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Abstract

Sea surface temperature (SST) prediction has widespread applications in the �eld of marine ecology, �sheries, sports and 
climate change studies. At present, the real-time SST forecasts are made by numerical models which are categorically 
based on physics-based assumptions subjected to boundary and initial conditions. They are more suited to a large spatial 
region than in a speci�c location. In this study, location-speci�c SST forecasts were made by combining deep learning 
neural networks with numerical estimators at �ve di�erent locations around India for three di�erent time horizons (daily, 
weekly and monthly). Firstly, forecasts were made with traditional neural networks (NNs) and then through deep learning 
networks. The NNs signi�cantly improved on the results achieved by numerical forecasts which were further enhanced 
by the deep learning long short-term memory (LSTM) neural network over all timescales and at all the selected sites. The 
model was performed successfully in terms of various statistical parameters with correlation values nearing 1.0 while 
minimizing the errors. Additionally, a comparative study with a linear system, the autoregressive integrated moving 
average with exogenous input was made. The predictive skills of deep learning LSTMs are found to be more attractive 
than the other existing techniques (linear or other NNs) due to their ability of learning long time dependencies and 
extracting features from a sample space.
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1 Introduction

Sea surface temperature (SST) observations are very 
important to understand the interaction of Ocean with 
Earth’s atmosphere. SST provides principal data on the 
global atmospheric framework. It is a very important 
parameter in weather prediction and for the study of 
marine ecosystems. SSTs are especially important to deter-
mine the onset of El Nino events. They stand out as an 
important factor which helps in the identi�cation of ENSO 
events as the temperature �uctuations averaged over a 
period of time in the Paci�c region are more or less respon-
sible for these events. These events have impacts on the 
climate all over the world. There are also other operational 

bene�ts of SST measurements such as validation of atmos-
pheric models, tracking of marine animals, evaluation of 
coral bleaching, tourism, �shery industries, militia and 
defense studies and sports. However, the precise predic-
tion of SST is a tough task due to aberrations in the heat 
radiation and �ux [12, 22]. The wind patterns over the sea 
surface also have uncertain nature as elucidated by [2]. 
The prediction of SSTs can be done using numerical based 
or data-driven methods. The numerical approach is better 
suited for predictions over a wider area, while the data-
driven techniques are more applicable for location-spe-
ci�c studies. There are many such data-driven approaches 
ranging from familiar statistical methods to the newest 
machine learning and arti�cial intelligence mechanisms. In 
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such statistical approaches, the Markov model [25], regres-
sion models [9] and pattern inquisitive models [1] were 
employed. Arti�cial neural networks (ANNs) have become 
a very popular alternative among current data-driven 
methods. Arti�cial neural networks (ANNs), which derive 
their functionality from the human brain, have evolved 
as a very popular and capable method in modeling non-
linearity and �tting random data. However, Martinez and 
Hsieh [11] and Wu et al. [23] also attempted to predict SSTs 
using genetic algorithms and support vector machines.

Many researchers in the past have employed ANNs to 
predict SST. The work of Tangang et al. [18] to predict sea 
surface temperatures over a speci�c location in the Paci�c 
Ocean using neural networks (NN) can be considered 
pivotal in this �eld, as it was the �rst study of such kind. 
They made seasonal SST predictions by using empirical 
orthogonal functions of wind stress and SST anomalies as 
inputs fed into an ANN. Tang et al. [17] did a skill compari-
son study between linear regression (LR), canonical cor-
relational analysis (CCA) [8], a more sophisticated version 
of LR and neural networks (NN). A multi-layer perceptron 
neural network model was developed by Wu et al. [23] 
developed a multi-linear feed-forward NN to forecast SST 
abnormalities across the tropical paci�c. Tripathi et al. [19] 
used ANNs over a small area of Indian Ocean (27° to 35° 
S and 96° to 104° E) to predict sea surface temperature 
anomalies (SSTA). In this study, 12 networks were devel-
oped for each month of a year and the training of the NN 
was done on the area average values. The model was a 
feed-forward NN with logistic activation used for the 
neurons in the hidden layer to impart nonlinearity to the 
model. Gupta and Malmgren [5] did a comparison study 
on the forecasting abilities of various approaches which 
were dependent on certain training algorithms, regression 
and ANN. It was observed that NN performed better than 
other methods. Patil et al. [14] exhibited the usefulness 
of nonlinear autoregressive (NAR) type of NN models to 
predict monthly SST anomalies at six di�erent locations for 
time lead of 1–12 months. In a similar work, Mohongo and 
Deo [10] predicted SST anomalies (monthly and seasonal) 
in the western Indian Ocean using nonlinear autoregres-
sive with exogenous input (NARX) NN. Patil and Deo [13] 
exhibited the usefulness of a special kind of NN known as 
wavelet neural network by making SST predictions at six 
di�erent locations around India. Xiao et al. [24] showed the 
usefulness of LSTM network in SST measurements using 
satellite data.

