the end, we constructed negative examples in two ways:
(i) for the TFs with known binding sites, we searched for
these sites genome-wide in the upstream regions of all genes.
Then for target gene T whose upstream sequence contains
no binding site for transcription factorR, the pairingR $=> T

constitutes a negative example. (ii) For TFs whose binding
sites are unknown, we randomly select another gene to con-
struct a negative example. To make sure that the randomly
selected gene is not regulated by the TF, the expression profile
of the second gene is permuted while keeping the expression
profile of the TF constant.
In total, we constructed 1750negative examples for training,

which is 10 times the number of positive examples. The reason
for this ratio between the positive and negative examples will
be explained below.

The imbalance problem
In machine learning, when there is great disparity between
the size of the positive and negative training sets, one must
take into consideration a training difficulty called the imbal-
ance problem (Japkowicz, 2000; Japkowicz and Stephen,
2002). This problem occurs when there is a large difference
between positive and negative examples of the data. In such
a situation, the algorithm will accurately predict the over-
represented class, but its prediction of the under-represented
class will mostly be incorrect. In the extreme case, the under-
represented class will be ignored. For example, for a positive
to negative ratio of 1 : 1000, an algorithm that always predicts
negative will be correct 1000 times and incorrect only once.
There are two approaches towards overcoming the imbal-
ance problem. (i) Increasing the size of the under-represented
set by random resampling and (ii) decreasing the size of
the over-represented set by random removal of its members
(Japkowicz, 2000; An et al., 2001; Japkowicz and Stephen,
2002).
The imbalance problem is encountered in our TF target

prediction since (we believe) there are definitely more neg-
ative transcriptional relationships than positive ones. For the
yeast genome, even if one assumes that each TF regulates
∼200 genes, there would be a 1 : 30 ratio between positive
and negative examples. [These numbers are reasonable given
the numbers from some of the recent ChIP-chip experiments
(Horak et al., 2002; Lee et al., 2002)].
The imbalance problem also has implications for the rela-

tionships between threshold, coverage and error rate. (After
fully developing ourmethod, we illustrate someof these issues
by showing the different error rates and coverage values for
1 : 1 and 1 : 10 training sets in Fig. 3.)

Restricting the prediction to the subset from
yTAFNET
In order to alleviate the imbalance problem, we decreased
the prediction set from all possible TF–target pairings (i.e.

1 280 752 = 209×6128) to just the pairings suggested by the
yTAFNET database (Devaux et al., 2001).
We used an initial set of potential TF–target gene pairs

obtained from the yTAFNET database. This database com-
bines 72 published experiments and extracted the up-or
down-regulated target genes associated with different TFs in
different states. In most of the experiments in this database,
the TFs were knocked out and the genes selected had signi-
ficant changes in their expression. Note, these genes are not
necessarily the direct target of the TF, but they are more likely
to be the targets than randomly selected genes from the whole
genome. We hoped this would reduce the imbalance between
the positive and negative examples. Since this is a prelimin-
ary set, the selection criteria did not have to be stringent and
thus we chose the 1.5 fold set from yTAFNET, which showed
genes that were up-or down-regulated at least 1.5 fold. We
selected 36TFs for prediction. This resulted in 46 059 putative
TF–target pairings that we assessed using our SVM.

RESULTS
Expression relationship between TF and targets is
not simultaneous
We assessed the problem of prediction of transcription targets
based on their expression profiles. Figure 1A–D shows four
examples of expression profiles between TFs and their regu-
latory targets. The black lines are the expression profiles for
TFs while the red lines are the corresponding regulated genes.
At first glance, one can see there are no obvious relationships
between the expression profiles of a TF and its regulated gene.
Looking closer, it seems that there exist some relationships

between the expression profiles. For example, In Figure 1A,
from conditions 10 to 20, they have a simultaneous relation-
ship, while from conditions 44 to 60, the two profiles display
an inverted relationship. In Figure 1B, from conditions 52 to
62, the two profiles show that the target gene has a shifted
response compared with the TF.
In Figure 1D, from conditions 45 to 62, the expression

