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Abstract

RNA structural elements called pseudoknots are involved in various biological phenomena including ribosomal frameshifts.
Because it is infeasible to construct an efficiently computable secondary structure model including pseudoknots, secondary
structure prediction methods considering pseudoknots are not yet widely available. We developed IPknot, which uses
heuristics to speed up computations, but it has remained difficult to apply it to long sequences, such as messenger RNA and
viral RNA, because it requires cubic computational time with respect to sequence length and has threshold parameters that
need to be manually adjusted. Here, we propose an improvement of IPknot that enables calculation in linear time by
employing the LinearPartition model and automatically selects the optimal threshold parameters based on the
pseudo-expected accuracy. In addition, IPknot showed favorable prediction accuracy across a wide range of conditions in
our exhaustive benchmarking, not only for single sequences but also for multiple alignments.
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Introduction
Genetic information recorded in DNA is transcribed into RNA,
which is then translated into protein to fulfill its function. In
other words, RNA is merely an intermediate product for the
transmission of genetic information. This type of RNA is called
messenger RNA (mRNA). However, many RNAs that do not fit
into this framework have been discovered more recently. For
example, transfer RNA and ribosomal RNA, which play central
roles in the translation mechanism, nucleolar small RNA, which
guides the modification sites of other RNAs, and microRNA,
which regulates gene expression, have been discovered. Thus,
it has become clear that RNAs other than mRNAs are involved
in various biological phenomena. Because these RNAs do not
encode proteins, they are called non-coding RNAs. In contrast
to DNA, which forms a double-stranded structure in vivo, RNA
is often single-stranded and is thus unstable when intact. In the
case of mRNA, the cap structure at the 5′ end and the poly-A
strand at the 3′ end protect it from degradation. On the other
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hand, for other RNAs that do not have such structures, single-
stranded RNA molecules bind to themselves to form three-
dimensional structures and ensure their stability. Also, as in the
case of proteins, RNAs with similar functions have similar three-
dimensional structures, and it is known that there is a strong
association between function and structure. The determination
of RNA three-dimensional (3D) structure can be performed by X-
ray crystallography, nuclear magnetic resonance, cryo-electron
microscopy, and other techniques. However, it is difficult to apply
these methods on a large scale owing to difficulties associated
with sequence lengths, resolution and cost. Therefore, RNA sec-
ondary structure, which is easier to model, is often computation-
ally predicted instead. RNA secondary structure refers to the set
of base pairs consisting of Watson–Crick base pairs (A–U, G–C)
and wobble base pairs (G–U) that form the backbone of the 3D
structure.

RNA secondary structure prediction is conventionally based
on thermodynamic models, which predict the secondary
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Figure 1. (A) A typical psudoknot structure. The dotted lines represent base pairs.

(B) A linear presentation of the pseudoknot.

structure with the minimum free energy (MFE) among all
possible secondary structures. Popular methods based on
thermodynamic models include mfold [1], RNAfold [2], and
RNAstructure [3]. Recently, RNA secondary structure prediction
methods based on machine learning have also been developed.
These methods train alternative parameters to the thermody-
namic parameters by taking a large number of pairs of RNA
sequences and their reference secondary structures as training
data. The following methods fall under the category of methods
that use machine learning: CONTRAfold [4], ContextFold [5],
SPOT-RNA [6] and MXfold2 [7]. However, from the viewpoint
of computational complexity, most approaches do not support
the prediction of secondary structures that include pseudoknot
substructures.

Pseudoknots are one of the key topologies occurring in RNA
secondary structures. The pseudoknot structure is a structure in
which some bases inside of a loop structure form base pairs with
bases outside of the loop (e.g. Figure 1A). In other words, it is said
to have a pseudoknot structure if there exist base pairs that are
crossing each other by connecting bases of base pairs with arcs,
as shown in Figure 1B. The pseudoknot structure is known to be
involved in the regulation of translation and splicing, and riboso-
mal frameshifts [8–10]. The results of sequence analysis suggest
that the hairpin loops, which are essential building blocks of the
pseudoknots, first appeared in the evolutionary timescale [11],
and then the pseudoknots were configured, resulting in gaining
those functions. We therefore conclude that pseudoknots should
not be excluded from the modeling of RNA secondary structures.