The review of the above-mentioned publications clearly 
shows the advantage of NNs in predicting SSTs. However, 
all the above-mentioned studies are site speci�c, either 
SST prediction is restricted to a few locations or the SST 
values were averaged over a region. It can be said that 
ANNs cannot consider spatial and temporal variability of 

SST at once for a selected region. Nonetheless, for appli-
cations such as �shing, sporting events, coral bleaching, 
satellite measurement calibrations and tracking of marine 
animals, site-specific information is important. This is 
where the use of ANNs can come in handy although it 
requires a great deal of experimentation to reach its full 
capability. Most agencies across the globe utilize numeri-
cal models to provide real-time forecasts of SST. These 
numerical models employ the process of heat exchange 
across the oceans and the atmosphere for modeling SSTs. 
In this study, we investigated the prediction capability of 
such existing numerical models to forecast site-speci�c 
SSTs, and if not, whether this can be e�ectively achieved 
by arti�cial neural networks and deep learning NNs. A fur-
ther comparative analysis was done with a linear system, 
namely the autoregressive integrated moving average 
with exogenous input (ARIMAX) model.

2  Study location and SST data

Normally for such SST prediction studies, the required data 
can be derived from various numerical model products 
of the ocean and atmosphere that are detailed over geo-
graphical grids of certain dimension. The data acquired as 
such are normally again polished by incorporating in situ 
based or satellite-based observations. Thermometers and 
thermistors, connected to static or moving buoys, record 
the onsite data. Satellites measurements and observations 
o�er better understanding of its spatial and temporal vari-
ability. Both these methods of observation have reason-
able agreement with each other.

The pre-processing of data was done by converting the 
unprocessed monthly data into aberrations by subtracting 
the absolute or raw values from their subsequent mean 
values calculated over the whole sample. These aberra-
tions were then fed into the model as inputs. This helped 
in removing the small variations around the average as 
compared to the fluctuations in absolute values. The 
average for daily, monthly and weekly data was di�erent. 
For example, say, January, the mean SST value of all the 
January months was calculated for the entire dataset. The 
anomaly was obtained by subtracting this mean value 
from the unprocessed January value and so on. This same 
process was repeated to obtain daily, weekly and monthly 
SST anomaly error series. Figure 1 shows the location of 
the �ve sites used in this study around India and within the 
Indian Ocean. The SST values were extracted for each of 
these sites and analyzed. The satellite data obtained from 
the di�erent sources were then interpolated to a similar 
resolution of 1° × 1° for each of the �ve di�erent locations 
to produce meaningful results. Figure 1 also shows the 
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coordinates of these speci�c sites and are named as sites 
A, B, C, D and E, respectively.

For the daily prediction, data sample size was 
36 months (2015–18), for weekly prediction, data sample 
size was 38 years (1981–2018), and for monthly analy-
sis, sample size was 149 years (1870–2018). The detailed 
features of these data are described in the next section. 
Table 1 shows the di�erent data sources employed as per 
their availability. 

2.1  Numerical dataset

The Canadian Centre for Climate Modeling and Analy-
sis (CCCma) generated this numerical dataset from the 

second generation Earth System model with a spatial 
resolution of 0.93° N × 1.40° E. These data catered for the 
daily, weekly and monthly studies(https ://clima te-model 
ling.canad a.ca/clima temod eldat a/cgcm4 /cgcm4 .shtml ).

2.2  Observational dataset

The National Oceanic and Atmospheric Administration 
(NOAA), USA, provides these observational SST datasets. 
The data bene�t from the usage of Advanced Very High 
Resolution Radiometer (AVHRR) infrared satellite SST. 
Among various such NOAA products, we have used OISST 
version 2 dataset because of their massive sample size and 
close to surface measurements. These also take in account 
diurnal characteristics of the SST and are more suited for 
modeling shorter-time-ahead forecasts. They have grid 
resolution of 0.25° × 0.25°. These data cater for daily and 
monthly analysis (https ://www.esrl.noaa.gov/psd/data/
gridd ed/data.noaa.oisst .v2.html).

The Hadley SST data from the U.K. Hadley Centre’s sea 
ice and sea surface temperature (HadISST) are used as 
the dataset for monthly analysis. The spatial resolution of 
these data is 1° × 1°. They assimilate observations acquired 
from the Global Telecommunications System (GTS) (https 
://www.meto� ce.gov.uk/hadob s/hadis st/).

3  Methodology

The principle of time series forecasting is used in this study 
for the predicting future SST values. ANNs in such kind of 
prediction consider previous values, analyze the unknown 
patterns present, adjust itself according to the patterns in 
the dataset, and mimic and make future prediction one-
step ahead. The obtained time-ahead values can be then 
validated using di�erent statistical evaluation parameters 

to analyze the accuracy of prediction. In other words, if 
such a model can predict the preceding observations, we 
can say that it can used for multiple-time-ahead forecasts. 
The generalization and adaptive capability of ANNs come 
in very handy.

