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Great strides have been made recently in documenting that machine-learning programs

can predict seizure occurrence in people who have epilepsy. Along with this progress

have come claims that appear to us to be a bit premature. We anticipate that many

people will benefit from seizure prediction. We also doubt that all will benefit. Although

machine learning is a useful tool for aiding discovery, we believe that the greatest progress

will come from deeper understanding of seizures, epilepsy, and the EEG features that

enable seizure prediction. In this essay, we lay out reasons for optimism and skepticism.

Keywords: electroencephalography, machine learning, chaos & non-linearity, dynamical systems, seizure
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INTRODUCTION

In a 2016 Epilepsy Foundation research program survey of people with epilepsy, “unpredictability
was selected as a top issue regardless of seizure frequency or severity” (1). Seizure recurrence
can be severely limiting (e.g., no driving), (2) socially disruptive and stigmatizing (3), and
even life-threatening (4). Consequently, seizure prediction has the potential to improve epilepsy
management and, therefore, the quality of life of persons with epilepsy (5).

Successful methods to predict an imminent seizure based on electrographic signatures, and
potentially intervene with, for example, “responsive neurostimulation” (RNS) (6–8), would allow
alternatives to drugs to minimize seizure recurrence. When a “pro-ictal” (9, 10) or “pre-ictal
state” (11, 12) is identified, this mode of therapy provides highly localized stimulation intended
to interrupt a seizure. Identification of times of greater and lesser seizure susceptibility will likely
benefit patients, as such states may permit urgent care and interventions.

Progress in our understanding of how seizures develop and propagate (13) would lead to the
expectation that “it may be possible to provide seizure prediction to a wider range of patients
than previously thought” (14). We are not so sure. Before we explain why we expect only limited
success anytime soon, we briefly review what is new with seizure prediction and potential electronic
interventions for refractory epilepsy.

Clinicians and patients have long known that some seizures can be preceded by warning
signs or symptoms (15). By and large, only about a quarter of patients with generalized epilepsy
acknowledge an aura (15).

Electrocorticography (ECoG), which records from electrodes placed directly on the exposed
surface of the brain, appears to be the best way to gather all the information for surgical removal of
a seizure focus (16). ECoG signals are physically identical to EEG signals. Since they are placed
directly on the cortex, less noise contaminates the signal and electrodes can be more closely
spaced. Otherwise, the raw data from ECoG that might be fed into a machine learning algorithm
is the same as with EEG data. The prediction of seizure recurrence now seems possible with
scalp electrodes (17–31). Nevertheless, “modest outcomes associated with localization of abnormal
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electrophysiology suggest . . . a fundamental gap in our
understanding of how neurophysiologic biomarkers relate to
pathophysiology” (32).

Seizure prediction algorithms can be characterized in a variety
of ways. One perspective is to consider three independent aspects
or axes: (1) the physiological signal to be measured, such as brain
electrical activity or heart rate; (2) signal processing methods,
which compute various signal features; and (3) machine learning
methods, which take signal features as input and attempt to
find patterns of features that distinguish seizure activity from
non-seizure activity. Advances in signal features and machine
learning algorithms continue to advance rapidly and contribute
to improved seizure prediction. Signal features that are associated
with seizures appear to be patient-specific. Hence, to have
any value, machine learning algorithms need signal features
from many seizures over a long period of time (33). EEG
measures of brain electrical activity continue to be the most
common physiological measure associated with seizures, but
other measures based on cardiac function, dermal response, or
movement are also used (34).

BACKGROUND FOR UNDERSTANDING

SEIZURE GENERATION, INHIBITION, AND

PROPAGATION

In the next few paragraphs, we review some elements of seizure
generation and propagation that might aid in understanding
electrographic correlates of seizures.

Epileptogenic Zone
The epileptogenic zone (EZ) is tautologically defined as the brain
area indispensable for seizure generation (35). Among patients
with focal epilepsy, more than 90% of seizures have discharges
in the seizure focus and not elsewhere (36). In some patients,
however, complete resection of the presumed EZ did not lead to
seizure-freedom (37). Post-surgical recordings of these patients
suggest that areas adjacent to the resection were also triggering
the epileptic seizures. So was born the concept of “potential
seizure-onset zones” (37).