The computational complexity required for MFE predictions
of an arbitrary pseudoknot structure has been proven to be
NP-hard [12, 13]. To address this, dynamic programming-based
methods that require polynomial time (O(n4)–O(n6) for sequence
length n) to exactly compute the restricted complexity of pseu-
doknot structures [12–16] and heuristics-based fast computation
methods [17–20] have been developed.

We previously developed IPknot [21], a fast heuristic-based
method for predicting RNA secondary structures including pseu-
doknots. IPknot decomposes a secondary structure with pseudo-
knots into several pseudoknot-free substructures and predicts
the optimal secondary structure using integer programming (IP)
based on maximization of expected accuracy (MEA) under the
constraints that each substructure must satisfy. The threshold
cut technique, which is naturally derived from MEA, enables
IPknot to perform much faster calculations with nearly com-
parable prediction accuracy relative to other methods. How-
ever, because the MEA-based score uses base pairing probability
without considering pseudoknots, which requires a calculation
time that increases cubically with sequence length, it is difficult
to use for secondary structure prediction of sequences that
exceed 1000 bases, even when applying a threshold cut tech-
nique. Furthermore, as the prediction accuracy can drastically

change depending on the thresholds determined in advance for
each pseudoknot-free substructure, thresholds must be carefully
determined.

To address the limitations of IPknot, we implemented the
following two improvements to the method. The first is the
use of LinearPartition [22] to calculate base pairing probabili-
ties. LinearPartition can calculate the base pairing probability,
with linear computational complexity with respect to sequence
length, using the beam search technique. By employing the
LinearPartition model, IPknot is able to predict secondary struc-
tures while considering pseudoknots for long sequences, includ-
ing mRNA, lncRNA and viral RNA. The other improvement is
the selection of thresholds based on pseudo-expected accuracy,
which was originally developed by Hamada et al. [23]. We show
that the pseudo-expected accuracy is correlated with the ‘true’
accuracy, and by choosing thresholds for each sequence based
on the pseudo-expected accuracy, we can select a nearly optimal
secondary structure prediction.

Materials and Methods
Given an RNA sequence x = x1 · · · xn (xi ∈ {A, C, G, U}), its sec-
ondary structure is represented by a binary matrix y = (yij),
where yij = 1 if xi and xj form a base pair and otherwise yij = 0. Let
Y(x) be a set of all possible secondary structures of x including
pseudoknots. We assume that y ∈ Y(x) can be decomposed
into a set of pseudoknot-free substructures y(1), y(2), . . . , y(m), such
that y = ∑m

p=1 y(p). In order to guarantee the uniqueness of the
decomposition, the following conditions should be satisfied: (i)
y ∈ Y(x) should be decomposed into mutually exclusive sets; that
is, for all 1 ≤ i < j ≤ |x|, ∑m

p=1 y(p)
ij ≤ 1; (ii) every base pair in y(p)

should be pseudoknotted with at least one base pair in y(q) for
∀q < p.

Maximizing expected accuracy

One of the most promising techniques for predicting RNA sec-
ondary structures is the MEA-based approach [4, 24]. First, we
define a gain function of prediction ŷ ∈ Y(x) with regard to the
correct secondary structure y ∈ Y(x) as

Gτ (y, ŷ) = (1 − τ )TP(y, ŷ) + τTN(y, ŷ), (1)

where TP(y, ŷ) = ∑
i<j I(yij = 1)I(ŷij = 1) is the number of true

positive base pairs, TN(y, ŷ) = ∑
i<j I(yij = 0)I(ŷij = 0) is the number

of true negative base pairs, and τ ∈ [0, 1] is a balancing parameter
between true positives and true negatives. Here, I(condition) is
the indicator function that takes a value of 1 or 0 depending on
whether the condition is true or false.

Our objective is to find a secondary structure that maximizes
the expectation of the gain function (1) under a given probability
distribution over the space Y(x) of pseudoknotted secondary
structures, as follows:

Ey|x[Gτ (y, ŷ)] =
∑

y∈Y(x)

Gτ (y, ŷ)P(y | x). (2)

Here, P(y | x) is a probability distribution of RNA secondary
structures including pseudoknots.

