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Short-time heavy rainfall is a kind of sudden strong and heavy precipitation weather, which seriously threatens people’s life and
property safety. Accurate precipitation nowcasting is of great significance for the government to make disaster prevention and
mitigation decisions in time. In order to make high-resolution forecasts of regional rainfall, this paper proposes a convolutional
3D GRU (Conv3D-GRU) model to predict the future rainfall intensity over a relatively short period of time from the machine
learning perspective. Firstly, the spatial features of radar echo maps with different heights are extracted by 3D convolution, and
then, the radar echo maps on time series are coded and decoded by using GRU. Finally, the trained model is used to predict the
radar echo maps in the next 1-2 hours. 0e experimental results show that the algorithm can effectively extract the temporal and
spatial features of radar echo maps, reduce the error between the predicted value and the real value of rainfall, and improve the
accuracy of short-term rainfall prediction.

1. Introduction

Short-term heavy precipitation is a kind of weather process
with sudden heavy rainfall, short precipitation time, and
large precipitation. Every year, natural disasters caused by it
emerge endlessly, which seriously threaten people’s life and
property safety. It is of great significance to carry out early
warning and near forecast for disaster prevention and
mitigation.

Radar echo maps extrapolation technology is the main
technical means of precipitation nowcasting [1]. According
to the observed echo maps, the echo’s intensity distribution
and the echo body’s moving speed and direction (such as the
rainfall area) are determined. By linear or nonlinear ex-
trapolation of the echo body, the future radar echo maps can
be predicted. At present, radar echo extrapolation tech-
nology is mainly divided into four categories: single body
centroid-based method, cross-correlation-based method,
optical flow-based method, and machine learning-based
method. 0rough the recognition and analysis of radar
echoes maps, the single body centroid-based method can
obtain the features of thunderstorm cells, such as the
thunderstorm center, the thunderstorm volume, and the
weight center of reflectivity factor and extrapolate features of

these thunderstorm movements to make convective near
prediction [2–6]. Single body centroid-based method is
suitable for tracking isolated, large, and strong echo
monomer or monomer group, but the tracking success rate
is low when the echo is scattered, merged, or split.

Cross-correlation-based method calculates the optimal
spatial correlation of different regions of radar echo at
adjacent time to determine the moving vector characteristics
of echo maps and extrapolates the position of radar echo at
future time [7–12].0is method is intuitive, simple, and easy
to implement. When the shape, moving speed, and direction
of radar echo image change gently, cross-correlation-based
method can achieve better results. However, it is difficult to
ensure the accuracy of the tracking for the strong convective
weather process with rapid change of echo image because it
is only simple to calculate the correlation coefficient.

Optical flow-based method is a tracking method in the
field of computer vision. When there is relative motion
between the observed target and the sensor, the motion of
the brightness mode observed is called optical flow. 0is
method has also been applied in the meteorological field
[13–18]. 0e optical flow based method can get a better
overall movement trend for the heavy convective precipi-
tation. However, this method is required to follow the

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 6664413, 8 pages
https://doi.org/10.1155/2021/6664413

mailto:renfang_wang@126.com
mailto:hongxinhua@zwu.edu.cn
https://orcid.org/0000-0002-8239-8248
https://orcid.org/0000-0002-6599-294X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6664413


invariance assumption, and radar echo has generation and
elimination evolution to a certain extent. 0erefore, the
nonconservation of reflectivity factor leads to extrapolation
error, and the error for fast-moving echo is large.

Machine learning-based method uses its self-learning
ability to obtain some hidden features of echo changes and
shows good memory and association ability [19, 20]. It has
been applied as classification model and numerical pre-
diction model in weather forecast, showing the potential and
broad prospects of applying neural network model to radar
echo extrapolation [21, 22]. In particular, it has recently used
deep learning to process meteorological big data, showing
strong technical advantages and performance, which has
received great attention from the industry [23–25].