3.1  Arti�cial neural network

A neural network (NN) is comprised of a large number 
of fundamental units known as neurons, which operate 
parallel to each other, organized in layers. The initial layer 
gathers the raw input data, drawing similarity to ocular 
nerves present in human beings, which help in visual pro-
cessing. Thus, each layer in NN receives the output from 
the preceding layer. The last layer gives the output of the 
system as shown in Fig. 2 below. These layers are highly 

Fig. 1  The site locations (site A: 19° N–68° E, site B: 20° N–90° E, site 
C: 12° N–64° E, site D: 13° N–84° E and site E: 8° N–75° E)

Table 1  Description of the datasets used in the study

Forecast horizon Nature of data Source of data Time period

Daily dataset Numerical CCCma 36 months 
(2015–18)

Observed NOAA 36 months 
(2015–18)

Weekly dataset Numerical CCCma 38 years 
(1981–
2018)

Observed HadISST 38 years 
(1981–
2018)

Monthly dataset Numerical CCCma 149 years 
(1870–
2018)

Observed NOAA 149 years 
(1870–
2018)

https://climate-modelling.canada.ca/climatemodeldata/cgcm4/cgcm4.shtml
https://climate-modelling.canada.ca/climatemodeldata/cgcm4/cgcm4.shtml
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
https://www.metoffice.gov.uk/hadobs/hadisst/
https://www.metoffice.gov.uk/hadobs/hadisst/
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interconnected, and every neuron can store information. 
One of the important properties of NN is adaptivity, which 
means that they can modify themselves according to the 
changes in their surroundings. This learning is achieved 
through the initial training and with every training they 
gain more knowledge of the system. Neurons contributing 
to better answers are assigned higher weights.

We may describe a neuron K in mathematical terms 
with the help of the following equations:

where x1, x2, x3,…,xm are the initial input signals; wk1, wk2, 
wk3,…,wkm are the connection strengths of neuron k, also 
known as the synaptic weights or weights; uk is the lin-
ear combiner of the input signals to their corresponding 
weights; bk is known as the bias; �(.) is called the activation 
function; and yk is the neuron’s �nal output. Tan hyperbolic 
(tanh), sigmoid, linear function, etc., are few commonly 

used activation functions. The function of the bias (a con-
stant) is to adjust the output uk obtained so that the overall 
model can �t best for the given  data. The activation func-
tion analyses, whether a neuron should be initialized or 
not by evaluating the synaptic weights associated with the 
neuron and adding bias with it. Activation function adds 
nonlinearity into the output of the neuron.

NNs can be generally categorized into three catego-
ries, namely single-layer feed-forward neural networks, 
multiple-layer feed-forward neural networks (FFNN) and 
recurrent neural networks (RNN). Many NN applications in 
Oceanic studies show signi�cant use of FFNNs, observed 
from the review of literature of similar works. A FFNN 
involves an input layer, one or several hidden layer and an 
output layer. As discussed above, the training or activation 
function and no. of hidden layers solely depends on the 

(1)uk =

m
∑

j=1

wkjxj

(2)yk = �

(

uk + bk
)

objective. The network has to be trained with su�cient 
input–output pairs to produce good results, i.e., achieving 
the goal of error minimization. A large amount of experi-
mentation with numbers of neurons in the hidden layer, 
di�erent types of transfer and training algorithms, learning 
rate, momentum rate, etc., needs to be done to produce 
accurate results. In this study, a traditional feed-forward 
back-propagation (FFBP) NN along with nonlinear autore-
gressive exogenous (NARX) NN with two di�erent train-
ing algorithms, namely Levenberg Marquardt and Bayes-
ian algorithms, was used. FFBP is commonly applied for 
regression analysis due to its simple architecture and error 
minimization capabilities. However, to further improve the 
accuracy of the forecasts, another network known as NARX 
was employed. NARX has feedback connections enclos-
ing several layers of the network. As part of the standard 
NARX architecture [16] the output is fed back to the input 
of the feed-forward neural network which results in accu-
rate input for the next time step. One another advantage 
is that the resulting network has a distinct feed-forward 
architecture, and static back-propagation can be used 
for training. Levenberg Marquardt algorithm converges 
faster on its own and handles models with multiple free 
parameters e�ciently. For large datasets, the training can 
be a bit slower, but the algorithm is capable enough to 
�nd an optimal solution. Similarly, the Bayesian algorithm 
is easier to implement and trains faster. It requires com-
paratively lesser data and is highly scalable and can make 
probabilistic predictions as well. The readers are referred 
to the textbooks of Haykin [6], Wasserman [20] and Wu 
[21] for detailed information on neural networks and their 
training algorithms.