Deeper gray structures (such as the thalamic reticular nucleus)
appear to modulate the onset and propagation of other seizure
phenomena (e.g., epileptic 2–4Hz spike-wave discharges) (38).
In addition, the epileptogenic zone in patients with pharmaco-
resistant seizures can be larger than in people whose seizures are
more readily controlled with medication (39).

Seizure Propagation and Networks
Seizure generation is only the beginning. Seizures are propagated
“when synchronous connected groups of neurons work in
tandem with rapidly changing de-synchronous relationships
from the surrounding epileptic network” (40). The balance
between inhibition and propagation, and—to a certain extent—
underlying structural and functional connectivity, will determine
to what extent the seizure does or does not spread (41).
One seizure onset pattern is characterized by hypersynchrony

and progressive impairment of inhibition leading to seizure
propagation (42).

Seizures are currently defined by the area and signal
recorded. As identification of these improve, so will seizure
definition and seizure detection. Examples are intensive care
patients who had a much higher percentage of seizures
detected by intracortical depth electrodes than by surface EEG
(43). Therefore, higher spatial resolution, and evaluation of
additional signal characteristics have the potential to influence
our perception of seizures. Hence, seizure prediction hinges on
our definition of seizure onset, which is likely to change as
detection techniques improve.

Inter-neuronal activity in the cortex can restrain the spread
of epileptiform activity (44). As might be expected, seizure
propagation is enhanced when local inhibition networks are
defective (45).

Although many reports of brain functional connectivity have
assumed “temporal stationarity” (i.e., no change with time),
brain networks do reorganize almost continuously in response
to both internal and external stimuli, resulting in temporal
fluctuations of functional connectivity within and between
networks across multiple time-scales (46, 47). By “coordinating
excitability between brain regions in the epileptic network,”
changes in functional connectivity between/among networks
not only allow propagation of the seizure activity, but might
“enhance initiation, evolution, and termination of seizures”
(32). The widespread disturbances of structural and functional
connectivity that characterize some seizure disorders also appear
to contribute to treatment resistance (48).

Epilepsy is considered to be a disorder of neural network
organization (49). Research in network science has shown that
small changes in network structure can have very large effects
on network function, just as small changes in initial conditions
can have large effects on time series (50). This suggests that
small changes to a non-epileptic neural network may be all that’s
needed to make the brain epileptic. Similarly, small changes
in just the right brain regions may be all that’s needed to
reduce seizures. Although this has not yet been demonstrated
in humans, tools for measuring functional cortical networks are
now available (51).

The signal variability of local connectivity among people
with epilepsy appears to be significantly higher than in healthy
controls (52), bringing excitability of the cortical neurons more
often closer to the tipping point of seizures. Although network
connectivity in seizure-onset zones can be increased during
inter-ictal epochs (32, 53), ictal electrographic patterns appear
to be generated by network mechanisms that are different
from those sustaining inter-ictal potentials (54). Even brief focal
spikes can activate diffuse distant networks (55), supporting the
characterization of epilepsy as a network disease (56, 57).

Electrographic Correlates/Patterns

/Signatures of Seizures
In one third of patients with a diagnosis of pharmaco-resistant
focal epilepsy who are candidates for therapeutic surgery,
fast activity at 80–120Hz associated with very slow transient
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polarizing shift, and voltage depression appear to be excellent
biomarkers of ictogenesis and reliable indicators of epileptogenic
zone boundaries (58). The high rate of co-occurrence probably
reflects the restrictive criteria used to select candidates for
surgery who have a presumed single-seizure-focus. Others have
found spectral power in discreet frequency bands, as well as
time- and/or frequency-domain inter-channel correlations to be
helpful (14, 59).