By transforming the reflectivity factor into a gray image,
the prediction of short-term and imminent rainfall is
transformed into a video prediction problem [20]. RNN
model, 2D CNN model, and 3D CNN model are three
common network structures for video prediction. Attali and
Montanvert [23] proposed the first RNN-based video pre-
diction model by using convolutional RNN to encode ob-
servation frames; Dey and Zhao [26] proposed the LSTM
based codec network model, using one LSTM to encode
input frames and another LSTM to predict future frames;
Tam and Heidrich [24] used ConvLSTM to replace LSTM to
better capture temporal and spatial correlation. Giesen et al.
[27] and Faraj et al. [28] extend the model in [20] to predict
the transformation of the input frame instead of directly
predicting the original pixel. Shen et al. [29] use RNN to
capture temporal motion and CNN to capture spatial fea-
tures to predict video sequences. 0e 2D CNN network
model proposed in [30] regards video frames as multi-
channel. At present, the application of deep learning tech-
nology in related fields is in full swing, but its application in
weather prediction is still in its infancy.

In order to capture well the spatiotemporal correlations
and solve the problem that low accuracy of short-term
rainfall prediction, this paper proposes a Conv3D-GRU
model for radar echo short-term and imminent rainfall
prediction. We extend the idea of 2D convolution to 3D
convolution which is introduced to extract spatial dimension
features of radar echo images at different heights. 0en, the
GRU network is built to extract the time dimension features.
Finally, we build an end-to-end trainable model to realize
the short-term rainfall forecast in the future. When evalu-
ated on the radar echo dataset that our Conv3D-GRUmodel
consistently outperforms both the Conv2D and the
Conv2D-GRU, which can effectively improve the accuracy
of short-term rainfall prediction.

2. Preliminaries

Short-term precipitation forecast takes the past radar echo
extrapolation maps data as input and outputs radar echo
extrapolation maps sequence in the future 1-2 hours, which
can be summarized as a time series prediction problem.

RNN is known as temporal neural network, which can be
used to process data containing time series. 0e gradient of
RNN is easy to disappear in the long network, which makes

the learning of RNN model difficult. Long short-term
memory (LSTM) network can deal with the above problems.
Gated recurrent unit (GRU) is a kind of gated cyclic unit
structure and an improved network model of LSTM. In
order to improve the training effect, we use the GRU re-
current neural network to learn the features of radar echo
sequence data.

LSTM is composed of forgetting gate, input gate, and
output gate to form a memory unit to filter input infor-
mation, while GRU neural network improves the design of
“gate,” which combines input gate and forgetting gate of
LSTM neural network into an update gate Zt. 0e LSTM is
optimized from three gates to two gates. Like LSTMmemory
unit, GRU is composed of many neural units, each of which
is also a complex “gate” structure. Among them, the op-
eration in GRU neural unit can be expressed as follows:

Zt � σ Wz · ht−1, Xt[ ]( ),
rt � σ Wr · ht−1, Xt[ ]( ),
h̃t � tanh W

h̃t
· rt ∗ ht−1, Xt[ ]( ),

ht � 1 − Zt( )∗ ht−1 + Zt ∗ h̃t.
(1)

From formula (1), it can be seen that each neural unit in the
network has a dependency relationship with each other, and
each neural unit participates in the decision of information
screening. Weight of update door Zt is expressed asWz. 0e
output of the previous neural unit is ht−1, and input of the
current neural unit is Xt. 0e sigmoid activation function is
represented by σ. Add the input of the previous neural unit ht−1
and the current neural unit Xt, multiply with Wz to get the
update gate Zt, and then use sigmoid function to operate.
When the value is larger, the information of the current neural
unit will be retained more, and the information of the previous
neural unit will be ignored more in this process.

3. Materials and Methods

Although GRU has been proved to be able to deal with the
long-range dependence problem well, the input of the
network is a one-dimensional vector, and the radar echo
maps used in this paper are three-dimensional images. If the
GRU is directly applied, the image must be transformed into
one-dimensional vector, which will undoubtedly lose a lot of
space information of radar maps. To deal with this problem,
a network model based on Conv3D-GRU is proposed in this
paper. 0e network can receive the 3D images as input data,
so as to better retain the spatial characteristics of radar map.
As shown in Figure 1, the model is composed of 3D feature
extraction module and GRU-based coding prediction
module. 0e former mainly uses 3D convolution to extract
radar echo maps features of different heights at a certain
time, while the latter mainly encodes the radar images on
time series and predicts the future radar images.