3.1.1  Long short‑term memory neural networks

Long short-term memory NNs commonly known as LSTMs 
are a special kind of RNNs. It has the ability to learn long 
time dependencies. The variation of LSTM from RNN is due 
to the changes in their repeating module [4]. In a standard 
RNN, the repeating module may consist of a very simple 
structure, e.g., tan hyperbolic layer, but LSTM has certain 
gates, namely forget gate, input gate and output gate, to 
control the cell state. These three gates de�ne a single 
time step for LSTM. Forget gates determine whether past 
information has to stored or deleted. Input gates prioritize 
parts of current input vector. The output gate �lters and 
determines what data should be the output to the hid-
den versus stored state. In other words, these gates control 
the entry of information, when to be used as an output or 
when to be removed from the cell memory [15] as shown 
in Fig. 3 below. This feature of LSTM is unique and can help 
store information in memory for longer time durations. 
LSTMs give us more controlling ability and better results 

Fig. 2  Functioning of an ANN
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but certainly increase the complexity. Hence, to achieve 
high accuracy a lot of experimentation within the LSTM 
network architectures has to done. For detailed infor-
mation on the working of LSTMs, readers are referred to 
Hochreiter and Schmidhuber [7].

3.2  Autoregressive integrated moving average 
with exogenous input (ARIMAX) model

ARIMA stands for autoregressive integrated moving aver-
age model, a stochastic modeling approach that can be 
used to measure the probability of a future value lying 
between two certain limits. Box and Jenkins [3] devel-
oped the ARIMA model, whereas in the autoregression 
(AR) process the series current values are dependent on 
its previous values, the integration (I) involves subtract-
ing an observation from an observation from a previous 
time step and the moving average (MA) is dependent on 
the observation and the obtained residual error. It can be 
expressed mathematically as follows:

where ϕ and θ are unknown parameters and ϵ terms are 
autonomous similarly shared error terms with zero aver-
age. Here, Y* is only expressed in terms of its past values 
and the current and past values of error terms. This is also 
known as ARIMA (p,d,q) model of Y. The AR behavior of 
the model is denoted by p, which is the number of lagged 
values of Y*. The MA nature of model is represented by q, 
which is the number of lagged values of the error term 
and dis the number of times Y has to be di�erenced to 
produce the stationary Y*. The term integrated implies that 

(3)

Y∗ = �
1
Y∗

t−1
+⋯ + �pY

∗

t−p
+ ∈t +�1 ∈t−1 +⋯ + �q ∈t−q

in order to obtain a forecast of Y, we have to combine the 
values of Y* because Y* are the di�erenced values of the 
original series Y.

The transfer function of ARIMAX used in this study bears 
close resemblance to ARIMA. It improves the competence 
of ARIMA due to the introduction of transfer functions, 
innovations and additional explanatory variables shown 
in Eq. (4), where β can be a new transfer function and X 
can be any variable.

4  Model results

4.1  Numerical predictions

The statistics of observed SST for the �ve sites (site A to site 
B), minimum, maximum, average, standard deviation and 
coe�cient of variation values in °C, respectively, are shown 
in Table 2. From the table, we can observe the variations 
across the di�erent locations.

The variations are more at sites C and E as compared to 
the other locations. These variations are due to changes in 
their regional environmental characteristics. The predic-
tive skill of numerical SST forecasts versus observed SST 
was investigated for the various timescales as elucidated 
in the previous study area and data section. This analysis 
was done using various statistical parameters such as coef-
�cient of correlation r, mean absolute error (MAE) and root 
mean square error (RMSE). Di�erent statistical parameters 
provide a better perspective of the variations between the 

(4)Y∗ = � ⋅ X + �
1
Y∗

t−1
+⋯ + �pY

∗

t−p
+ ∈t +�1 ∈t−1 +⋯ + �q ∈t−q

Fig. 3  Typical LSTM architecture
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observed and predicted values. r shows the strength of the 
relationship between the 2 datasets. RMSE and MAE show 
the deviations between the observed and predicted val-
ues. RMSE will always be greater or equal to the MAE as the 
errors are squared before they are averaged. RMSE gives 
more signi�cance to large errors which is not the case for 
MAE. As compared to RMSE, MAE is a more natural meas-
ure of average error. Therefore, RMSE and MAE together 
would provide a better perspective to the analysis in terms 
of predictive accuracy. Table 3 shows a comparison of the 
anomalies (SST) between the unprocessed numerical 

forecasts and their subsequent observations in terms of 
the parameters mentioned above.

The results (SSTA) obtained through numerical pre-
dictions clearly highlight the inaccuracy of the forecasts, 
which is evident from the table. The r values are very low 

than the much expected vale of 1.0. Similarly, RMSE and 
MAE are also much higher than expected. Hence, the 
physics-based numerical predictions are not much suited 
for site-speci�c predictions. This limitation can be sorted 
out with data-driven approaches, also highlighting the 
fact that by adopting a hybrid model. The model would 
employ both numerical and data-driven technique. The 
following segment exhibits the development of a simi-
lar hybrid model, which combines neural networks with 
numerical predictions to produce enticing results for dif-

ferent lead times in the future.

