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Abstract

Background: Initial success of inhibitors targeting oncogenes is often followed by tumor relapse due to acquired
resistance. In addition to mutations in targeted oncogenes, signaling cross-talks among pathways play a vital role in
such drug inefficacy. These include activation of compensatory pathways and altered activities of key effectors in
other cell survival and growth-associated pathways.

Results: We propose a computational framework using Bayesian modeling to systematically characterize potential
cross-talks among breast cancer signaling pathways. We employed a fully Bayesian approach known as the p1-model
to infer posterior probabilities of gene-pairs in networks derived from the gene expression datasets of ErbB2-positive
breast cancer cell-lines (parental, lapatinib-sensitive cell-line SKBR3 and the lapatinib-resistant cell-line SKBR3-R,
derived from SKBR3). Using this computational framework, we searched for cross-talks between EGFR/ErbB and other
signaling pathways from Reactome, KEGG and WikiPathway databases that contribute to lapatinib resistance. We
identified 104, 188 and 299 gene-pairs as putative drug-resistant cross-talks, respectively, each comprised of a gene in
the EGFR/ErbB signaling pathway and a gene from another signaling pathway, that appear to be interacting in
resistant cells but not in parental cells. In 168 of these (distinct) gene-pairs, both of the interacting partners are
up-regulated in resistant conditions relative to parental conditions. These gene-pairs are prime candidates for novel
cross-talks contributing to lapatinib resistance. They associate EGFR/ErbB signaling with six other signaling pathways:
Notch, Wnt, GPCR, hedgehog, insulin receptor/IGF1R and TGF-β receptor signaling. We conducted a literature survey
to validate these cross-talks, and found evidence supporting a role for many of them in contributing to drug resistance.
We also analyzed an independent study of lapatinib resistance in the BT474 breast cancer cell-line and found the
same signaling pathways making cross-talks with the EGFR/ErbB signaling pathway as in the primary dataset.

Conclusions: Our results indicate that the activation of compensatory pathways can potentially cause up-regulation
of EGFR/ErbB pathway genes (counteracting the inhibiting effect of lapatinib) via signaling cross-talk. Thus, the
up-regulated members of these compensatory pathways along with the members of the EGFR/ErbB signaling
pathway are interesting as potential targets for designing novel anti-cancer therapeutics.

Keywords: Drug resisance, Signaling cross-talk, Bayesian statistical modeling, p1-model, EGFR signaling, Breast
cancer, Lapatinib

*Correspondence: aaza7@student.monash.edu
1School of Mathematical Science, Monash University, Wellington Road,
Clayton, VIC, Australia
Full list of author information is available at the end of the article

© 2015 Azad et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto: aaza7@student.monash.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Azad et al. BMC Systems Biology  (2015) 9:2 Page 2 of 17

Background
Cancer development involves a series of events, rang-

ing from tumorigenesis to metastasis, each of which may

be caused by perturbations in crucial signal transduction

pathways. Recently, drugs (inhibitors) specifically target-

ing critical components of signaling pathways known to

be up-regulated in specific cancers have been used in the

clinic. However, success of these inhibitors is limited by

the intrinsic potential of cancer cells to acquire drug resis-

tance. Recent advances in both clinical and laboratory

research have reported that cancer cells may adopt sev-

eral mechanisms against particular treatments including

adjusting the signaling circuitry, activation of alterna-

tive pathways and cross-talks among various pathways to

overcome the effects of inhibitors [1,2]. Resistance to a

particular drug such as EGFR (Epidermal Growth Factor

Receptor) tyrosine kinase inhibitors, may occur not only

due to cross-talks among EGFR-mediated pathways, but

also due to cross-talks with pathways triggered by other

receptors. Therefore, targeting signaling cross-talks may

have the potential to sensitize cancer cells to particular

inhibitors.