Still other seizure onset patterns are characterized by de-
synchronization of background activity and the appearance
of fast low-voltage rhythms (41, 42), while excessive
synchronization correlates with termination of the seizure
(60). The seizure evolution pathway appears to differ among
patients and tends to be stereotypical for each individual
(11, 13, 61). Consequently, for prediction purposes, ictal
electrographic signatures need to be individualized for each
person for each seizure type (5, 14, 17, 20, 23, 25, 31, 56, 62–72).
The buzzword is “patient-specific.” Perhaps “big data” should be
another buzz-word because analyses of large sample sizes and
multiple individual variables will be needed to decide if groups
of patients with similar epilepsy types and other physiological
or demographic conditions can be viewed as a (relatively
homogeneous) group.

Chaos and Chaotic Systems
Unlike its meaning in common parlance, “chaos” does not mean
random, but only practically unpredictable. Even though the
current state of the system might be known almost infinitely
precisely, the smallest error or perturbation limits our ability to
predict future states of the system.

Seizures often appear to be surprising. This apparent
unpredictability might reflect purely random phenomena, or
emergent chaotic phenomena that can arise at any time. If
seizures are random, then prediction may be impossible in most
cases until the pre-seizure changes begin to occur. If seizures
are emergent chaotic phenomena, seizure prediction should
be possible, since chaotic systems are deterministic. However,
the chaotic nature of the system may limit the pre-seizure
prediction time.

Non-linear (or chaotic) systems are composed of parts that
can interact in complex ways, even if the parts themselves
have simple dynamics or behavior. Non-linear systems are
characterized by sensitive dependence on initial conditions,
emergent phenomena, spontaneous order or synchronization
between components, adaptation, and feedback loops (defined
below), all of which result from the complex interaction of the
parts. The EEG patterns of epilepsy appear to be non-linear
(73, 74), likely reflecting non-linear dynamics of the brain.

Emergence has been defined as “the arising of novel and
coherent structures, patterns and properties during the process
of self-organization in complex systems" (75). This process
of “self-organization” consists of adaptive behaviors between
parts that emerge within chaotic systems, leading to a limited
number of relatively stable configurations (76). The non-epileptic
brain is stable and does not easily move into an ictal (seizure)
state. It exhibits a property called “dynamical resistance” to
seizures, which refers to a resistance to transitions to a seizure

state (77). Resilience, a similar dynamical property, describes
a system’s ability to maintain normal function when internal
errors or external environmental conditions arise (78). The
epileptic brain may have reduced dynamical resistance and/or
resilience, resulting in “multistable dynamics,” (79) which means
that it may spontaneously self-organize into a stable ictal state
(80, 81). Dynamic networks based on EEG channel synchrony
or coherence (amplitude synchrony) of the EEG may also
differentiate patients with generalized epilepsy from normal
controls (82).

Sensitive dependence on initial conditions is exemplified by
the butterfly effect. In the highly non-linear atmospheric system,
a small perturbation produced by a butterfly can lead to large
changes at a future time, perhaps even a hurricane. In short,
an arbitrarily small change in the state of a non-linear system
at one time can have a large effect later. This is what makes a
deterministic non-linear system practically unpredictable. It is
not yet known if seizure occurrence (as opposed to the underlying
neural spiking activity) follows a deterministic, chaotic pattern,
or if it is simply a purely random process (83, 84).

Nobody is in charge of food distribution for most major cities
and yet food gets distributed. This characteristic of complex
systems is identified as spontaneous order, which may represent
what occurs during the inter-ictal resting state (85). Another
perspective is that the ictal and inter-ictal states each represent
a stable, or semi-stable, attractor state of the dynamical system.
An epileptic brain transitions between these states relatively
easily, while this phase shift is very difficult to induce in a
non-epileptic brain.

Neural connectivity, information transmission, and
processing that are essential functions of the brain, may be
altered on a large scale to allow the brain to switch into
pathological states such as seizures, suggesting a scale dependent
tipping (critical) point between normal physiologic function
and pathological spread of electrical activity (86). However, if
the neural structure of the brain is near a critical point, small
changes in neural network structure may tip the brain into an
unstable regime where seizures can occur spontaneously. This
kind of spatial sensitivity to small changes has been described for
networks (87).

