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Abstract

A hidden Markov model of signal peptides has been devel-
oped. It contains submodels for the N-terminal part, the hy-
drophobic region, and the region around the cleavage site. For
known signal peptides, the model can be used to assign objec-
tive boundaries between these three regions. Applied to our
data, the length distributions for the three regions are signifi-
cantly different from expectations. For instance, the assigned
hydrophobic region is between 8 and 12 residues long in al-
most all eukaryotic signal peptides. This analysis also makes
obvious the difference between eukaryotes, Gram-positive
bacteria, and Gram-negative bacteria. The model can be used
to predict the location of the cleavage site, which it finds cor-
rectly in nearly 70% of signal peptides in a cross-validated
test—almost the same accuracy as the best previous method.
One of the problems for existing prediction methods is the
poor discrimination between signal peptides and uncleaved
signal anchors, but this is substantially improved by the hid-
den Markov model when expanding it with a very simple sig-
nal anchor model.

Introduction
The general secretory pathway is a mechanism for protein
secretion found in both eukaryotic and prokaryotic cells.
The entry to the general secretory pathway is controlled by
the signal peptide, an N-terminal peptide typically between
15 and 40 amino acids long, which is cleaved from the ma-
ture part of the protein during translocation across the mem-
brane, see Figure 1.

The most characteristic common feature of signal pep-
tides is a stretch of hydrophobic amino acids called theh-
region. The region between the initiator Met and the h-
region, then-region, is typically one to five amino acids in
length, and normally carries positive charge. Between the
h-region and the cleavage site is thec-region, which consists
of three to seven polar, but mostly uncharged, amino acids.
Close to the cleavage site a more specific pattern of amino
acids is found: the residues at positions�3 and�1 (relative
to the cleavage site) must be small and neutral for cleavage
to occur correctly (von Heijne 1985).

Translocation takes place via a multiprotein com-
plex known as the translocon or translocation apparatus
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(Rapoport, Jungnickel, & Kutay 1996). The signal pep-
tide is recognised by at least three steps in the process: tar-
geting to the membrane by cytoplasmic factors, binding to
the translocon, and cleavage by signal peptidase. During
translocation, the signal peptide adopts a hairpin-like struc-
ture with the N-terminus remaining on the cytoplasmic side,
and the cleavage site close to the trans side of the mem-
brane. In eukaryotes translocation is co-translational, with
the translation taking place on ribosomes bound to the ER
membrane. In bacteria, translocation is predominantly post-
translational.

The properties of signal peptides are known to differ be-
tween various types of organisms: bacterial signal pep-
tides are longer than their eukaryotic counterparts, and those
of Gram-positive bacteria are longer than those of Gram-
negative bacteria (which have an outer membrane in addi-
tion to the cytoplasmic membrane). The charge difference
is much more prominent in bacteria than in eukaryotes. The
composition of the h-region also shows some difference: eu-
karyotic h-regions are generally more hydrophobic with Leu
as the most common residue, while bacterial h-regions are
slightly less hydrophobic and contain approximately equal
amounts of Ala and Leu (von Heijne & Abrahms´en 1989;
Nielsenet al. 1997). In bacterial signal peptides, the pos-
itive charge in the n-region is often balanced by a negative
net charge in the c-region or in the first few residues of the
mature protein (von Heijne 1986a).

Some proteins have sequences that initiate translocation
in the same way as signal peptides do, but are not cleaved
by signal peptidase (von Heijne 1988). As the rest of the
polypeptide chain is translocated through the membrane,
the resulting protein remains anchored to the membrane by
the hydrophobic region, with a short N-terminal cytoplas-
mic domain, see Figure 1. The uncleaved signal peptide
is known as a signal anchor, and the resulting protein is
known as a type II membrane protein. Signal anchors dif-
fer from signal peptides in other respects than the cleavage
sites: they have h-regions longer than those of cleaved signal
peptides—the length is typically the same as that of a trans-
membraneα-helix—and the n-regions can also be much
longer, up to more than 100 residues. Interestingly, exper-
iments have shown that it is possible to convert a cleaved
signal peptide to a signal anchor merely by lengthening the
h-region (Chou & Kendall 1990; Nilsson, Whitley, & von
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Figure 1: Cartoons of a signal peptide (above) and a signal anchor (below), and how they are translocated by the translocon.
After translocation the signal peptide is cleaved off and the mature protein released, whereas the signal anchor is not cleaved
off and the protein is anchored to the membrane.