Drug resistance is a major obstacle in drug efficacy that

causes cancer cells to be insensitive to targeted inhibitor

therapies and/or conventional chemotherapeutic agents

[1,2]. However, there are two categories of resistance to

inhibitor therapies: de novo and acquired [3]. By defi-

nition, de novo resistance is a phenotypic characteristic

present before drug exposure where drugs with proven

efficacy fail to cause tumor cells to respond with any sig-

nificance [2,4,5]. Acquired resistance refers to a situation

where the initial sensitivity of tumor cells to drugs dis-

continues despite or due to continued consumption [2].

It has been reported that the underlying mechanisms of

both types of resistance are related, often due to mutation,

loss, or up-regulation of some other important signaling

proteins or pathways [2,5]. De novo drug resistance can

be determined by assessing the genetic profiles of tumors

for 1) oncogenic addictions to proteins or pathways and

2) other possible genetic alterations conferring resistance

[2]. Therefore, targeting de novo resistance can enhance

drug efficacy and reduce the chance of acquired resistance

[5]. Recently, characterizing drug-resistant tumors, and

analyzing cell lines that result from the continuous culture

of drug-sensitive cells in the presence of an inhibitor have

been shown to be successful approaches for identifying

changes responsible for acquired resistance [2].

Cross-talk among signaling pathways may play a vital

role in cancer drug resistance, especially in receptor tar-

geted therapies. For example, in EGFR/HER2 signaling

pathways, cross-talk with other signaling pathways may

occur at various levels of signal transduction: recep-

tor level, mediator level and effector level [1]. At the

receptor level, other RTKs (receptor tyrosine kinases)

having common downstream targets of EGFR/HER2 may

become involved in cross-talk with EGFR/HER2 signal-

ing pathways. In many cancers, these alternative RTKs

including MET, IGF1R, FGFR and EphA2 become acti-

vated or amplified in order to maintain the signals

for cell survival and/or proliferation in common down-

stream pathways, thus nullifying the inhibition of EGFR

kinase [6-10]. Cross-talk at mediator level includes the

activation/inactivation of major components of media-

tor pathways by mutation/deletion of oncogenic driver

genes, which eventually activates downstream effectors

[1]. These constitutive activations/inactivations of medi-

ator pathways are independent of receptors. The effect

of signaling cross-talk in drug resistance at effector level

is more complex and diverse since there may be numer-

ous effectors of RTKs signaling pathways. Resistance at

the effector level may occur when some critical effectors

(i.e. TSC, FOXO3) involved in cell survival and prolifera-

tion show an altered phenotype caused by other signaling

pathways via RTK signaling cross-talk [1]. Additionally,

inhibitor sensitivity can be affected by cross-talk between

signaling pathways triggered by the targeted RTK and

other signaling pathways (triggered by other RTKs). For

example, the EGFR/HER2 signaling pathway can cross-

talk with Wnt/β-catenin, Notch, and TNFα/IKK/NF-κB

signaling pathways to affect the EGFR/HER2 inhibitors’

sensitivities [1]. Cross-talk between effector pathways and

feedback inhibition is also responsible for the adaptive

and dynamic response of cancer cells against inhibitor

therapies, for example, compensating the inhibited com-

ponents to maintain key downstream functions, such as

cell survival, proliferation etc. [11].