4.2  Numerical and neural network (data-driven) 
hybrid forecasts

In this method, we obtain the errors, which are nothing 
but the di�erences between the numerical forecasts and 
their corresponding observations. Simultaneously, we cre-
ate a time series and this time series serves as an input for 
the neural networks that helps in forecasting anomalies 
at future lead times. The bene�t of this method is that it 
incorporates the advantages of both the approaches.

The selection of suitable neural network architecture 
depends on a lot of experimentation, done in this case 
also. Finally, a traditional feed-forward back-propagation 
network (FFBP) along with a non-autoregressive neural 
network with exogenous output (NARX) was adopted 

Table 2  The basic statistics 
of SST datasets across the 
�ve locations over the three 
di�erent timescales

Location Minimum (°C) Maximum (°C) Average (°C) Standard 
deviation 
(°C)

Co-variance (%)

Site A Daily 25.760 31.100 27.789 1.036 3.138

Weekly 26.742 32.115 27.802 1.038 3.141

Monthly 27.780 32.324 27.811 1.039 3.143

Site B Daily 26.480 31.000 28.181 0.843 2.990

Weekly 27.443 31.015 28.195 0.845 2.991

Monthly 28.501 31.224 29.203 0.848 2.994

Site C Daily 25.270 30.820 28.162 1.283 3.845

Weekly 26.252 30.835 28.176 1.284 3.849

Monthly 27.290 30.944 28.184 1.287 3.850

Site D Daily 26.020 30.800 28.360 0.987 3.485

Weekly 27.013 30.815 28.374 0.989 3.743

Monthly 27.040 30.924 28.382 0.992 3.778

Site E Daily 23.530 30.800 27.829 1.604 5.782

Weekly 25.340 31.915 28.842 1.609 5.792

Monthly 27.548 32.824 29.851 1.612 5.798

Table 3  Single-step-ahead numerical versus observed forecast of 
SST anomalies in terms of r, RMSE and MAE (values in °C)

Site location r RMSE MAE

Site A Daily 0.33 0.69 0.56

Weekly 0.12 0.75 0.54

Monthly 0.11 0.56 0.66

Site B Daily 0.21 0.72 0.45

Weekly 0.31 0.81 0.38

Monthly 0.15 0.67 0.59

Site C Daily 0.23 0.55 0.66

Weekly 0.18 0.78 0.34

Monthly 0.09 0.43 0.52

Site D Daily 0.38 0.78 0.61

Weekly 0.11 0.83 0.42

Monthly 0.12 0.59 0.49

Site E Daily 0.29 0.43 0.39

Weekly 0.20 0.72 0.52

Monthly 0.07 0.34 0.48
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for the modeling purpose. The NARX model was further 
tested with two different training algorithms, namely 
Bayesian algorithm and Levenberg–Marquardt algo-
rithm. Table 4 shows the optimal architecture of the 2 
NNs which resulted in the best forecasts for the three 
timescales. Validation failures help to prevent the net-
work from performing poorly during validation and test-
ing for unseen data. The training would cease to an end 
if the validation performance degrades for the max. limit 
set during the iterations. The parameters, namely per-
formance goal and performance gradient, help in opti-
mizing the network to achieve better accuracy. They are 
dependent on the type of dataset to be used.

A lot of emphasis was given to avoid over fitting of the 
data, which can lead to loss of generalization capability 
of the network. After successful training, the model was 
tested for unknown input output parameters. The data-
set was split into two parts; the latest 20% for testing and 
remaining 80% was divided into training and validation. 
The datasets pertaining to the three timescales (daily, 
weekly and monthly) were fed as inputs into the model. 
The sample size was 1080 (30 × 36), 1824 (4 × 12 × 38) and 
1788 (12 × 149) for daily, weekly and monthly analysis, 
respectively. The results obtained improved on the previ-
ous numerical predictions. Figure 4a–c shows the results 
for the different neural networks mentioned above in 
terms of r, RMSE and MAE for site A as an example. The 
other four sites showed similar improved results. The 
r values considerably increased nearing 1.0, but RMSE 
and MAE were still much higher than expected. For the 
weekly and monthly timescales, the results showed a 
declining trend highlighting the loss of predictive capa-
bility with an increase in time duration. 4.3  Predictions using LSTM

The forecasts of SSTA obtained thus far still leave scope 
for improvement. The numerical predictions came short 

Table 4  Optimal architecture of the NNs used

Type of ANN Training algorithm Transfer function No. of input, hid-
den and output 
layers

No. of 
itera-
tions

Performance 
goal (during 
training)

Min. perfor-
mance gradient 
(during
training)

Max. validation 
failures (during
training)