Pre-ictal
If seizure prediction is to become clinically useful, programs that
analyze electrical activity need to identify the pre-ictal state as
early and reliably as possible before seizure onset. At present, we
do not know when the pre-ictal state begins. Knowing when the
pre-ictal state begins will allow an assessment of the time needed
to detect and interrupt an impending seizure.

Dynamic models of events define different phase transitions
(some with and others without an event or characteristic)
and then model the probability of transitions from one state
to another (88–91). People who work on seizure-prediction
algorithms recognize at least three states: a seizure (ictal) state, a
pre- or pro-ictal state, and all others. Machine-learning programs
are given the task of comparing the electrographic characteristics
of variously defined time intervals before a seizure to the
electrographic characteristics of times further away (in time)
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from seizure onset. The goal is to define a pre-ictal state. To
do this effectively, the machine-learning programs need to be
provided an abundance of EEG recordings (92), which are
becoming increasingly available.

Characteristics of Ictal EEG
One group found that a few hours before a seizure, the
“network states become less variable (“degenerate”), and this
phase is followed by a global functional connectivity reduction”
(93). Others have reported “less chaos” (94, 95) or “increased
synchronization” before a seizure (18, 96). One group found
that prior to seizure onset, the amplitude of pre-ictal discharges
progressively increased as the interval between these discharges
gradually decreased (97), while others have found that the
cumulative energy profile (98), or measures of spectral entropy,
spectral energy, and signal energy can help identify pre-
ictal states (17). Still others have emphasized that the best
discriminators vary for each individual (99), while another group
emphasized the co-occurrence of multiple phenomena in a high
potassium hippocampal slice model (loss of neuronal network
resilience within the setting of critical slowing down, decreased
ability of a network to recover from perturbations, increased high
frequency fast activity, and successively decreasing resilience to
stimulation (100).

Timing
The goal is to be able to identify the increased seizure propensity
sufficiently before the seizure onset. The interval between
identification of the likelihood of an impending seizure and the
occurrence of the seizure has varied considerably, from under
10 s (17, 23, 24, 72, 81, 101, 102) to intervals of an hour or more
(20–22, 36, 93, 103).

Periodicity
Seizures can display multiple types of periodicities (e.g.,
circadian, multi-day, weekly) in dogs (104) and humans (5, 105–
109). Because only some people have seizures that occur with
an obvious periodicity, seizure prediction is best viewed as
patient-specific (5). Changes in level of epileptogenicity (state
transitions) (110, 111) that most likely characterize periodicities
are best viewed as contributing information to seizure-forecasts
(112). To what extent these periodicities reflect changes in
high-frequency oscillations (112), EEG spike potentials (112),
brain connectivity, and inhibitory neurons (113) remains to be
quantified. Seizure prediction algorithms are most likely to be
effective when they include all the variables that provide relevant
discriminating information for that patient. Each individual’s
seizure periodicities, once quantified, may be among those
discriminating information.

Warning Signals Before Critical Transitions
The existence of early warning signals before catastrophes (e.g.,
species extinction, pandemics) (114–117) supports the concept
that gradual transitions from stable to unstable conditions can
reach a tipping point that heralds the irreversibility of the
transition (118). Phase transitions in chaotic systems can happen
either gradually or suddenly, depending on the system (119).

Indeed, the relatively early aspects of the transition from a non-
seizure state to seizure activity can be gradual (54, 120, 121)
and widespread (36). “The suitability of typically applied early
warning indicators for identifying heightened probability of a
seizure remains controversial” (122, 123).

Binary Forecast or Probability Estimate of

Seizure Risk
The seizure detection system can provide a binary forecast
(impending seizure: yes/no), or a forecast that provides an
estimated probability of an impending seizure (91, 124). The
probability forecast, though obviously more informative than a
binary forecast, will likely be degraded to a binary forecast when
algorithms are written to initiate responsive neurostimulation
(8). Even binary forecasting systems (high- and low-risk), using
only patient-reported seizure data, correctly predicted seizures in
about half of 50 patients (125).