Lapatinib is a dual tyrosine kinase inhibitor of EGFR and

ErbB2/HER2 receptors [12] that is used in combination

therapy of ErbB2/HER2-positive breast cancer patients

with advanced or metastatic tumors [13]. Several studies

have examined the mechanism underlying lapatinib resis-

tance at themolecular [14-16] and system level [17], active

in HER2-positive breast cancer cell-lines through signal-

ing pathways. Garrett et al. [14] reported over-expression

ofHER2 orHER3 in lapatinib-resistant SKBR3 and BT474

breast cancer cell lines. Over-expression of AXL tyrosine

kinase was found in the BT474 cell-line [16], but interest-

ingly a switched addiction from HER2 to FGFR2 pathway

caused the UACC812/LR cell-line to become resistant to

lapatinib [15]. Moreover, a detailed analysis of the global

cellular network by Komurov et al. [17] revealed that

up-regulation of the glucose deprivation response path-

way compensates for the lapatinib inhibition in SKBR3

cell-line by providing an EGFR/ErbB2-independent mech-

anism of glucose uptake and survival [17]. Thus, the

activation or up-regulation of compensatory pathways

confers poor sensitivity of inhibitors (i.e. lapatinib resis-

tance) in EGFR or ErbB2 targeted therapy [1,2,17]. The



Azad et al. BMC Systems Biology  (2015) 9:2 Page 3 of 17

identification and analyses of potential cross-talks among

the signaling pathways may provide deeper insights into

the mechanism of drug resistance, and can facilitate find-

ing a range of compensatory pathways for overcoming

resistance in targeted therapy.

In this study, we collected the gene expression val-

ues of the ErbB2-positive parental SKBR3 cell-line and

the lapatinib-resistant SKBR3-R cell-line, derived from

it, in the presence and absence of lapatinib [17]. Then

we used a fully Bayesian statistical modeling approach to

identify and analyze characteristic drug-resistant cross-

talks between EGFR/ErbB and other signaling pathways.

ln that process, we considered two gene-gene networks

originating from the gene expression matrices of both

parental and resistant conditions, individually. To say a

gene-pair involved in cross-talk between two particular

signaling pathways has high potential of being involved

in acquired drug-resistance, our research hypothesis was

it should have high probability of appearing in the resis-

tant network and low probability in the parental network.

The rationale behind our hypothesis was that in breast

cancer cell lines resistant to tamoxifen, a cross-talk mech-

anism has previously been identified between EGFR and

the IGF1R signaling pathway [18]. The schematic dia-

gram of our proposed framework is shown in Figure 1.

Like other biological processes, cancer signaling pathway

activities and their corresponding network data possess

stochasticity such that some gene-gene relationships (i.e.

network edges) may not always be present or detected,

whereas some other typical relationships may be absent.

The stochastic nature of biological systems can be used

to predict edge probabilities by formalizing them into a

probabilistic model with other network properties [19].

Hill et al. reported a data-driven approach that exploits a

Dynamic Bayesian Network (DBN) model to infer prob-

abilistic relationships between node-pairs in a context-

specific signaling network [20]. This study incorporates

existing signaling biology using an informative prior dis-

tribution on the network, and its weight of contribution

is measured with an empirical Bayes analysis, maximum

marginal likelihood. This study predicts a number of

known and unexpected signaling links through time that

are validated using independent targeted inhibition exper-

iments [20]. Here we have used a fully Bayesian approach

for inferring a probabilistic model: a special class of Expo-

nential Random Graph Model, namely the p1-model. We

used Gibbs sampling for estimating model parameters

with non-informative priors, in order to estimate the

posterior probabilities of edges in gene-gene relationship

networks. These identified cross-talks do not appear in

the parental network but only in the resistant one, because

the signaling network can be ‘rewired’ in a specific con-

text [21,22]. This idea resembles the approach taken by

Hill et al. in that they inferred the probabilities of signaling

links (gene-pairs) varying through time. Thus, these drug-

resistance cross-talks can be informative to elucidate the

complex mechanisms underlying drug-insensitivity and

can help to develop novel therapeutics targeting signaling

pathways.

Materials and method
Dataset

A global gene expression (GE) dataset (GSE38376) from

1) cells sensitive to lapatinib (said to be under "parental

conditions") and 2) cells with acquired resistance to lapa-

tinib was obtained from Komurov et al. [17]. Expression

values were measured using Illumina HumanHT-12 V3.0

expression beadchip (GPL6947). Samples include SKBR3

parental and resistant (SKBR3-R) each under basal condi-

tions and in response to 0.1 μM and 1 μM lapatinib after

24 hours, where the resistant cell line variant (SKBR3-R)

showed 100-fold more resistance to lapatinib treatment

than the parental SKBR3 cell line, as reported by Komurov

et al. [17]. These gene expression datasets used probe-

level annotation, which we converted into gene-level

annotation. To obtain gene-level GE values, probes were

mapped to gene symbols using the corresponding anno-

tation file (GPL6947). While mapping, the average GE

values were calculated across all probes if the same

gene symbol was annotated to multiple probes. Two GE

data matrices were constructed for parental SKBR3 cell

lines and resistant SKBR3-R cell lines, respectively, where

rows were labelled with gene symbols and columns were

labelled with different treatment conditions (0, 0.1 μM

and 1 μM of lapatinib).