FFBP Levenberg Mar-
quardt

Sigmoid Input-1, hidden-1 
(10 neurons), 
output-1

500 0 1.00E−06 10

Bayesian Sigmoid Input-1, hidden-1 
(12 neurons), 
output-1

500 0 1.00E−06 10

NARX Levenberg Mar-
quardt

Sigmoid at hid-
den and linear 
activation func-
tion at

the output

Input-1, hidden- 2 
(8, 10

neurons), out-
put-1

500 0 1.00E−05 12

(a) NN model performance for the daily predictions in terms of r 

(b) NN model performance for the daily predictions in terms of RMSE 

(c) NN model performance for the daily predictions in terms of MAE
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in terms of the statistical evaluation parameters, while 
the other two popular NNs improved the forecasting 
capabilities to an extent but still not quite as expected. 
This is further investigated with the application of LSTM 
model the advantages of which are described in the previ-
ous section. The same input used in the previous section 
was introduced into the LSTM network. The datasets were 
also split in the same manner as previously described. The 
determination of hyperparameters of the model requires 
adequate experimentation. Every LSTM layer was accom-
panied by a dropout layer. This layer helped to prevent 
over �tting by ignoring randomly selected neurons during 
training and hence reduced the sensitivity to the speci�c 
weights of individual neurons. A 20% testing set was used 
as a good compromise between retaining model accu-
racy and preventing over �tting. The activation function 
is introduced in the �nal layer. Therefore, after a lot of tri-
als the hidden neurons were set at 200 for the optimum 
performance of the LSTM network and number of itera-
tions were kept at 250. The initial learning rate was set at 
0.005, and it was dropped after half of the iterations by 

a factor of 0.2. After successful training, the network was 
reset which prevented past predictions from a�ecting the 
new data predictions. The results are evaluated in terms of 
r, RMSE and MAE. The forecasts are made on daily, weekly 
and monthly basis.

4.3.1  Daily predictions

The performance of LSTM networks during the testing 
phase of daily predictions is shown in Fig. 5 for the �ve 
di�erent sites. The �gure shows a better �t and correlation 
during the testing phase, while the spread is even for the 
sites A, C and E. LSTM improved on the previous forecasts 
obtained using NNs.

The network forecasts for the three time horizons in 
terms of r, RMSE and MAE are shown in Tables 5, 6 and 
7, respectively. For the daily forecasts, the r values are 
very close to the value of 1.0 and MAE and RMSE have 
reduced signi�cantly. For the 7 days forecast in the future, 
all the values of MAE and RMSE were found to be less than 

Fig. 5  LSTM network performance during testing phase (5 time steps ahead) at the �ve di�erent sites
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Table 5  LSTM network 
performance for the daily 
predictions in terms of r, RMSE 
and MAE

Forecast in days 1 2 3 4 5 6 7

Site A r 0.99 0.97 0.96 0.95 0.94 0.92 0.91

RMSE 0.06 0.08 0.12 0.15 0.17 0.19 0.21

MAE 0.04 0.05 0.07 0.11 0.15 0.18 0.20

Site B r 0.99 0.97 0.96 0.94 0.92 0.91 0.90

RMSE 0.08 0.11 0.14 0.18 0.21 0.23 0.25

MAE 0.05 0.07 0.10 0.14 0.17 0.20 0.23

Site C r 0.99 0.98 0.95 0.93 0.91 0.89 0.86

RMSE 0.06 0.10 0.11 0.15 0.19 0.22 0.24

MAE 0.05 0.08 0.09 0.13 0.15 0.17 0.21

Site D r 0.98 0.95 0.93 0.92 0.91 0.89 0.89

RMSE 0.04 0.08 0.11 0.16 0.19 0.23 0.25

MAE 0.05 0.07 0.10 0.14 0.15 0.18 0.22

Site E r 0.98 0.98 0.97 0.97 0.96 0.94 0.92

RMSE 0.04 0.05 0.08 0.11 0.14 0.18 0.20

MAE 0.03 0.04 0.06 0.09 0.11 0.15 0.18

Table 6  LSTM network 
performance for the weekly 
predictions in terms of r, RMSE 
and MAE