Because the calculation of the expected gain function (2)
is intractable for arbitrary pseudoknots, we approximate Eq.
(2) by the sum of the expected gain function for decomposed
pseudoknot-free substructures ŷ(1), . . . , ŷ(m) for ŷ ∈ Y(x) such that
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ŷ = ∑m
p=1 ŷ(p), and thus, we find a pseudoknotted structure ŷ and

its decomposition ŷ(1), . . . , ŷ(m) that maximize

m∑
p=1

∑
y∈Y ′ (x)

Gτ (p) (y, ŷ(p))P′(y | x)

=
m∑

p=1

∑
i<j

[
pij − τ (p)

]
ŷ(p)

ij + C, (3)

where τ (p) ∈ [0, 1] is a balancing parameter between true positives
and true negatives for a level p, and C is a constant independent
of ŷ. The base pairing probability pij is the probability that the
bases xi and xj form a base pair, which is defined as

pij =
∑

y∈Y ′ (x)

I(yij = 1)P′(y | x). (4)

See Section S1 in Supplementary Information for the derivation.
Notably, it is no longer necessary to consider the base pairs
whose probabilities are at most the threshold τ (p), which we refer
to as the threshold cut.

We can choose P′(y | x), a probability distribution over a set
Y ′(x) of secondary structures without pseudoknots, from among
several options. Instead of using a probability distribution with
pseudoknots, we can employ a probability distribution without
pseudoknots, such as the McCaskill model [25] and the CON-
TRAfold model [4], whose computational complexity is O(|x|3)
for time and O(|x|2) for space. Alternatively, the LinearPartition
model [22], which is O(|x|) in both time and space, enables us to
predict the secondary structure of sequences much longer than
1000 bases.

IP formulation

We can formulate our problem described in the previous section
as the following IP problem:

maximize
m∑

p=1

∑
i<j

[
pij − τ (p)

]
y(p)

ij (5)

subject to yij ∈ {0, 1} (1 ≤ ∀i < ∀ < j ≤ n), (6)

y(p)
ij ∈ {0, 1} (1 ≤ ∀p ≤ m, 1 ≤ ∀i < ∀j ≤ n), (7)

yij =
m∑

p=1

y(p)
ij (1 ≤ ∀i < ∀j ≤ n), (8)

i−1∑
h=1

yhi +
n∑

h=i+1

yih ≤ 1 (1 ≤ ∀i ≤ n), (9)

y(p)
ij + y(p)

kl ≤ 1

(1 ≤ p ≤ m, 1 ≤ ∀i < ∀k < ∀j < ∀l ≤ n), (10)

∑
i<k<j<l

y(q)
ij +

∑
k<i′<l<j′

y(q)
i′ j′ ≥ y(p)

kl

(1 ≤ q < p ≤ m, 1 ≤ ∀k < ∀l ≤ n). (11)

Because Equation (5) is an instantiation of the approximate
estimator (3) and the threshold cut technique is applicable to
Eq. (3), the base pairs y(p)

ij whose base pairing probabilities pij are

larger than τ (p) need to be considered. The number of variables
y(p)

ij that should be considered is at most |x|/τ (p) because
∑

j<i pji +∑
j>i pij ≤ 1 for 1 ≤ ∀i ≤ |x|. Constraint (9) means that each

base xi is paired with at most one base. Constraint (10) disallows
pseudoknots within the same level p. Constraint (11) ensures
that each base pair at level p is pseudoknotted with at least one
base pair at every lower level q < p to guarantee the uniqueness
of the decomposition y = ∑m

p=1 y(p).

Pseudo-expected accuracy

To solve the IP problem (5)–(11), we are required to choose the
set of thresholds for each level τ (1), . . . , τ (m), each of which is a
balancing parameter between true positives and true negatives.
However, it is not easy to obtain the best set of τ values for
any sequence beforehand. Therefore, we employ an approach
originally proposed by Hamada et al. [23], which chooses a param-
eter set for each sequence among several parameter sets that
predicts the best secondary structure in terms of an approxima-
tion of the expected accuracy (called pseudo-expected accuracy)
and makes the prediction by the best parameter set the final
prediction.