3.1. Spatial Feature Extraction of 3D Convolutional Neural
Network. In order to extract the spatial features of radar
echo maps, we stack radar maps of different heights on a
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certain time t to form a cube and then use 3D convolution to
fuse the spatial features in the cube. 3D convolution is an
extension of 2D convolution neural network on the dimension,
including convolution layer, pooling layer, activation function
layer, and fully connected layers. 3D convolution improves the
convolution kernel size and pooling layer filter size in the
network structure to three-dimensional. At the same time,
multidimensional image can also be directly used as the input
of neural network. 3D maximum pooling layer selects the
maximum pooling method, and the received convolution layer
output is a cube data. In fully connected layers, the neurons are
connected with all the neurons in the adjacent layer. 0e
neuron vector obtained from the feature space is taken as the
input of the full connection layer. 0e input eigenvector is
processed by matrix multiplication, and output is taken as the
input of the next GRU module.

0e output of 3D convolution is expressed as f
xyz
ij ,

where x and y represent the spatial dimension of the input
image and z represents the time dimension, σ represents the
activation function, bij is offset function of the j-th feature

map in layer i, Pi,Qi, andRi represent the size of convolution

kernel,W
qpr
ijm represents the weight of the (p, q, r) neuronal

connections in theMth feature, V
(x+p)(y+q)(z+r)
(i−1)m indicates the

dimension size of the input information, and p, q, and r are
convolution values, respectively. 0e 3D convolution pro-
cess can be expressed as follows:

f
xyz
ij � σ bij +∑

m

∑Pi−1
p�0

∑Qi−1
q�0

∑Ri−1
r�0

W
qpr
ijmV

(x+p)(y+q)(z+r)
(i−1)m

 . (2)

0e loss function of 3D convolution neural network is
constructed as follows:

Loss � −
1

N
∑N
a�1

∑C−1
c�0

indicatoryb � cP �y(b) � c|I(b); θ( ), (3)

where I(b) represents the 3D input vector, y(b) represents the
corresponding label, �y(b) represents the prediction output, θ
is all parameters, indicatoryb is the indicator function, and
P(�y(b) � c|I(b); θ) represents the estimated probability that
I(b) belongs to classification c.

Table 1 gives the 3D convolution network structure in
this paper which consists of one input layer, four 3D con-
volution layers, and four fully connected layers.

3.2. GRUCoding: PredictionModule. As shown in Figure 2,
the prediction network of GRU coding-prediction
module consists of two modules, namely, (1) GRU coding
module, which is used to extract the temporal charac-
teristics of input time series; (2) GRU prediction module,
which can predict the radar echo map in the future based
on the time series characteristics obtained by the coding
module.

According to the time characteristic sequence of the
3D convolution input, the GRU time series prediction
network can predict the output sequence of the future
period. Firstly, the sequence output of 3D convolution is
used as the input time series of the GRU coding module,
and then the input data is encoded into a fixed-size state
vector, so as to complete the extraction of the time series
features of the input time series. At this time, the infor-
mation of the entire input sequence will be stored in the
cell state of the GRU neuron. After that, the GRU pre-
diction module takes the cell states of the abovementioned
neurons as the initial state of the module’s cells and
generates the prediction output sequence of the future
time period one by one based on the time series features
obtained by the GRU coding module.

After encoding, the extracted radar map feature in-
formation is retained in the neural unit ht of the GRU
model. 0e initial neural unit state ht of the prediction
module is copied from the state of the previous encoder
module. According to the characteristic information ob-
tained by the encoder module, the prediction module is
responsible for the prediction of rainfall in a short time in
the future. 0e final output sequence corresponds to the
input moment one to one. 0e parameters in the encoding
phase are shared, and the parameters in the decoding phase
are shared, but the parameters between encoding and
decoding are not shared, so the model learns two sets of
parameters.
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Figure 1: Conv3D-GRU network structure.
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4. Experiment and Result Analysis