Forecast in weeks 1 2 3 4 5 6 7

Site A r 0.98 0.97 0.95 0.92 0.90 0.88 0.84

RMSE 0.06 0.11 0.15 0.19 0.23 0.25 0.29

MAE 0.05 0.08 0.12 0.15 0.18 0.22 0.26

Site B r 0.99 0.97 0.96 0.92 0.89 0.86 0.83

RMSE 0.05 0.10 0.14 0.18 0.23 0.26 0.29

MAE 0.03 0.09 0.11 0.16 0.21 0.23 0.28

Site C r 0.98 0.96 0.94 0.89 0.86 0.83 0.81

RMSE 0.06 0.10 0.12 0.16 0.20 0.24 0.29

MAE 0.04 0.08 0.11 0.15 0.18 0.23 0.27

Site D r 0.97 0.96 0.94 0.89 0.86 0.84 0.80

RMSE 0.05 0.11 0.15 0.17 0.21 0.24 0.28

MAE 0.04 0.10 0.12 0.15 0.20 0.23 0.26

Site E r 0.98 0.96 0.94 0.92 0.89 0.86 0.84

RMSE 0.05 0.09 0.14 0.18 0.22 0.25 0.28

MAE 0.04 0.10 0.12 0.16 0.20 0.23 0.27

0.26 °C. When the results within the same period were 
compared with the previous numerical SST and NN pre-
diction, there was a considerable increase in prediction 
capability. The numerical SST forecasts produced r = 0.34, 
RMSE = 0.51 °C and MAE = 0.41 °C, while the NN forecasts 
produced r = 0.9, RMSE = 0.45 °C and MAE = 0.32 °C for the 
same testing period. The drop in accuracy of the numerical 
forecasts is due to the fact that they assume many physics 
based assumptions and are subjected to boundary and 
initial conditions. Therefore, numerical models are better 
suited for large spatial regions than for site-speci�c loca-
tions. Table 4 shows the network performance of LSTM 
over the future time steps. The error statistics improved 

signi�cantly with only a few anomalies that occurred with 
increase in future time leads.

4.3.2  Weekly predictions

The weekly predictions also far better in terms of the 
error statistics in comparison with the previous meth-
ods employed. The r values were higher and close to the 
desired value of 1, which shows that the forecasted values 
highly correlated with the observed values. The exceptions 
were at longer time leads. The �ve sites produced more 
or less similar kind of results. The RMSE and MAE values 
were less than 0.30 °C for all the sites across di�erent time 
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intervals. For the same test period, the numerical SST fore-
casts produced r = 0.29, RMSE = 0.61 °C and MAE = 0.58 °C, 
while the NN forecasts produced r = 0.78, RMSE = 0.35 °C 
and MAE = 0.31 °C. Table 5 shows the test performance 
of the model at all the sites and over di�erent time steps 
ahead in the future.

4.3.3  Monthly predictions

The monthly predictions at longer lead times showed 
comparatively declining results but were still much bet-
ter than numerical and the NN predictions for the same 
period. The values of r were found to be greater than 0.6 
across all the time steps. The RMSE and MAE were less 
than 0.37 °C across all the intervals. The numerical predic-
tions produced r = 0.12, RMSE = 0.91 °C and MAE = 0.88 °C, 
and the NN forecasts produced r = 0.48, RMSE = 0.69 °C 
and MAE = 0.61 °C for the same test period. The monthly 
performance is shown in Table 6. After 4 time steps, there 
is a signi�cant decrease in forecasts. As the time span 

increases, the network loses the associative memory. This 
can be viewed as a drawback for such networks where it 
loses forecasting ability at longer time leads. This draw-
back is due to the fact that monthly data are smooth data 
as compared to daily or weekly data. The data smoothness 
has an indirect relationship with the performance of the 
network (LSTM or ANN).

A further investigation was done to compare the pre-
dictive skills of the LSTMs with a linear model (ARIMAX). 
ARIMAX performed better than numerical forecasts, but 
LSTM model clearly outperforms it. Figures 6, 7 and 8 
show the performance of ARIMAX and LSTM models in 
terms of the above-mentioned statistical parameters for 
the various locations with varying timescale.

The other two site locations produced similar results. 
The ARIMAX model is not able to capture the long-term 
dependency and hence loses prediction capabilities at 
higher time leads. The much lesser values of r for all the 
timescales show the lack of correlation between the 
forecasted and observed SST.
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Fig. 6  Performance of ARIMAX and LSTM in terms of r, RMSE and MAE for the daily forecasts at site A

Table 7  LSTM network 
performance for the monthly 
predictions in terms of r, RMSE 
and MAE

Forecast in months 1 2 3 4 5 6 7

Site A r 0.96 0.87 0.84 0.79 0.71 0.66 0.61

RMSE 0.09 0.14 0.19 0.23 0.27 0.31 0.36

MAE 0.07 0.11 0.16 0.19 0.23 0.28 0.32

Site B r 0.97 0.89 0.85 0.81 0.75 0.71 0.68

RMSE 0.09 0.13 0.16 0.20 0.25 0.29 0.32

MAE 0.06 0.10 0.13 0.17 0.21 0.24 0.28

Site C r 0.97 0.87 0.80 0.74 0.69 0.66 0.62

RMSE 0.06 0.18 0.21 0.28 0.33 0.37 0.40

MAE 0.05 0.14 0.17 0.22 0.26 0.31 0.36

Site D r 0.98 0.87 0.82 0.77 0.70 0.65 0.61

RMSE 0.06 0.14 0.16 0.20 0.23 0.31 0.36

MAE 0.05 0.11 0.13 0.16 0.18 0.23 0.31

Site E r 0.97 0.91 0.87 0.81 0.76 0.70 0.65

RMSE 0.07 0.15 0.17 0.24 0.29 0.32 0.36

MAE 0.05 0.12 0.13 0.18 0.21 0.27 0.33
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4.4  Real-time forecasting using LSTM network

The real-time predictive ability of LSTM network is then 
analyzed in terms of observed SSTs. The LSTM model is 
used to predict future SSTs for a period of 170 days starting 
from the January 1, 2019, to May 19, 2019. The observed 
versus forecasted SSTs for the di�erent site locations are 
shown in Figs. 9, 10, 11, 12, 13. The network shows an ade-
quate �t during the testing phase which is re�ected by the 
closeness of the observed and predicted values.