Heijne 1994).
Signal peptide prediction involves two tasks: (1) Given

that the sequence is a signal peptide, locate the cleavage
site; and (2) discriminate between secretory proteins with
signal peptides and non-secretory proteins. Prediction of
the cleavage site has been performed with a weight matrix
(von Heijne 1986b) and by a neural network method, Sig-
nalP (Nielsenet al. 1997), which also performs the discrim-
ination task. SignalP has been available as a WWW and mail
server since 1996 and is very widely used.

In this paper we apply a hidden Markov model (HMM)
for both prediction tasks. An HMM for proteins consists of
a number of states that are connected by transition probabil-
ities. Associated with each state is a distribution over the 20
amino acids. It is often useful to think of HMMs as gener-
ative models that can ‘emit’ protein sequences by randomly
going from state to state, and in each state emit an amino
acid according to the distribution for that state. For a given
sequence one can calculate for instance the most probable
way this sequence was generated by the model, or the total
probability that it was generated by the model at all. Because
it is a probabilistic model, one can use standard methods
like maximum likelihood to determine the model parame-
ters. Introductions to HMMs can be found in (Rabiner 1989;
Krogh 1998; Durbinet al. 1998). In computational biology
the most commonly used HMM type is probably the profile
HMM (Krogh et al. 1994; Eddy 1996), which has a struc-
ture inspired by profiles (Gribskov, McLachlan, & Eisenberg

1987). However, HMMs are more general, and the model
structures used in this work are not of the profile type.

One of the advantages of HMMs is that it is usually very
easy to build biological knowledge into the model in an in-
tuitive way—in contrast toe.g.neural networks. For the sig-
nal peptides we design the model so that it has parts corre-
sponding to each of the three regions of a signal peptide and
such that reasonable length constraints are hard-wired in the
model. Another advantage of the HMM approach is that the
HMM can easily be extended by adding other modules to the
model. In this work we combine the signal peptide model
with a model of signal anchors, in order to make a model
that is good at discriminating between signal peptides and
anchors. There are very few known examples of signal an-
chors, and therefore it is hard to make good models of these.
For this situation, the HMMs have another big advantage: it
is very easy to control the model complexity by making the
model simple enough to be estimated from the amount of
data available.

Methods
Data sets
Data were extracted from SWISS-PROT version 35 (Bairoch
& Apweiler 1997). Data sets were made for four types of
proteins: signal peptides, signal anchors, cytoplasmic, and
(for eukaryotes) nuclear. All sets were grouped in subsets
for eukaryotes, Gram-positive bacteria, and Gram-negative



Signal Cytoplasmic Nuclear Signal
peptides proteins proteins anchors

tot. red. tot. red. tot. red. tot. red.
Euk 2477 1137 1614 461 2060 990 164 67
Gneg 498 356 697 335 � � � �

Gpos 222 172 280 151 � � � �

Table 1: The number of sequences in the data sets before (tot.) and after (red.) redundancy reduction. The organism groups
are: Eukaryotes (Euk), Gram-negative bacteria (Gneg), and Gram-positive bacteria (Gpos).

bacteria. Details of the extraction criteria can be found in
(Nielsenet al. 1996).

The signal peptides were extracted according to feature
table annotation. Virus and phage genes, proteins encoded
by organellar genes (in eukaryotes), and lipoprotein sig-
nal peptides cleaved by signal peptidase II (in prokaryotes)
were discarded. In this work, signal peptides annotated to
be shorter than 15 or longer than 50 amino acids were ex-
cluded from the data set, because if they are correct, we re-
gard these as so atypical that they hardly can be modeled.
Signal anchors were identified by transmembrane regions
marked “Signal anchor” or “type II membrane protein”.
Multi-spanning membrane proteins were not included. En-
tries where the suggested signal anchor region was 70 amino
acids or longer (measured from the N-terminal to the C-
terminal end of the specified transmembrane region) were
also discarded, because these would hardly be mistaken for
cleavable signal peptides. Prokaryotic signal anchors were
ignored as well, since only one good example was found.
The N-terminal parts of cytoplasmic and (for the eukaryotes)
nuclear proteins were extracted by searching for comment
lines in SWISS-PROT specifying the subcellular location as
“cytoplasmic” or “nuclear”.