profile of the target gene is an exaggerated profile of the
TF. However, one cannot calculate the significance of these
relationships. Especially, when these four positive examples
are compared with the four negative ones (Fig. 1E–H), in
which the two expression profiles do not have a regulatory
relationship.
To get a global view of the problem, we calculated correla-

tion coefficients between the expression profiles of TFs and
their corresponding target genes for both the positive and neg-
ative examples in the training set. The distributions, shown
in Figure 2, are quite broad, ranging from −0.2 to 1. It
is clear that one cannot predict the regulatory relationship
purely from the correlation of the expression profiles between
the TF and its target gene. Interestingly, the distribution
for the positive examples displays shoulders both to the left
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Fig. 1. Expression profiles of TF and target pairs. Sample expression profiles showing different control relationships are shown in this figure.
The TF profiles are shown in black and the gene target in red. Sections (A)–(D) show known positive relationships while sections (E)–(G)
show known negative relationships. (A) YKL112W controls YAL038W almost directly for the first half and inversely for the second half.
(B) YKR099W controls YBR093C with a time shift relationship between points 50 and 60. (C) YEL009C seems to control YMR300C
inversely from points 20 to 40 but directly from 40 to 70. (D) YPL075W seems to control the slope of YCR012W from 40 to 60. (E)
YKL112W seems to have a mixed inverse and direct relationship with YPR124W throughout the profile. (F) YDL106C seems to have a
general correlation with YLL039C on a macroscopic scale, but the detailed changes are very different. (G) YEL009C seems to have broad
correlations with YOR209C, perhaps controlled by similar processes, but there is very low correlation of the details. (H) YLR131C has no
clear relationship with YIR009W.
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Fig. 2. Correlation-coefficient distributions. In order to determine
general relationships between TFs and their targets, we calculated
the distribution of correlation coefficients of the known positive
examples compared with the distribution based on negative relation-
ships. The distribution of positive correlations is shown in a solid line
and shows two shoulders; the distribution of negative correlations is
shown in a dotted line and has a near Guassian distribution.

and right of the main peak. This means that one has more
chance to find positive relationships than negative relation-
ship if two expression profiles show high correlation or high
anti-correlation.

Evaluating the performance in cross-validated
fashion
While we can see that simple correlations are not suffi-
cient to predict the regulatory relationship, the gene expres-
sion profiles should contain the information necessary to
determine regulatory networks. However, this information
is rather subtle. Machine learning approaches are useful
here, since they can find subtle relationships that are not
immediately apparent and require no explicit description of
the connection between the input information and predicted
relationship.
In this work 175 positive and 1750 negative examples

were used for evaluation of the performance of SVM. Each
example consists of a pair of genes and is characterized by
158 gene expression levels in different experimental con-
ditions. The performance of the SVM was evaluated by
three-fold cross-validation. In other words, 117 positive and
1170 negative examples were used for training and the rest
of the examples for prediction. The random split between the
training and prediction sets was repeated 10 times and the
average performance was calculated. Table 1 shows the res-
ults of cross-validation using five different kernel functions.
The sensitivity can be calculated as Sn = TP/(TP + FN),
while the specificity is Sp = TN/(TN + FP). (The symbols

Table 1. Three-fold cross-validation using five different kernel functions

TP TN FP FN Sensitivity Specificity Precision

Power = 1 29 467 113 29 0.50 0.81 0.78
Power = 2 36 536 44 22 0.62 0.92 0.90
Power = 3 32 561 19 26 0.55 0.97 0.93
Power = 4 22 568 12 36 0.38 0.98 0.92
Radial 9 579 1 49 0.16 1.00 0.92

For each kernel function (powers 1–4 and radial), true positives, false positives, true
negatives, false negatives, sensitivity, specificity, and precision are shown in the different
columns. The methods of calculation are described in the text.