The accuracy of a predicted RNA secondary structure ŷ
against a reference structure y is evaluated using the following
measures:

PPV(y, ŷ) = TP(y, ŷ)
TP(y, ŷ) + FP(y, ŷ)

, (12)

SEN(y, ŷ) = TP(y, ŷ)
TP(y, ŷ) + FN(y, ŷ)

, (13)

F(y, ŷ) = 2 · PPV(y, ŷ) · SEN(y, ŷ)
PPV(y, ŷ) + SEN(y, ŷ)

. (14)

Here, TP(y, ŷ) = ∑
i<j I(yij = 1)I(ŷij = 1), FP(y, ŷ) = ∑

i<j I(yij = 0)I(ŷij =
1) and FN(y, ŷ) = ∑

i<j I(yij = 1)I(ŷij = 0). To estimate the accuracy
of the predicted secondary structure ŷ without knowing the true
secondary structure y, we take an expectation of F(y, ŷ) over the
distribution of y:

F(ŷ) = Ey|x[F(y, ŷ)] =
∑

y∈Y(x)

F(y, ŷ)P(y | x). (15)

However, this calculation is intractable because the number of
y ∈ Y(x) increases exponentially with the length of sequence
x. Alternatively, we first calculate expected TP, FP and FN as
follows:

TP(ŷ) = Ey|x[TP(y, ŷ)] =
∑
i<j

pijI(ŷij = 1), (16)
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FP(ŷ) = Ey|x[FP(y, ŷ)] =
∑
i<j

(1 − pij)I(ŷij = 1), (17)

FN(ŷ) = Ey|x[FN(y, ŷ)] =
∑
i<j

pijI(ŷij = 0). (18)

Then, we approximate F by calculating Equation (14) using TP, FP,
and FN instead of TP, FP and FN, respectively.

In addition to the original pseudo-expected accuracy
described above, we introduce the pseudo-expected accuracy
for crossing base pairs to predict pseudoknotted structures.
Prediction of secondary structures including pseudoknots
depends on both the conventional prediction accuracy of base
pairs described above and the accuracy of crossing base pairs. A
crossing base pair is a base pair xi and xj such that there exists
another base pair xk and xl that is crossing the base pair xi and
xj; that is, k < i < l < j or i < k < j < l. We define the expectations
of true positives, false positives and false negatives for crossing
base pairs as follows:

TPcb(ŷ) = Ey|x[TP(cb(y), cb(ŷ))]

≈
∑

i<k<j<l

pijpklI(ŷij = 1 ∧ ŷkl = 1), (19)

FPcb(ŷ) = Ey|x[FP(cb(y), cb(ŷ))]

≈
∑

i<k<j<l

(1 − pijpkl)I(ŷij = 1 ∧ ŷkl = 1), (20)

FNcb(ŷ) = Ey|x[FN(cb(y), cb(ŷ))]

≈
∑

i<k<j<l

pijpklI(ŷij = 0 ∨ ŷkl = 0). (21)

Here, cb(y) is an n×n binary matrix, whose (i, j)-element is yij itself
if there exists k < i < l < j or i < k < j < l such that ykl = 1, and
0 otherwise. Then, we calculate the pseudo-expected F-value for
crossing base pairs Fcb using Equation (14) with TPcb, FPcb and FNcb

instead of TP, FP and FN, respectively. Equations (19)–(21) require
O(n4) for naive calculations, but can be reduced to acceptable
computational time by utilizing the threshold cut technique.

We predict secondary structures ŷt (t = 1, . . . , l) for several
threshold parameters {(τ (1)

t , . . . , τ (m)
t ) | t = 1, . . . , l}. Then, we cal-

culate their pseudo-expected accuracy F(ŷt) + Fcb(ŷt) and choose
the secondary structure ŷt that maximizes the pseudo-expected
accuracy as the final prediction.

Common secondary structure prediction

The average of the base pairing probability matrices for each
sequence in an alignment has been used to predict the com-
mon secondary structure for the alignment [26, 27]. Let A be
an alignment of RNA sequences that contains k sequences and
|A| denote the number of columns in A. We calculate the base
pairing probabilities of an individual sequence x ∈ A as

p(x)
ij =

∑
y∈Y(x)

I(yij = 1)P(y | x). (22)

The averaged base pairing probability matrix is defined as

p(A)
ij = 1

k

∑
x∈A

p(x)
ij . (23)

The common secondary structure of the alignment A can be
calculated in the same way by replacing pij in Equations (5)

with p(A)
ij . While the common secondary structure prediction

based on the average base pairing probability matrix has been
implemented in the previous version of IPknot [21], the present
version employs the LinearPartition model, which enables the
calculation linearly with respect to the alignment length.