For all data sets we avoided entries containing hints in the
annotation that the feature or subcellular location was not
experimentally verified. We also removed proteins that did
not start with Met, unless they had an annotation concerning
a removed initiator Met. Proteins in all the sets were trun-
cated after 70 residues, which is the region we have chosen
to model, because almost all signal peptides are shorter than
70.

All the data sets were then homology reduced, so that no
two sequences were homologous within a set (see (Nielsen
et al. 1996) for details). This was done for two reasons,
firstly to limit the bias of the HMM towards over-represented
families, and secondly to allow the sets to be used for cross-
validation. The sizes of the data sets before and after ho-
mology reduction are shown in Table 1. Finally each set
was divided into five parts of approximately equal size for
cross-validation.

Model structure

To get an idea of the length and amino acid distributions of
the three different regions in a signal peptide, we initially
assigned tentative n-, h-, and c-regions after the following
very simple procedure: (1) Place a pointer at the�1 position
(immediately before the cleavage site), set the assignment to

c-region, and scan the sequence upstream towards the N-
terminus; (2) move the pointer three positions upstream (as-
signing�1 through�3 as a minimal c-region); (3) set the
assignment to h-region at the first occurrence of at least two
consecutive hydrophobic residues (Ala, Ile, Leu, Met, Phe,
Trp, or Val); (4) move the pointer six positions upstream;
(5) set the assignment to n-region at the first occurrence of
either a charged residue or at least three consecutive non-
hydrophobic residues; (6) if the N-terminal end of the h-
region is not a hydrophobic residue, move the pointer back
downstream, changing the assignment to n-region until a hy-
drophobic residue is found.

This set of rules gives h-regions that necessarily have a
hydrophobic residue in the N-terminus and two consecu-
tive hydrophobic residues in the C-terminus. All the signal
peptides in our data set were assigned an h-region, ranging
from 6 to 20 in length with very few exceptions. By the
above procedure, the c-region is by definition at least three
residues long, whereas the n-region is typically between two
and seven long, but can be significantly longer.

The regions defined in this way were used while design-
ing the model shown in Figure 2. It implements an ex-
plicit modeling of the length distribution of the h-region with
an array of 20 states, where there is a transition from the
first state directly to each of the following 15 states, which
means that the minimum length of the h-region is 6 and
the maximum 20. All these states aretied, which means
that they have the same amino acid distribution. We placed
hard limits on the length of the h-region in accordance
with experimental findings: h-regions shorter than 6 amino
acids are not able to promote translocation (Bird, Geth-
ing, & Sambrook 1990), while the transition from cleav-
able to non-cleavable seems to occur for h-region lengths
between 17 and 20 amino acids (Chou & Kendall 1990;
Nilsson, Whitley, & von Heijne 1994).

The n-region is modeled by an array of 8 states, of which
the last seven are also tied to each other (but use another
distribution than the h states). The first state has probabil-
ity one for Met, because all the proteins in our datasets be-
gin with Met. From this state there are transitions to all the
other n-states as well as the first h-state. The second n-state
has a transition to itself, and therefore this part of the model
can model the explicit length distribution between one and
8, and then an exponentially decaying length distribution (a
geometric distribution) for longer n-regions.