Relatively Reliable Prediction
In an international crowdsourcing competition, an appreciable
number of the more than 10,000 algorithms submitted by 478
teams were able “to distinguish between 10-min inter-seizure
versus pre-seizure data clips” for each of three patients based
on 442 days of continuous intracranial electroencephalography
recordings from 16 subdural electrodes (14). These results
prompted the authors to conclude, “clinically-relevant seizure
prediction is possible in a wider range of patients than previously
thought possible.” While these results are promising, they are
limited to three patients. As noted previously, different patients,
or different epilepsy types, may have different pre-ictal time
periods, ranging from seconds to an hour or more. Much larger
patient sample populations will be needed to map out the
limits of pre-seizure prediction. As a first step in this direction,
crowdsourcing analysis of intracranial EEGs continues on related
platforms, such as epilepsyecosystem.org (14, 126).

Not so Reliable Prediction
Despite subsequent expressions of enthusiasm (12, 31, 92, 127,
128), others have found that the EEGs of one third of patients
with focal (129) or multifocal (130) epilepsies were not able
to provide adequate predictive information about impending
seizures. Findings such as these prompt us to offer words of
caution about the anticipated capability to predict seizures and
intervene effectively to prevent seizure occurrence.

In our acknowledging that some, perhaps many, people
with seizures will benefit from machine-learning programs that
predict seizure recurrence, we also want to justify the restraint in
our enthusiasm. We do so based on the following considerations.

Prediction Performance Metrics
Specification of system parameters, such as prediction
period, prediction horizon and data-driven characterization
of lead seizures (minimal duration of seizure-free period)
each influence prediction performance metrics (131).
Consequently, investigators have the opportunity to cherry-
pick the system parameters that will variably maximize
their metrics. To minimize this, one group proposed a test
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metric of the difference between algorithm sensitivity and
chance sensitivity given an equal proportion of time spent
under warning (132).

Prediction performance metrics may include indicators of
sensitivity and specificity (59). Sensitivity is defined as the
total number of seizures being accurately predicted divided
by the total number of seizures recorded. Specificity is the
number of correctly-identified non-events and is usually more
difficult to evaluate due to the relatively small number of seizure
events during most time intervals (133). Performance indices
related to specificity include time in warning (the fraction of
time the system makes positive predictions), and false positive
error rate (8, 132).

A more general measure of performance that summarizes
the tradeoff between sensitivity and specificity is the area under
the receiver operating characteristic (ROC) curve (AUC) that
discriminates between inter-ictal and pre-ictal data and is the
preferred measure for many studies benchmarking multiple
seizure forecasting algorithms (59, 132, 134).

The ROC curve is a plot of True Positive Rate (TPR) or
sensitivity, vs. the False Positive Rate (FPR), or 1-specificity
for varying model parameters. Thus, the area under the ROC
curve (AUC) is a measure that accounts for the relative trade-
off between sensitivity and specificity. Both are needed for
a prediction algorithm to be practical. For example, perfect
sensitivity is always possible if specificity is completely sacrificed:
always predict a seizure and every seizure will be correctly
predicted, 100% of the time. Similarly, always predicting “no
seizure” will never falsely predict a seizure and thus have
perfect specificity. Clearly, neither of these extremes is useful.
Optimizing both sensitivity (predict all seizures) and specificity
(no false alarms) is the ideal. The AUC is a measure of this
optimal balance (135).

Because of the potential problem of overfitting (136) of the
evaluation statistical model, investigators now seek tomeasure an
“optimism corrected AUC,” which corrects for/avoids optimism
by either: cross-validation with replication (137–139) or leave-
pair-out cross-validation (140).

Variations or extensions of this theme include a final
“Improvement over Chance” binary metric that compares the
measured AUC to a “chance-level AUC” (141), accuracy rates
based on ROC curves (142), and an ROC analysis to extrapolate
a cut-off value for the most significant predictors of seizure
recurrence (143).