TP, TN, FP and FN are defined the number of true positive,
true negative, false positive and false negative obtained from
the prediction, respectively.)
The accuracy describes overall performance and is defined

as A = (TP+ TN)/(TP+ TN+ FP+ FN). One can see that
the accuracies for powers 3 and 4 and radial kernel functions
are similar. Power 3 is slightly better than others; the accuracy
rate for this kernel function is 93%, and this value provides an
evaluation of the overall prediction quality including positive
and negative predictions.
Since the majority of the predictions are from the neg-

ative samples, a more strict evaluation of the prediction is
the precision [P = TP/(TP + FP)], which concentrates on
the sample of predicted positives. As 32 out of the 51 pre-
dicted positives are, in fact, true positives, the precision of the
prediction is 63%.

The threshold for the prediction: ROC graph
We also calculate the relationship between the prediction
coverage and the error rate. The prediction coverage is the
percentage of the true positives in the real positives (i.e. the
sensitivitySn.) The error rateE is percentageof the false posit-
ives in the real negatives (i.e.E = 1−Sn). It is easy to imagine
that both the prediction coverage and error rate increase with
the decreasing threshold. If one wants to include as many true
positives as possible, in the mean time, much more false pos-
itives will occur in the prediction. Normally one needs to find
the optimal point that has the minimal amount of wrong pre-
dictions. However, in our case, we are more interested in the
low error rate than in the high coverage. In other words, the
quality of the prediction is more important than the coverage.
In Figure 3 the coverage versus the error rate is shown

for our prediction. This graph is in the standard form of a
ROC (receiver–operator characteristic) plot. Each point on
this graph represents a threshold for positive and negative clas-
sification. An optimal threshold should have high prediction
coverage and a low error rate. A threshold of 0.0 was used for
the further work.
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Fig. 3. ROC graph: prediction coverage versus error rate. Predic-
tion coverage is the percentage of predicted positives that are true
positives while the error rate is the percentage of predicted positives
that are false positive. With a higher coverage rate, there would be
an associated higher error rate. In the graph, two different plots are
given, depending on the ratio of the size of the positive to negative
training examples—what we call the positive-to-negative-training
ratio. One plot has a ratio of 1 : 1 while the other has 1 : 10. Each
point on the graph represents a different threshold setting. For the
experiment, we chose a threshold setting of 0.0 with a positive-to-
negative-training ratio of 1 : 10, which is shown by the darkened
circle. This corresponded with a coverage rate of∼36% and an error
rate of ∼1.8%.

Genome-wide prediction of yeast transcription
targets
For the genome-wide prediction of regulatory targets of yeast
TFs, we used all 175 positive and 1750 negative examples as
a training set. The set of 46 059 possible TF–target pairings
to perform predictions on was obtained from the yTAFNET
database (see methods). For 36 transcription factors, a total of
3419 TF–target pairings were found by our prediction.
Overall statistics for the predictions are presented inTables 2

and 3. Table 2 lists these 36 TFs along with the function and
number of targets they control. The average number of targets
per TF is ∼93. Table 3 presents the overall statistics from
another perspective. The table shows all the gene targets in
the study that are controlled by 10 or more (TFs). The average
number of (TFs) per target is ∼1.8.

Overall network structure
In Table 4, we show some examples of our predictions. We
attempt to depict the overall network predicted in Figure 4.
However, due to the large number of predicted relation-
ships, it is only possible to show a small fraction of the total
relationships in the figure. The entire network can be obtained
from our website http://bioinfo.mbb.yale.edu/expression/
echipchip

Table 2. TFs in the study

Transcription
factor

Number of
targets

Transcription
factor

Number of
targets

STE12 1032 SINS 37
RAP1 306 SIR2 25
ZAP1 286 SIR3 18
RTG1 271 HIR2 16
SOK2 194 GLN3 11
YAP1 189 YAP3 11
RPD3 135 MBP1 9
GCN5 105 GCN4 7
GCR1 104 SWI6 7
TUP1 71 SWI5 6
PDR1 68 ARGR1 5
PPR1 66 RGT1 4
PHO4 65 GAL4 3
SWI4 63 STB4 2
SIR4 63 YAP7 2
RPN4 59 CAT8 1
HDA1 55 TEC1 1
SSN6 47 PDR3 1

Average = 92.92

This table lists the 36 TFs used this study. For each TF, the function and the number
of predicted targets are shown in the columns. The average number of targets per TF
is ∼93.