The c-region is modeled by an array of six states prior to
the cleavage site, in which each state has a specific distri-
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Figure 2: The model used for signal peptides. The states in a shaded box are tied to each other.

bution to capture the pattern of amino acids just before the
cleavage site (states c1 to c6 in Figure 2). To allow for longer
c-regions, four more states (c7 to c10) are added, which are
tied to each other in order to capture the over-all amino acid
distribution of c-regions longer than six. One of these states
has a transition to itself so long c-regions are modeled by a
geometric distribution. From the last h-state there are transi-
tions to all the c-states except the two just before the cleav-
age site, making the minimum length of c-regions equal to
three. After the cleavage site, four states model the posi-
tion specific amino acid distributions before a transition is
made to the final state with an amino acid distribution equal
to a standard background distribution. The six states prior
to the cleavage site plus the four states after the cleavage
site correspond approximately the weight matrix used ear-
lier for signal peptide prediction (von Heijne 1986b). The
difference is that the states c4 through c6 can be skipped,
which means that the weight matrix-like part does not have
to model hydrophobic residues of signal peptides with very
short c-regions.

Models were estimated from the training data by the
Baum-Welch algorithm (Rabiner 1989; Durbinet al. 1998),
which is a maximum likelihood procedure that iteratively
increases the total likelihood of the training data. The train-
ing was done with the labeled data, such that the cleav-
age site was always correctly positioned during training,
but the model was left to find out for itself where to put
the boundaries between n-, h-, and c-regions. However,
to help the model find a sensible partition into regions,
we initialized the models: for each of the three regions,
the initial distributions were set to the amino acid fre-
quencies in the regions as assigned by the simple proce-
dure described above. Pseudocounts (Kroghet al. 1994;
Durbin et al. 1998) were also added, which were obtained

by multiplying the same amino acid frequencies by 100. The
size of this number is not critical. Each distribution is ob-
tained from more than 1000 amino acids, so the pseudo-
counts are relatively small.

To predict the cleavage site for a new sequence, the most
probable path through the trained model is found by the stan-
dard Viterbi algorithm (Rabiner 1989). The most probable
path was also used for assigning a region to each amino acid
in the sequence.

To discriminate between signal peptides, signal anchors
and soluble non-secretory proteins, the model was aug-
mented by a model of anchors as shown in Figure 3. The
structure of this model is like the model for signal peptides,
but the n- and h-regions are simpler and the c-region is of
course omitted. The whole model was now trained from all
types of sequences (signal peptides, anchors, cytoplasmic
and nuclear). The most likely path through the combined
model yields a prediction of which of the three classes the
protein belongs to.

Neural network method
The neural network method implemented in the SignalP
server is described in detail elsewhere (Nielsenet al. 1997).
In the present work, we made no modifications to the archi-
tecture of the networks, the training scheme, or the output
interpretation; we merely retrained the networks on the new
data set (the present version of SignalP is based on SWISS-
PROT release 29).

In the context of this work, it is important to note that
SignalP combines two types of network: theC-score(raw
cleavage site score) is the output from a network trained
solely on signal peptide sequences to recognize cleavage
sites from non-cleavage sites; while theS-score(signal pep-
tide score) is the output from a network trained to recog-
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Figure 3: The block diagram (top) shows how the combined model is put together from the signal peptide model and the anchor
model. The final states shown in the shaded box are tied to each other, and model all residues not in a signal peptide or an
anchor. The model of signal anchors (bottom) has only two types of states (grouped by the shaded boxes) apart from the Met
state.

nize windows within signal peptides from windows after the
cleavage site and windows in non-secretory proteins. The
prediction of cleavage site location is optimized by observ-
ing where the C-score is highandthe S-score changes from
a high to a low value. This is formally implemented by the
Y-score(combined cleavage site score), a geometric average
of the C-score and a smoothed derivative of the S-score.

Discrimination between signal peptides and non-secre-
tory proteins is done by using either the maximal value of
the Y-score or the mean value of the S-score, averaged from
position 1 to the most likely cleavage site.

Results and discussion
Performance of the HMM method
The performances of the trained hidden Markov model and
neural networks are shown in Table 2. All the results re-
ported are obtained by five-fold cross validation. For cleav-
age site location, the neural networks are slightly better than
the HMM. The observation that the neural networks—even
using only the C-score—are able to locate the cleavage site
a few percent more precisely than the HMM suggests that
there might be a weak non-linear feature involved in the
cleavage site recognition.