Construction of a gene-gene relationship network

We define the gene-gene relationship network as GGR:=

(S,R) for each GE data matrix. Here, S is a set of 370 can-

cer related genes collected from the Cancer Gene Census

[23]. R is defined as the set of pair-wise relationships

among seed genes. A gene pair (genei, genej) is included

in R if the corresponding absolute Pearson Correlation

Coefficient (PCC) is above some threshold, and defined

as a pair-wise relationship. These threshold values were

empirically chosen for parental and resistant conditions

individually, based on the corresponding distributions of

all pairwise absolute PCC values. Note PCC values result-

ing from probes mapped to the same gene were trivially

ignored.

Bayesian statistical modeling ofGGR network

Networkmodel

For statistical modeling of networks, exponential fami-

lies of distributions offer robust and flexible parametric

models [24]. These probabilistic models can be used to
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Figure 1 Schematic diagram of our proposed framework. (A) The framework for finding putative drug-resistant cross-talks. At first two gene

expression data matrices were generated individually from the samples of both parental and resistant conditions. Next, based on pair-wise

correlations of genes’ expression values, two gene-gene relationship networks were derived. Then, a Bayesian statistical model called the p1-model

was applied on those two networks to find posterior probabilities of network edges. These posterior probabilities were used to find gene-pairs

potentially contributing to drug resistance. Next, these gene-pairs were analyzed for overlap with cross-talks between EGFR/ErbB and other

signaling pathways, and thus putative drug-resistant cross-talks were identified. (B) Hierarchical Bayesian model for inferring posterior probabilities

of network parameters. Here, α represents the propensity (expansiveness/attractiveness) of a gene to be connected in an undirected network, and

is dependent on the hyperparameter �; θ is the global density parameter; λij = log
(

nij
)

is the scaling parameter, which is fixed due to the

constraint
∑

k Yijk = 1; the hyperparameter τθ represents precision of the normal prior for the parameter θ .

evaluate the probability that an edge is present in the

network. They can also be used to quantify topological

properties of networks by summarizing them in a para-

metric form and associating sufficient statistics with those

parameters [19,24]. In this study, we use a special class of

exponential family distributions known as ERGM (Expo-

nential Random Graph Models), also known as the p1-

model, which was introduced by Holland and Leinhardt

[24].

A gene-gene relationship network with g genes can

be regarded as a random variable X taking values from

a set G containing all 2g(g−1) possible relationship net-

works [24,25]. Let u be a generic point of G which can

alternatively be denoted as the realization of X by X =

u. Let the binary outcome uij = 1 if genei interacts with

genej, or uij = 0 otherwise. Then u is a binary data

matrix [19]. Let Pr(u) be the probability function on G

given by

Pr(u) = Pr(X = u) =
1

κ (θ)
exp

∑

p

θpzp (u) (1)
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where zp(u) is the network statistic of type p, θp is the

parameter associated with zp(u) and κ(θ) is the normal-

izing constant that ensures Pr(u) is a proper probability

distribution (sums to 1 over all u inG) [26]. The parameter

θ is a vector of model parameters associated with network

statistics and needs to be estimated. See [24] for further

details.

A major limitation of the p1-model is the difficulty of

calculating the normalizing constant, κ(θ), since it is a

sum over the entire graph space. Estimating the maximum

likelihood of this model becomes intractable as there

are 2g(g−1) possible directed graphs (or 2
g(g−1)

2 undirected

graphs), each having g nodes (genes). A technique called

maximum pseudolikelihood estimation has been devel-

oped to address this problem [27]. This technique employs

MCMC methods such as Gibbs or Metropolis-Hastings

sampling algorithms [28].