Implementation

Our method has been implemented as the newest version of a
program called IPknot. In addition to the McCaskil model [25] and
CONTRAfold model [4], which were already integrated into the
previous version of IPknot, the LinearPartition model [22] is also
supported as a probability distribution for secondary structures.
To solve IP problems, the GNU Linear Programming Kit (GLPK;
http://www.gnu.org/software/glpk/), Gurobi Optimizer (http://gu
robi.com/) or IBM CPLEX Optimizer (https://www.ibm.com/ana
lytics/cplex-optimizer) can be employed.

Datasets

To evaluate our algorithm, we performed computational
experiments on several datasets. We employed RNA sequences
extracted from the bpRNA-1m dataset [28], which is based on
Rfam 12.2 [29], and the comparative RNA web dataset [30] with
2588 families. In addition, we built a dataset that includes
families from the most recent Rfam database, Rfam 14.5 [31].
Since the release of Rfam 12.2, the Rfam project has actively
collected about 1400 RNA families, including families detected
by newly developed techniques. We extracted these newly
discovered families. To limit bias in the training data, sequences
with higher than 80% sequence identity with the sequence
subsets S-Processed-TRA from RNA STRAND [32] and TR0 from
bpRNA-1m [28], which are the training datasets for CONTRAfold
and SPOT-RNA, respectively, were removed using CD-HIT-EST-2D
[33]. We then removed redundant sequences using CD-HIT-EST
[33], with a cutoff threshold of 80% sequence identity.

For the prediction of common secondary structures, the
sequence selected by the above method was used as a seed, and
1–9 sequences of the same Rfam family and with high sequence
identity (≥ 80%) with the seed sequence were randomly
selected to create an alignment. Common secondary structure
prediction was performed on the reference alignments from
Rfam and the alignments calculated by MAFFT [34]. Because
there are sequences from bpRNA-1m that do not have Rfam
reference alignments, only sequences from Rfam 14.5 were
tested for common secondary structure prediction. To capture
the accuracy of the common secondary structure prediction, the
accuracy for the seed sequence is shown.

A summary of the dataset created and utilized is shown in
Table 1.

Results
Effectiveness of pseudo-expected accuracy

First, to show the effectiveness of the automatic selection from
among thresholds τ (1), . . . , τ (m) based on the pseudo-expected
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Table 1. Datasets used in our experiments. Each element of the table shows the number of sequences

Pseudoknot-free Pseudoknotted

Short Medium Long Short Medium Long
Length (nt) (12–150) (151–500) (501–4381) (12–150) (151–500) (501–4381)

(Single)
bpRNA-1m 1971 514 420 125 162 245
Rfam 14.5 6299 723 9 1692 477 151

(Multiple)
Rfam 14.5 5118 554 4 1692 477 151

Figure 2. PPV–SEN plot of IPknot and ThreshKnot for short RNA sequences (≤ 150

nt).

accuracy, Figure 2 and Table S1 in Supplementary Information
show the prediction accuracy on the dataset of short sequences
(≤ 150 nt) using automatic selection and manual selection of the
threshold τ values. For IPknot, we fixed the number of decom-
posed sets of secondary substructures m = 2, and varied thresh-
old parameters τ values for base pairing probability in such a
way that {(τ (1), τ (2)) | τ (p) = 2−t, p = 1, 2, t = 1, 2, 3, 4, τ (1) ≥ τ (2)}.
In IPknot with pseudo-expected accuracy, the best secondary
structure in the sense of pseudo-expected F is selected from the
same range of (τ (1), τ (2)) for each sequence. For these variants of
IPknot, the LinearPartition model with CONTRAfold parameters
(LinearPartition-C) was used to calculate base pairing probabili-
ties. In addition, we compared the prediction accuracy of IPknot
with that of ThreshKnot [35], which also calculates base pairing
probabilities using LinearPartition-C. We used {2−t | t = 1, 2, 3, 4}∪
{0.3} as the threshold parameter θ for ThreshKnot because the
default threshold parameter of ThreshKnot is θ = 0.3. IPknot
with threshold parameters of τ (1) = 0.125 and τ (2) = 0.125 had
the highest prediction accuracy of F = 0.659. IPknot with pseudo-
expected accuracy has a prediction accuracy of F = 0.658, which
is comparable to the highest accuracy obtained. ThreshKnot
with a threshold of 0.25 has an accuracy of F = 0.656, which is
also comparable to the best accuracy obtained.

The pseudo-expected F-value and “true”F-value are relatively
highly correlated (Spearman correlation coefficient ρ = 0.639),

indicating that the selection of predicted secondary structure
using pseudo-expected accuracy works well.