Discrimination between signal peptides and soluble non-
secretory proteins is performed with a version of the HMM
where the anchor model is omitted. If the three-module
HMM including the signal anchor model is used instead, a
few signal peptides are falsely classified as signal anchors,
bringing the correlation coefficient for eukaryotic sequences
down by 0.02. The simple neural network (the C-score net-

work alone) is poorer than the HMM for discrimination,
which is not remarkable, since the non-secretory proteins
were not used in the training of this network. The combi-
nation of C-score and S-score networks has a discrimination
performance comparable to that of the HMM: for eukaryotes
the networks are slightly better, while for Gram-negative
bacteria the HMM is slightly better.

The neural network performances were in general com-
parable to those obtained with the data from SWISS-PROT
release 29 as reported in (Nielsenet al. 1997), but the cleav-
age site location was two percent better for eukaryotes and
four percent better for Gram-negative bacteria. Since the
number of signal peptide sequences extracted has not grown
very much, this suggests that the quality of signal peptide
annotations has improved.

Discrimination between cleaved signal peptides and un-
cleaved signal anchors is shown in the rightmost column of
Table 2. The HMM correlation coefficient of 0.74 corre-
sponds to a sensitivity of 71% and a specificity of 81%—
a far better performance for this problem than hitherto re-
ported.

For the neural network, uncleaved signal anchors can
to some degree be identified by intermediate values of the
mean S score, but even when the threshold is optimized
specifically for this task, the correlation coefficient does not
exceed 0.4. Interestingly, the cleavage site scores provided
an even worse discrimination between signal peptides and
signal anchors, suggesting that cryptic cleavage sites are not
uncommon in signal anchors. These results should not be
taken as a claim that the neural network method is unable to



Task Cleavage site location Discrimination
sig/non-sec sig/anc

Method Euk Gneg Gpos Euk Gneg Gpos Euk
HMM 69.5% 81.4% 64.5% 0.94 0.93 0.96 0.74
NN (simple) 71.8% 81.7% 66.9% (0.87) (0.71) (0.71) (0.18)
NN (combined) 72.4% 83.4% 67.5% 0.97 0.89 0.96 (0.39)

Table 2: Performance of the hidden Markov model (HMM ) compared to the neural network (NN) for eukaryotes (Euk), Gram-
negative bacteria (Gneg), and Gram-positive bacteria (Gpos). Cleavage site location is given as percentage of signal peptide
sequences where the cleavage site was placed correctly. Discrimination values between sequence types are given as correlation
coefficients (Mathews 1975). The sequence types are signal peptides (sig), soluble non-secretory—i.e.cytoplasmic or nuclear—
proteins (non-sec), and signal anchors (anc). Results are given for two versions of the NN method: one network trained on
cleavage sitesvs.non-cleavage sites (simple), and a combination of this with a network trained on signal peptidesvs.non-signal
peptides (combined). Discrimination values in parentheses are obtained without including both categories in the training set.
All values are five-fold cross-validated.

solve the signal anchor problem, since the signal anchors
were not included as training data in the neural network
model as was the case for the HMM.

If the n- and h-states of the signal anchor submodel are
tied to the corresponding states in the signal peptide sub-
model, performance drops slightly. This shows that discrim-
ination between signal peptides and signal anchors does not
rely solely on the presence or absence of a cleavage site pat-
tern, but involves the differences in amino acid composition
of the n- and h-regions (see Table 3).

We have also tested a more detailed modeling of the n-to-
h and h-to-c region boundaries by introducing extra untied
states. This coulde.g.model a possible preference for posi-
tive charges in long n-regions to occur close to the h-region,
or the need for helix-breaking residues immediately after the
h-region. However, these modifications offered no signif-
icant increase in performance. Accordingly, inspection of
alignments by the n-to-h boundary or the h-to-c boundary in
the regions assigned by the model does not show any special
composition of any position within the n- and h-region.

One position which does show a clear deviation from the
background distribution is position 2 in the non-secretory
proteins (immediately after the initiator Met). This reflects
what is known as the N-end rule (Varshavsky 1996) which
states that certain amino acids in this position make the pro-
tein stable and other make the protein subject to rapid degra-
dation by the ubiquitination system. We tried to incorporate
this into the model by one additional explicit state for the
non-secretory proteins, but it had no effect on the discrimi-
nation performance.