Another potential approach to assessing the accuracy of a
prediction algorithm is to compare its accuracy to that obtained
using surrogate output data that has some of the properties of
the true data. An example of this is to randomly permute or
shuffle the outcomes labels, thus retaining the same number
of positives and negatives as in the original outcomes. (144).
After permuting the labels, the predictive accuracy, including
sensitivity and specificity, is computed. This process is repeated
many times in a Monte Carlo style simulation, and the accuracies
for all of the surrogate trials are accumulated to determine how
likely the predictive accuracy with the true labels can be attained
by random chance. For reasons that are not clear, this type
of Monte Carlo simulation, which can be used to estimate the

probability of attaining a selected AUC (145) has been used less
frequently (146–148).

DISCUSSION

Butterfly Effect/Important Data Missing
The butterfly effect refers to the sensitive dependence of a non-
linear system on the accuracy of measurements at a given starting
time. Prediction of the future state of a non-linear system is
limited by the butterfly effect. For example, even if all of the
exact physical equations for atmospheric dynamics are known,
predicting the weather more than a few days into the future is
limited by how accurately the present weather conditions can
be measured at every location from the surface of the earth to
the top of the lower atmosphere. If neural function is a non-
linear system, then seizure prediction may be limited by the
butterfly effect.

The butterfly effect results from the slightest measurement
imprecision. This is different from a lack of information about all
the important processes involved in seizure generation or a lack
of data. We prefer to use the word “missingness” (149, 150) to
describe a lack of measured data regarding the processes involved
in seizure onset and spread.

Seizure prediction will enable successful intervention only
if identifiable pre-ictal signatures occur sufficiently clearly and
sufficiently early to enable a predictive model to be constructed.
A few reviews of the many applications of signal processing and
predictive algorithms present the enormous breadth of this effort
(151–154). This approach has begun to be applied to seizure
prediction (155, 156) with the recognition that the amount of
raw EEG data needed for deep learning approaches might be
prohibitively large (157).

One Size Does Not Fit All
An algorithm created for one person is unlikely to predict
seizure recurrence in another (5, 11, 13, 14, 17, 20, 23, 25, 31,
56, 61–72). Another potential problem is that although seizure
prediction is specific to an epilepsy or seizure type, prediction
can be conditioned by myriad patient characteristics. Large
amounts of patient data, together with properly used machine
learning algorithms, are likely needed to identify the best way
to apply seizure prediction for optimal patient benefit. Sufficient
amounts of data from many patients may improve the ability
of patient-independent algorithms for the benefit of patients
and their physicians who would strongly prefer not to have to
wait a year to receive benefits from the prediction capability of
wearable devices. However, it is also clear that seizure prediction
algorithms can learn from patient-specific patterns and improve
over time scales from days to months (158–160).

Much of the success of the seizure prediction field is owed to
those investigators who have created a valuable database, made it
publicly available, and asked others to contribute to this culture
of data sharing (161). Many annotated seizure databases exist.
Some of the better known ones can be explored further in these
references: (71, 125, 161–165).

Research using machine learning algorithms is frequently
hampered because of the lack of standards that allow data from
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disparate databases to be aggregated (166). A lack of sufficient
amounts of publicly-available data is also apparent (154). Because
insufficient available human data were (59), a recent Kaggle
machine learning competition for seizure prediction relied
on canine EEG data. Advances in seizure prediction will be
enhanced if the epilepsy research community can collaborate to
create a common, aggregated, publicly-available data resource
as the genomics community has done for the Human
Genome Project (167).

We are cautiously optimistic that many people will benefit
from an ability to predict seizure recurrence. We do, however,
want to temper optimism that this ability will be available
to nearly all patients and all seizures. Very large seizure data
sets, with proper clinical annotation, and machine learning
algorithms, as well as deeper understanding of the dynamics
and neurophysiology of seizures and epilepsy, will be needed to

provide a much clearer picture of the limits and possibilities of
seizure prediction.
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