While the accuracy of the prediction of the entire secondary
structure has already been considered, as shown in Figure 2,
for the prediction of secondary structures with pseudoknots,
it is necessary to evaluate the prediction accuracy focused on
the crossing base pairs. In terms of prediction accuracy limited
to only crossing base pairs, IPknot with pseudo-expected accu-
racy yielded Fcb = 0.258, while the highest accuracy achieved
by IPknot with the threshold parameters and ThreshKnot was
considerably lower at Fcb = 0.161 and 0.057, respectively (See
Table S1 in Supplementary Information). We can observe the
similar tendency to the above in Figures S1 and S2, and Tables
S2 and S3 in Supplementary Information for medium (151–
500 nt) and long (> 500 nt) sequences. These results suggest
that prediction of crossing base pairs is improved by selecting
the predicted secondary structure while considering both the
pseudo-expected accuracy of the entire secondary structure and
the pseudo-expected accuracy of the crossing base pairs.

Comparison with previous methods for single RNA
sequences

Using our dataset, we compared our algorithm with several pre-
vious methods that can predict pseudoknots, including Thresh-
Knot utilizing LinearPartition (committed on 17 March 2021)
[22], Knotty (committed on Mar 28, 2018) [22] and SPOT-RNA
(committed on 1 April 2021) [6], and those that can predict
only pseudoknot-free structures, including CONTRAfold (ver-
sion 2.02) [4] and RNAfold in the ViennaRNA package (version
2.4.17) [22]. IPknot has several options for the calculation model
for base pairing probabilities, namely the LinearPartition model
with CONTRAfold parameters (LinearPartition-C), the LinearPar-
tition model with ViennaRNA parameters (LinearPartition-V),
the CONTRAfold model and the ViennaRNA model. In addition,
ThreshKnot has two possible LinearPartition models for calcu-
lating base pairing probabilities. The other existing methods
were tested using the default settings.

We evaluated the prediction accuracy according to the F-
value as defined by Equation (14) for pseudoknot-free sequences
(PKF in Table 2), pseudoknotted sequences (PK in Table 2) and
only crossing base pairs (CB in Table 2) by stratifying sequences
by length: short (12–150 nt), medium (151–500 nt) and long
(500–4381 nt).

For short sequences, SPOT-RNA archived high accuracy, espe-
cially for pseudoknotted sequences. However, a large difference
in accuracy between the bpRNA-1m-derived and Rfam 14.5-
derived sequences can be observed for SPOT-RNA compared with
the other methods (See Tables S4–S9 in Supplementary Informa-
tion). Notably, bpRNA-1m contains many sequences in the same
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6 Sato and Kato

Table 2. A comparison of prediction accuracies (F-values) by sequence length for each method

Length Short (12–150 nt) Medium (151–500 nt) Long (501–4381 nt)

PKF PK CB PKF PK CB PKF PK CB

IPknot
(LinearPartition-C) 0.681 0.552 0.258 0.492 0.482 0.128 0.433 0.428 0.061
(LinearPartition-V) 0.669 0.499 0.143 0.478 0.461 0.091 0.380 0.370 0.038
(CONTRAfold) 0.678 0.550 0.259 0.495 0.505 0.154 0.426 0.413 0.066
(ViennaRNA) 0.669 0.500 0.144 0.480 0.461 0.091 0.212 0.317 0.041

ThreshKnot
(LinearPartition-C) 0.681 0.501 0.027 0.493 0.475 0.019 0.439 0.431 0.008
(LinearPartition-V) 0.669 0.484 0.033 0.481 0.456 0.026 0.383 0.372 0.014

Knotty 0.641 0.550 0.315 — — — — — —
SPOT-RNA 0.658 0.621 0.322 0.462 0.479 0.127 — — —
CONTRAfold 0.682 0.519 0.000 0.500 0.497 0.000 0.425 0.415 0.000
RNAfold 0.668 0.472 0.000 0.474 0.442 0.000 0.361 0.347 0.000

PKF, F-value for pseudoknot-free sequences; PK, F-value for pseudoknotted sequences; CB, F-value of crossing base pairs.