Characteristics of signal peptides of eukaryotes
and bacteria
The trained hidden Markov model is capable of assigning n-
, h-, and c-regions to a signal peptide, and n- and h-regions
to a signal anchor. We have performed this assignment with
a model trained and tested on the whole data set, forcing the
model to use the correct classification. During assignment
of the signal peptide regions, we furthermore forced the an-
notated cleavage site to use the cleavage site state, so that the
total lengths of the signal peptides correspond to those given
in the database. However, no substantial differences were

seen in the statistics if the predicted classifications and signal
peptide lengths were used instead, or if the cross-validation
models and test sets were used (data not shown).

We have computed the length distribution (see Figure 4)
and amino acid composition (see Table 3) for all the assigned
regions. Note that the cleavage site consensus region (posi-
tion �3 through�1)—conventionally considered a part of
the c-region—was not included when calculating the amino
acid composition of the c-region. This was done to avoid the
amino acid bias from the�3 and�1 positions.

The lengths of the HMM-assigned h- and c-regions show
a quite surprising distribution which is substantially differ-
ent from the length distribution of the tentative regions as-
signed by the simple rule described earlier (data not shown).
While the tentative h- and c-regions had a rather wide distri-
bution, remarkably few lengths are represented in the HMM-
assigned regions. The eukaryotic h-regions are practically
only found in lengths 8 through 12, even though the archi-
tecture of the model allows a range of 6 through 20. The
c-regions are even more peaked, with more than 70% hav-
ing a length of 5 in eukaryotes and 6 or 7 in bacteria.

More remarkable still is that the length distribution of the
h-region is two-peaked, with modes at 8 and 11 for eukary-
otes, 9 and 12 for Gram-negative bacteria, and 14 and 17 for
Gram-positive bacteria. Even though the lengths are very
different, the distance between the peaks is three positions
in all three data sets.

The h- and c-regions of the signal anchors show a wider
length distribution (Figure 4 bottom), and they are clearly
longer than those of the eukaryotic signal peptides. The h-
region lengths show almost no overlap between signal pep-
tides and signal anchors.

The sharply one-peaked and two-peaked distributions of
the signal peptide h- and c-regions did not persist if they
were modeled by a simple loop structures like that of
the h-region of the signal anchor (results not shown), but
in that case performance—both in cleavage site location
and sequence type discrimination—went significantly down.
These results suggest that the h-region length does indeed
play an important part in discrimination between signal pep-
tides and signal anchors.

It is worth noting the differences between eukaryotes and
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Figure 4: The length distributions of the n-, h-, and c-regions of signal peptides, and n- and h-regions of signal anchors, as
assigned by the trained HMM models. The x-axis is length, and the histograms display the number of sequences in percent.



n-region h-region c-region
anc signal peptide anc signal peptide signal peptide
Euk Euk Gneg Gpos Euk Euk Gneg Gpos Euk Gneg Gpos

A 6.1 10.2 4.1 4.1 9.7 11.6 23.9 18.8 13.3 17.5 15.8
C 2.7 1.5 0.4 0.3 4.0 4.0 2.4 1.5 2.8 1.6 0.0
D 3.3 1.3 1.0 0.9 0.1 0.1 0.0 0.1 2.3 0.7 2.4
E 6.2 2.3 1.2 1.1 0.0 0.1 0.0 0.0 3.6 0.5 2.4
F 3.4 3.7 4.7 4.1 9.2 8.0 5.1 5.5 2.8 7.0 2.9
G 6.1 7.2 2.3 3.5 5.3 2.9 6.2 7.4 10.7 8.9 7.1
H 2.5 2.2 1.9 1.8 0.1 0.3 0.0 0.0 2.4 1.2 0.9
I 3.0 2.4 6.7 5.0 11.2 7.1 6.9 7.8 2.6 3.6 3.6
K 7.5 7.9 20.6 22.7 0.0 0.0 0.0 0.0 1.8 0.9 2.6
L 9.3 8.6 7.2 6.5 27.1 39.5 27.3 23.4 8.0 5.3 5.0
M 1.5 2.5 2.2 2.4 2.2 1.7 3.1 3.3 1.6 4.1 1.9
N 3.2 2.7 6.3 5.8 0.1 0.3 0.3 0.2 2.1 2.9 5.6
P 7.5 8.0 3.0 3.6 0.6 1.1 1.4 1.0 9.8 7.8 15.7
Q 4.1 3.8 3.7 2.9 0.6 0.6 0.1 0.1 5.1 3.1 5.1
R 12.2 10.4 12.7 17.0 0.0 0.1 0.2 0.1 3.2 1.2 1.4
S 9.7 10.8 7.2 6.9 4.1 4.8 7.8 8.7 11.9 19.3 9.1
T 4.3 5.3 7.2 5.3 5.3 3.7 5.4 8.5 6.9 8.0 11.2
V 3.2 4.5 3.8 3.7 15.9 11.7 9.0 12.8 6.2 4.8 6.5
W 2.1 2.9 1.4 0.4 1.2 1.6 0.4 0.5 1.6 0.4 0.2
Y 2.2 1.7 2.1 1.9 3.1 0.8 0.3 0.3 1.5 1.2 0.7