Table 3. Top TF targets

Target Number of TF Target Number of TF

ZRT1 20 HSP150 11
YGP1 16 ALD6 11
HXT2 15 PH05 11
PHO12 14 FAA3 10
HIS4 14 TDH3 10
FBP1 13 ASN1 10
SIP4 12 CLN2 10
ADE12 12 SUC2 10
ARG5,6 12 ILV3 10
PCK1 12 GIC2 10
HXT5 11 TYE7 10

This table shows the top TF targets that are controlled by more than 10 TFs. The average
number of TFs for each target is ∼1.8.

Finally, Figure 5 shows the relative chromosomal localiza-
tion of the targets of 10 TFs (randomly selected) across the
genome. For the most part, there is an even distribution of
targets for each factor, which corroborates with data from
ChIP-chip studies (Horak et al., 2002; Lee et al., 2002).

Comparison with ChIP-chip results
To further evaluate our prediction, we compared our results
with two recent genome-wide experiments, which determined
the TF targets with the ChIP-chip approach (Horak et al.,
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Table 4. Predicted TF–target examples

Transcription
factor

TF target Score Transcription
factor

TF target Score

RTG1 FET3 18.83 RPD3 ALD6 6.965
RAP1 RPS1A 18.48 GCR1 FET3 6.601
SIR4 GPM1 11.27 YAP3 PGK1 6.591
SIR4 PGK1 10.66 RPN4 PDC1 6.473
RAP1 RPL40B 9.301 RTG1 HXT6 6.438
PDR1 PDC1 9.096 RPN4 PGK1 6.437
ZAP1 FET3 9.007 SOK2 ALD6 6.325
RPD3 GPM1 8.65 GCR1 ALD6 6.29
ZAP1 PGK1 8.377 RTG1 YGP1 6.222
ZAP1 GPM1 8.231 RAP1 APL3 6.011
GCR1 PDC1 8.2 RTG1 ADE5,7 6.006
ZAP1 PDC1 8.159 RAP1 RPS4A 5.994
RAP1 RPL26B 8.13 TUP1 PGK1 5.882
STE12 GPM1 8.089 RAP1 PHO12 5.867
YAP1 FET3 8.084 PHO4 RPL25 5.804
YAP1 GPM1 7.994 HIR2 TDH3 5.752
PDR1 ALD6 7.751 ZAP1 ALD6 5.747
RTG1 HXT7 7.707 TUP1 PDC1 5.711
SIR4 TDH3 7.56 RPN4 GPM1 5.685
STE12 PDC1 7.477 RAP1 RPS9A 5.625
RTG1 ACS2 7.368 PDR1 YEF3 5.556
RAP1 RPL7A 7.274 TUP1 FET3 5.484
ZAP1 ENO2 7.105 ZAP1 TDH3 5.479
SSN6 FET3 7.07 ZAP1 ACS2 5.472
GCR1 GPM1 7.02 SIR4 RPL21B 5.458

The first column is the TF, second column is its target, third column is the prediction
scores. (The entire list can be obtained from our website.)

2002; Lee et al., 2002). In Figure 6A, we present the overlap
of the TFs shared between two experimental data sets and our
prediction set in terms of a Venn diagram. Note that the Horak
and Lee data sets only have two TFs in common. The overlap
between our prediction set and the Lee data set is 18 TFs, and
there is only one common TF for both experimental data sets
and our prediction set.
Based on the (relatively few) shared TFs, we analyzed

the targets and TF–target relationships that were common
between the experimental data sets and our predictions
(Fig. 6B). In general, there is not a large overlap. Between
the two experimental ChIP-chip data sets, there were only 17
common TF–target relationships, accounting for approxim-
ately 3%of all the determined relationships (where the number
of determined relationships is based on the smaller data set).
On the other hand, our computational predictions have an
overlap of 70 TF–target relationships with Lee data set and 7
with Horak data set, which accounts for approximately 6 and
4% coverage of these data sets. There were no TF–target rela-
tionships thatwere consistently found in all three data sources.
In summary, we found that the agreement between our results
and two experiments is comparable to the agreement (albeit
low) between the two experiments.