Figure 3. Computational time of each method as a function of sequence length. For SPOT-RNA with GPGPU, we used a Linux workstation with Intel Xeon Gold 6136

and NVIDIA Tesla V100. All other computations were performed on Linux workstations with AMD EPYC 7702. For IPknot, we employed IBM CPLEX Optimizer as the IP

solver.

family as the SPOT-RNA training data, and although we per-
formed filtering based on sequence identity, there is still a con-
cern of overfitting. Knotty can predict structures including pseu-
doknots with an accuracy comparable to that of SPOT-RNA, but
as shown in Figure 3, it can perform secondary structure predic-
tion for only short sequences, owing to its huge computational
complexity. Comparing IPknot using the LinearPartition-C and -
V models with its counterparts, the original CONTRAfold model
and ViennaRNA model achieved comparable accuracy. However,
because the computational complexity of the original models
is cubic with respect to sequence length, the computational
time of the original models increases rapidly as the sequence
length exceeds 1500 bases. On the other hand, the computational
complexity of the LinearPartition models is linear with respect
to sequence length, so the base pairing probabilities can be
quickly calculated even when the sequence length exceeds 4000
bases. In addition to calculating the base pairing probabilities, IP
calculations are required, but because the number of variables
and constraints to be considered can be greatly reduced using
the threshold cut technique, the overall execution time is not
significantly affected if the sequence length is several thousand
bases. Because ThreshKnot, like IPknot, uses the LinearPartition
model, it is able to perform fast secondary structure prediction
even for long sequences. However, for the prediction accuracy of
crossing base pairs, ThreshKnot is even less accurate.

Pseudoknots are found not only in cellular RNAs but also in
viral RNAs, performing a variety of functions [8]. Tables S10–S11
in Supplementary Information show the results of the secondary
structure prediction by separating the datasets into cellular
RNAs and viral RNAs, indicating that there is no significant
difference in the prediction accuracy between cellular RNAs and
viral RNAs.

Prediction of common secondary structures
with pseudoknots

Few methods exist that can perform prediction of common
secondary structures including pseudoknots for sequence
alignments longer than 1000 bases. Table 3 and Tables S12–S20 in
Supplementary Information compare the accuracy of IPknot that
employs the LinearPartition model, and RNAalifold in the Vien-
naRNA package. We performed common secondary structure
prediction for the Rfam reference alignment and the alignment
calculated by MAFFT, as well as secondary structure prediction
of single sequences only for the seed sequence included in
the alignment, and evaluated the prediction accuracy for the
seed sequence. In most cases, the prediction accuracy improved
as the quality of the alignment increased (Single < MAFFT
< Reference). IPknot predicts crossing base pairs based on
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Table 3. A comparison of prediction accuracies (F-values) of common secondary structure prediction by sequence alignments for each method

Reference MAFFT Single

PKF PK CB PKF PK CB PKF PK CB

IPknot
(LinearPartition-C) 0.765 0.616 0.220 0.732 0.585 0.218 0.718 0.548 0.227
(LinearPartition-V) 0.761 0.565 0.177 0.729 0.529 0.165 0.714 0.494 0.124

RNAalifold 0.804 0.611 0.000 0.745 0.540 0.000 0.716 0.474 0.000

PKF, F-value for pseudoknot-free sequences; PK, F-value for pseudoknotted sequences; CB, F-value of crossing base pairs.

pseudo-expected accuracy, whereas RNAalifold is unable to
predict pseudoknots.

Discussion
Both IPknot and ThreshKnot use the LinearPartition model to
calculate base pairing probabilities, and then perform secondary
structure prediction using different strategies. ThreshKnot pre-
dicts the base pairs xi and xj that are higher than a predeter-
mined threshold θ and have the largest pij in terms of both i
and j. IPknot predicts the pseudoknot structure with multiple
thresholds τ (1), . . . , τ (m) in a hierarchical manner based on IP (5)–
(11), and then carefully selects from among these thresholds
based on pseudo-expected accuracy. Because both the pseudo-
expected accuracy of the entire secondary structure as well as
the pseudo-expected accuracy of the crossing base pairs are
taken into account, the prediction accuracy of the pseudoknot
structure is inferred to be enhanced in IPknot.

Because the LinearPartition model uses the same parameters
as the CONTRAfold and ViennaRNA packages, there is no sig-
nificant difference in accuracy between using LinearPartition-C
and -V and their counterparts, the CONTRAfold and ViennaRNA
models. It has been shown that LinearPartition has no significant
effect on accuracy even though it ignores structures whose
probability is extremely low owing to its use of beam search,
which makes the calculation linear with respect to the sequence
length [22]. The LinearPartition model enables IPknot to perform
secondary structure prediction including pseudoknots of very
long sequences, such as mRNA, lncRNA, and viral RNA.