Table 3: Amino acid distributions in the n-, h-, and c-regions of signal peptides assigned by the trained HMM. Results are
shown for eukaryotes (Euk), Gram-negative bacteria (Gneg), and Gram-positive bacteria (Gpos). For the eukaryotes, n- and
h-regions of signal anchors (anc) are also included (the concept of c-regions does not apply to signal anchors). The c-regions
donot include the cleavage site consensus (position�3 through�1).

bacteria in Table 3: the positive charge in the h-region is
more dominant in bacteria (up to 40% Lys+Arg for the
Gram-positives), while eukaryotes have the most hydropho-
bic h-region with almost 40% Leu. In the c-region, the most
conspicuous feature is the high occurrence of Gly and Pro—
again, the Gram-positives stand out as the most extreme
group with almost 16% Pro.

Note also the difference between eukaryotic signal an-
chors and signal peptides: the n-regions of signal anchors
are more tolerant to the negatively charged residues Asp and
Glu; and the h-region is less dominated by Leu, allowing
higher proportions of other hydrophobic residues such as Ile
and Val.

Conclusion
In terms of accuracy of the cleavage site prediction, the neu-
ral network-based SignalP is slightly better than the hidden
Markov model described here. However, the HMM can be
used to label the three different regions of a signal peptide,
which yields quite surprising results. It was also demon-
strated that the HMM can discriminate well between signal
peptides, signal anchors, and other proteins. Because of the
small number of known signal anchors, it is not likely that a
neural network could be trained to discriminate so well.

An important application for the signal peptide HMM will
be analysis of whole genomes and other large datasets de-
rived from single species. Here, we have only considered
differences between three large groups of organisms, but it
is conceivable that further differences can be found within
these groups. Statistical analysis suggests a difference be-

tween mammalian and plant signal peptides (von Heijne &
Abrahmsén 1989), and there is experimental evidence that
a yeast signal peptide can be non-functional in mammalian
cells (Bird, Gething, & Sambrook 1987). The HMM can be
used to divide the signal peptides into regions and thereby
facilitate comparisons between these regions.

Archaea represent a special problem, since very few sig-
nal peptides are known experimentally from this domain of
life, and therefore it is not clear which, if any, of the Sig-
nalP versions will apply. An analysis of signal-peptide like
sequences fromMethanococcus jannaschiisuggests that its
signal peptides differ from both their eukaryotic and bacte-
rial counterparts (manuscript in preparation).

When analysing unknown sequences, it is important to
note that the type II membrane proteins addressed in this
work comprise only a small fraction of the transmembrane
proteins. In particular, we have not tested the performance of
neither the HMM nor the NN method on N-terminal parts of
multispanning (type IV) transmembrane proteins. A com-
bined model of signal peptides, signal anchors, and other
transmembrane helices is clearly needed.

Finally, it has not escaped our notice that the two-peaked
length distributions of h-regions might be correlated to a dif-
ference in translocation mechanism for two classes of signal
peptides; but this question demands further investigation be-
fore anything definitive can be said.
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