DISCUSSION AND CONCLUSION
In our analysis, we develop a machine learning approach to
decipher the complex relationship between a TF and its target.
Genome-scale analyses of TF targets are difficult and both
experimental and computational techniques are in the pro-
cesses of refinement. From our predictions, for the 36 TFs,
we predict a total of 3419 targets. On average, each TF con-
trols approximately 93 targets and each target is controlled
by 1.8 TFs. This suggests that the lack of a clear relationship
between TF and their targets as shown in Figure 1 can per-
haps be due to the fact that most targets are not controlled
by one single TF. However, the fact that one TF controls
so many targets points to the importance of studying these
relationships.
Other in silico approaches with regulatory target predic-

tions use binding site information. However, shared tertiary
structure is often the determinant for binding. This is not pre-
dicted using sequence information. Furthermore, for many
TFs, binding motifs are yet to be determined. Therefore,
our method provides an additional perspective that does not
require as much derived information.
As with many bioinformatic analyses, there is restriction

based on the initial data set, on which predictions are based.
Our accuracy rate would definitely improve with incorpora-
tion ofmoremicroarray data aswith the addition ofmore pairs
of TF and targets. Furthermore, the 63% cross-validation rate
with known relationships provides a measure for our analysis.
However, it is important to note that this number assumes
that the known relationships are accurate and do not include
undiscovered, unannotated true positives. Fromour initial pre-
dictions, we expect coverage of 36% with an error rate of less
than 2%.
The generated predictions from our analysis are useful for

researchers as a preliminary target list for their TF of interest.
Actual relationships need to be verified with experimental
work. However, this work provides a new method of TF tar-
get prediction that will be useful with the growing amount of
microarray data and knowledge of TFs. Quick predictions can
be made from existing microarrary experiments and will be a
useful tool as a first step in TF target prediction.
Recent studies by Lee et al. (2002), Ren et al. (2000) and

Iyer et al. (2001) have examined the relationship between TF
and their targets using the ChIP-chip approach. Our analysis
examined the consequences of gene control using expression
levels. However, there are only small overlaps between the dif-
ferent experimental data sets and with our predictions. This is
most likely due to the temporal nature of TFs. For example,
different TFs can compete for the same target gene. Further-
more, at different times in the cell cycle, there are differing
environments with different TFs present.
As future work is done, the combination of in vitro and

in silico techniques will be valuable in determining the
relationship between TFs and their targets. Consensus data
from different experiments will increase the fidelity of the
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Fig. 4. Overall network. The complex interconnected network of the TFs and all their targets. Because the network is dominated by TFs
targets that do not provide further control with relatively few TFs, there appears to be several centers of control with many targets.

Fig. 5. Chromosomal position. Positions of genes controlled by ten TFs. For each TF, their targets are colored on the chromosome map of
the yeast genome. Chromosome IV is divided into two lines: the first line contains position from 1 to 800 kb and the second shows position
from 800 kb on. This provides an overall chromosome view of transcription control.
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Prediction of regulatory networks

Fig. 6. Comparison of two ChIP-chip data sets with our predictions.
(A) The sharing of the TFs that were used in the three studies. (B) The
number of TF–target pairs that were shared among the three data sets.
This only included the predictions from the data sets that shared
common TFs shown in (A).

predictions. As different groups study more common TFs and
with consideration of the point in cell cycle and the state of the
cell, researcherswill be able to better understand the control of
genes within the cell. With the growing library of expression
analyses and other data sources, computational techniques
will provide a more complex description of the relationship.
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