SPOT-RNA [6], which uses deep learning, showed notable
prediction accuracy in our experiments, especially in short
sequences containing pseudoknots, with F-value of 0.621, which
is superior to other methods. However, SPOT-RNA requires
considerable computing resources such as GPGPU and long
computational time. Furthermore, SPOT-RNA showed a large
difference in prediction accuracy between sequences that are
close to the training data and those that are not compared with
the other methods. Therefore, the situations in which SPOT-RNA
can be used are considered to be limited. In contrast, IPknot
uses CONTRAfold parameters, which is also based on machine
learning, but we did not observe as much overfitting with IPknot
as with SPOT-RNA.

Approaches that provide an exact solution for limited-
complexity pseudoknot structures, such as PKNOTS [14], pknot-
sRG [15], and Knotty [16], can predict pseudoknot structures
with high accuracy but demand a huge amount of computation
O(n4)–O(n6) for sequence length n, limiting secondary structure
prediction to sequences only up to about 150 bases. On the
other hand, IPknot predicts the pseudoknot structure using
a fast computational heuristic-based method with the linear
time computation, which does not allow us to find an exact
solution. Instead, IPknot improves the prediction accuracy of the

pseudoknot structure by choosing the best solution from among
several solutions based on the pseudo-expected accuracy.

IPknot uses pseudoknot-free algorithms, such as CON-
TRAfold and ViennaRNA, to calculate base pairing probabilities,
and its prediction accuracy of the resulting secondary structure
strongly depends on the algorithm used to calculate base pairing
probabilities. Therefore, we can expect to improve the prediction
accuracy of IPknot by calculating the base pairing probabilities
based on state-of-the-art pseudoknot-free secondary structure
prediction methods such as MXfold2 [7].

It is well known that common secondary structure prediction
from sequence alignments improves the accuracy of secondary
structure prediction. However, among the algorithms for predict-
ing common secondary structure including pseudoknots, only
IPknot can deal with sequence alignments longer than several
thousand bases. In the RNA virus SARS-CoV-2, programmed -1
ribosomal frameshift (-1 PRF), in which a pseudoknot structure
plays an important role, has been identified and is attracting
attention as a drug target [10]. Because many closely related
strains of SARS-CoV-2 have been sequenced, it is expected that
structural motifs including pseudoknots, such as -1 PRF, can be
found by predicting the common secondary structure from the
alignment.

Conclusions
We have developed an improvement to IPknot that enables cal-
culation in linear time by employing the LinearPartition model
and automatically selects the optimal threshold parameters
based on the pseudo-expected accuracy. LinearPartition can cal-
culate the base pairing probability with linear computational
complexity with respect to the sequence length. By employing
LinearPartition, IPknot is able to predict the secondary structure
considering pseudoknots for long sequences such as mRNA,
lncRNA, and viral RNA. By choosing the thresholds for each
sequence based on the pseudo-expected accuracy, we can select
a nearly optimal secondary structure prediction.

The LinearPartition model realized the predictiction of sec-
ondary structures considering pseudoknots for long sequences.
However, the prediction accuracy is still not sufficiently high,
especially for crossing base pairs. We expect that by learn-
ing parameters from long sequences [36], we can achieve high
accuracy even for long sequences.

Key Points
• We reduced the computational time required by

IPknot from cubic to linear with respect to the
sequence length by employing the LinearPartition
model and enabled the secondary structure prediction
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including pseudoknots for long RNA sequences such
as mRNA, lncRNA, and viral RNA.

• We improved the accuracy of secondary structure pre-
diction including pseudoknots by introducing pseudo-
expected accuracy not only for the entire base pairs
but also for crossing base pairs.

• To the best of our knowledge, IPknot is the only
method that can perform RNA secondary structure
prediction including pseudoknot not only for very
long single sequence, but also for very long sequence
alignments.

Supplementary Data

Supplementary data are available online at Briefings in
Bioinformatics.

Availability

The IPknot source code is freely available at https://githu
b.com/satoken/ipknot. IPknot is also available for use from
a web server at http://rtips.dna.bio.keio.ac.jp/ipknot++/. The
datasets used in our experiments are available at https://
doi.org/10.5281/zenodo.4923158.
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