4.1. Experimental Environment and Dataset. In order to
verify the validity of our Conv3D-GRU model in rainfall
prediction on radar echo images, this study will combine the
weather radar intensities collected in NingboMeteorological
Station for training and testing. 0e environment developed
on Win10 OS with 128G RAM and 2GHz CPU. CPU
processor model is Inter (R) Xeon(R) CPU E5-2683 v3, and
deep learning framework is Pytorch-GPU(1.3.1). As rainfall
events occur sparsely, we select the rainy days based on the
rain barrel information from the radar echo image to build
our final dataset. 0e resolution of radar echo image is
480× 480 pixels. When preprocessing, we transform the
intensity values Z to gray-level pixels P by setting P � ((Z −
min Z{ })/(max Z{ } −min Z{ })) and crop the radar maps to
101× 101 pixels. 0e weather radar data is recorded every 6
minutes, so there are 240 frames per day to predict the
rainfall of radar echo maps in the next two hours. Firstly, the
original radar echo map is processed into gray image by
linear transformation. Since the original radar echo map has
noise interference in the acquisition process, the bilinear
filter is used to filter the image to reduce the impact of noise
on training and evaluation. Original radar echo images and
filtered images are shown in Figure 3.

4.2. Evaluated Algorithm. In the process of experimental
training, the network structure of Conv3D-GRU was con-
structed, and the network weight parameters were initial-
ized. 0ree radar map sequences of different heights were
used for size normalization, and frame data was used as the
video stream for input. Each altitude receives 5 frames as
input and 20 frames output as prediction value. 0e input
radar echo image sequence is processed by 3D convolution
network to obtain the spatial dimension features. 0e time
series radar echo features are generated by GRU network,
and the convolution decoding module is used to obtain the
output of the image sequence. Finally, the heavy rainfall
prediction in the next two hours is realized.

In order to evaluate the performance of the algorithm in
this paper, critical success index (CSI), Heidke skill score
(HSS), mean square error (MSE), mean absolute error
(MAE), balanced mean square error (B-MSE), and balanced
mean absolute error (B-MAE) were used as evaluation in-
dexes of the model.0e score was calculated by using rainfall
thresholds of 0.5, 2, 5, 10, and 30. 0e main formulas are as
follows:

CSI �
TP

TP + FN + FP
,

HSS �
TP × TN − FN × FP

(TP + FN)(FN + TN) +(TP + FP)(FP + TN)
,

MSE �
1

N
∑N
i

yi′ − yi( )2,

MAE �
1

N
∑N
i�1

yi′ − yi
∣∣∣∣ ∣∣∣∣.

(4)
Among them, TP indicates (prediction� 1, truth� 1),FP

indicates (prediction� 1, truth� 0), TNindicates (pre-
diction� 0, truth� 0), and FN indicates (prediction� 0,
truth� 1). When the values of CSI and HSS are higher, the
probability of heavy rainfall is higher. yi′ represents the
predicted value, yi represents the true value, and N rep-
resents the number of samples in the test set. 0e smaller the
value of MSE and MAE is, the smaller the error between the
predicted value and the true value of rainfall is, and the better
the performance of the model is.

4.3. Analysis of Experimental Results. In the process of
training, Adam optimizer was used to optimize. 0e batch
size was set to 8, the learning rate was set to 0.0001, and the
momentum was 0.5. In the experiment of this paper, the
radar maps of the first five moments were selected as the
input to realize the rainfall prediction of the next 20 mo-
ments. Figure 4 shows the rainfall prediction results of radar
echo maps, in which group (a) represents the time series of
radar echo maps obtained within half an hour; (b) is the real
output image sequence (within the next 2 hours); (c), (d),
and (e) are three groups of experiments, respectively, which
show the predicted output of Conv2D, Cov2D-GRU, and
Conv3D-GRU algorithms on radar echo maps sequence in
the next 2 hours. 0e experimental results show that the
short-term rainfall prediction of this algorithm is more clear,
which can better obtain the features of radar map time and
space dimensions at different heights, more accurately
predict the future rainfall contour, and use the radar map
information to realize the rainfall forecast in the next 2
hours.

4.4. Evaluation Results. In order to further verify the
performance of the proposed algorithm for short-term
heavy rainfall prediction, we compared Conv3D-GRU
with other algorithms. It can be seen from Table 2 that

Table 1: 3D convolution network structure.