5  Discussions

In most of the past studies, researchers have mainly 
focused on seasonal predictions but in this work daily, 
weekly and monthly prediction horizons have been 
explored. The suitability of nonlinear methods in fore-
casting site-specific SSTA can be clearly seen from the 
results obtained. The work done by Tangang et al. [18] 
was pivotal in this domain as it was one of the first stud-
ies where ANN was introduced an as alternative for such 
climate change predictions. The predictions were done 
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Fig. 9  Observed versus forecasted SSTs at site location A
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for 3 months ahead in the future with coefficient of cor-
relation (0.83) values well short of 1.0. Tripathi et al. [19] 
improved the error statistics but involved traditional 
NNs for the study. The networks were also much suited 
for seasonal forecasts. They were not able to forecast for 
smaller time intervals with greater accuracy. The similar 
trend was observed in the study of Martinez and Heish 

[11] when they forecasted tropical Pacific SSTs. They 
employed two nonlinear approaches, namely support 
vector machines (SVMs) and Bayesian NN, though the 
performance of the models reduced drastically at higher 
time leads. Mahongo and Deo [10] used a NAR NN for the 
two locations in the Indian Ocean and achieved correla-
tion values up to 0.85. All the studies mentioned above 

Fig. 10  Observed versus forecasted SSTs at site location B

Fig. 11  Observed versus forecasted SSTs at site location C

Fig. 12  Observed versus forecasted SSTs at site location D
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showed the similar trend of forecast results at higher 
time intervals. Deep learning networks such as LSTMs 
can improve on the forecast performances and address 
the problems faced in the above-mentioned studies. 
LSTM is insensitive to gap lengths, which makes it capa-
ble to forecast at smaller time horizons and at higher 
time intervals. They are very capable of extracting pat-
terns from the input space where the input data span 
over long durations. For such networks, sometimes the 
factor of overtraining becomes very decisive. Over-fit-
ting or over-training leads to loss in generalization capa-
bility and can lead to inaccurate forecasts. In the present 
study, the error statistics show that the model did not 
encounter the difficulty of over training. The correla-
tional values for all timescales were much higher even 
at longer time durations. However, for successful training 
of such networks, a large amount of data are required. 
Only sufficient data can lead to successful training which 
in turn can produce accurate test results. In case of lesser 
data during time series analysis, more importance has 
to be given to network calibration and small variations 
in the datasets to achieve meaningful forecasts. This 
aspect was very similar to our work in the present study. 
In spite of this limitation, the results we obtained have 
stood firm when evaluated by different statistical met-
rics. We can derive that the results obtained depend on 
the datasets which are polished and incorporated in situ 
or through satellite-based observations can directly or 
indirectly affect the final outcome, which can be seen as 
a drawback in such site-specific studies. Satellite prod-
ucts are usually a combination of different nighttime and 
daytime satellite observations. Data from buoy, moor-
ing and commercial ships are also added to them. After 
arranging all data in temporal similarity format, different 
agencies across the world use optimal interpolation to 

come up with suitable gridded data. Parameters like the 
wind speed and sea level pressure which cause uncer-
tainties in SST measurements are also reflected in the 
SST daily (diurnal) variations. Therefore, the results could 
not be superimposed to other homogenous regions. The 
above-mentioned features will be incorporated during 
the modeling as well and measuring these SST diurnal 
variations accurately can only reduce the effect of such 
uncertainties.

6  Conclusions

Site-speci�c forecasts of SSTs have widespread applica-
tions in di�erent domains, and the commonly applied 
method of numerical forecast of SSTs shows large devia-
tions when applied for site-speci�c studies. Moreover, at 
longer time leads, the accuracy of the numerical estima-
tion drops considerably. A hybrid approach combining 
both numerical and data-driven methods (NNs) tends to 
address this drawback and produces improved results. The 
above-mentioned approach employing the standard and 
traditional NNs signi�cantly improves the results but still 
leaves scope for further improvements. The use of deep 
learning LSTM NN addresses this problem e�ciently for 
all the three timescales. The network produced meaning-
ful real-time forecasts during testing as well. A compari-
son with a linear system (ARIMAX) also showed that linear 
models are not much suited for studies for di�erent time 
horizons and longer duration due to their lack of gener-
alization capability in modeling nonlinear behavior which 
is a staple of time series prediction. The LSTM NN which is 
insensitive to gap lengths and has higher data extraction 
capability from a given input space makes it an attractive 

Fig. 13  Observed versus forecasted SSTs at site location E
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alternative in time series prediction studies. The capability 
of suggested approach was also assessed to produce real-
time SST forecasts in the future. The suggested method 
requires large amount of experimentation with the archi-
tecture and learning parameters to yield successful results.
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