Number of layers
Kernel
size

Number of
kernels

Output

Data — —
[5, 101, 101,

3]

Conv3D_1 5×1× 1 8
[5, 101, 101,

8]
Maxpooling3D_1 3× 2× 2 — [5, 50, 50, 8]
Conv3D_2 3× 5× 5 16 [5, 50, 50, 16]
Maxpooling3D_2 1× 2× 2 — [5, 25, 25, 16]
Conv3D_3 3× 3× 3 32 [5, 25, 25, 32]
Maxpooling3D_3 1× 2× 2 — [5, 12, 12, 32]
Conv3D_4 3× 3× 3 32 [5, 12, 12, 32]
Maxpooling3D_4 1× 2× 2 — [5, 6, 6, 32]
Flattern — — 5760
Dense_1 — — 1024
Dense_2 — — 512
Dense_3 — — 256
Dense_4 — — 128
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(a)

(b)

Figure 3: Filtering for image processing. (a) Noise radar echo images. (b) Filtered images.
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Figure 2: Structure diagram of coding-prediction module.

(a)

Figure 4: Continued.
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“r ≥ τ” represents the rainfall threshold of skill score at τ
mm/h, and each cell represents the average score of the
next 20 frames. 0rough comparison, it is found that the
average score of this algorithm on CSI and HSS is better
than that of Conv2D and Conv2D-GRU algorithms, in-
dicating that the Conv3D-GRU proposed in this paper has
achieved good results in extracting radar image features.
Moreover, it can make full use of the correlation between
the current frame information and the historical frame

and the future frame time information, which improves
the accuracy of short-term heavy rainfall prediction to a
certain extent.

It can be seen from Table 3 that the four indicators of
Conv3D-GRU are better than Conv2D and Conv2D-GRU.
MSE, MAE, B-MSE, and B-MAE are smaller, which indicates
that the error between the predicted value and the real value of
rainfall is smaller, and the rainfall prediction of the model is
more accurate and has higher performance.

(b)

(c)

(d)

(e)

Figure 4: Radar echo map rainfall prediction. (a) Input image. (b) Real value images (i). (c) Conv2D rainfall forecast. (d) Conv2D-GRU
rainfall forecast. (e) Conv3D-GRU rainfall forecast in the next two hours.

Table 2: Rainfall threshold evaluation results.

Algorithms
CSI HSS

r≥ 0.5 r≥ 2 r≥ 5 r≥ 10 r≥ 30 r≥ 0.5 r≥ 2 r≥ 5 r≥ 10 r≥ 30
Conv2D 0.5048 0.4321 0.3352 0.2384 0.1053 0.6325 0.5743 0.4839 0.3611 0.1857
Conv2D-GRU 0.5083 0.4406 0.3421 0.2396 0.1092 0.6348 0.5803 0.4848 0.3689 0.1859
Conv3D-GRU 0.5231 0.4518 0.3607 0.2726 0.1616 0.6466 0.5915 0.5062 0.4091 0.2654
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5. Conclusion

In this paper, we have proposed a Conv3D-GRU model for
short-term rainfall prediction of radar echo image to im-
prove the accuracy of regional rainfall prediction.

We construct the Conv3D network to extract the spatial
dimension features of radar images at different heights and
then build the encoder module to obtain the spatiotemporal
feature sequence of radar images. 0e GRU neural network is
introduced to extract the time dimension information. Fi-
nally, the prediction module is used to realize the radar echo
rainfall prediction in the next 2 hours. Our experimental
validation shows that the Conv3D-GRU model consistently
outperforms both the Conv2D and the Conv2D-GRU al-
gorithm, and the Conv3D-GRU can capture well the spa-
tiotemporal correlations. 0e redundancy of spatial data is
reduced, and the accuracy of rainfall prediction is improved.
Although the Conv3d-GRUmodel in this paper has achieved
satisfactory results in short-term regional rainfall prediction,
some remaining research work can be carried out to further
improve our method performance. Since the limitation of
rainfall timeliness within a certain hour and the influence of
single meteorological factors, it is inevitable that there are
shortcomings. For future work, we plan to optimize the
structure of the constructed neural network and learn more
spatiotemporal feature sequence by increasing the network
depth of convolution encoder. We will also combine with
other meteorological features, such as temperature, wind
field, and other information.
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