The construction of the p1-model for a directed network

is described in an Appendix Additional file 1: Appendix

I. For the gene-gene relationship network with undirected

edges, the description of the p1-model can be simplified

by using only two Bernoulli variables Yij0 and Yij1 instead

of four as follows:

Yijk =

{

1 if uij = k,

0 otherwise

The simplified p1-model can then be defined using the

following two equations to predict the probability of an

edge being present between genei and genej:

log
{

Pr
(

Yij1 = 1
)}

= λij + θ + αi + αj (2)

log
{

Pr
(

Yij0 = 1
)}

= λij (3)

for i < j. Note that λij is chosen to ensure Pr
(

Yij0 = 1
)

+

Pr
(

Yij1 = 1
)

= 1. In this formulation, the expansiveness

and attractiveness parameters were reduced to a single

parameter, α, which represents the propensity of a gene

to be connected in an undirected network. Hence, the p1-

model seeks to find the probabilities of edge formation in

a network considering its structural features explicitly.

Bayesian modeling

We used a fully Bayesian approach for modeling our

gene-gene relationship network. Parameter estimation is

a crucial step in statistical modeling, for which a classical

approach is maximum likelihood estimation (MLE). How-

ever, unlike MLE, Bayesian techniques involve calculation

of posterior probabilities of model parameters by train-

ing the model with given data. We assume that the data D

follows the generative modelM, and assign a prior proba-

bility P (θ |M) to the parameter vector θ under the model

M. Then Bayes’ rule for calculating posterior probability

is as follows:

Pr (θ |M,D) =
Pr (D|θ ,M) × Pr (θ |M)

Z
(4)

where Pr (D|θ ,M) is the likelihood function. Now, the

marginal likelihood Z can be expressed as

Z = Pr (D|M) =

∫

Pr (D|M, θ) × P (θ |M)dθ , (5)

Computing the exact solution for the marginal likeli-

hood Z is often intractable since it is prone to the curse

of dimensionality. Fortunately, Markov Chain Monte

Carlo (MCMC) methods such as Gibbs sampling and

Metropolis-Hastings methods do not require Z to be

explicitly computed. In general, MCMC methods are

stochastic simulation techniques which generate samples

from the joint distribution P (M, θ |D) for calculating the

posterior probabilities of parameters. Here we used Gibbs

sampling methods, which sample iteratively, one parame-

ter at a time, from the full conditional distribution given

the current and previous values of all other parameters. To

implement Gibbs sampling, we employed WinBUGS [29],

which is a high-level software package providing an easy

interface for implementing complex Bayesian models. In

WinBUGS, users are free from background lower-level

programming details, and only have to express the model

precisely.

We hypothesized that gene-pairs involved in drug resis-

tance are likely to be found with high probabilities in

the resistant network but low probabilities in the parental

network. Therefore, we built two networks, one from

resistant datasets and the other from parental datasets. In

this Bayesian approach, the model likelihood is defined

in Equations (2) and (3), where Yk is the data matrix cal-

culated from the observed data u. Here we have two Yk
data matrices, namely a gene-gene relationship network

Yk
R derived from resistant samples and Yk

P derived from

parental samples.

Our approach is a hierarchical Bayesian model in that

model parameters are in turn dependent on hyperparam-

eters. We assign the density parameter θ in Equation (2)

a normal prior distribution with mean 0 and standard

deviation σθ .

θ ∼ N
(

0, σθ
2
)

(6)

Note, inWinBUGS the parameter τ , called the precision,

replaces the standard deviation parameter σ of the normal

distribution, where, τ = σ−2. For the hyperparameter τθ

we specify a gamma prior distribution as follows, since it

is a conjugate prior for the normal distribution:

τθ ∼ Gamma (a0, b0) (7)

We set a0 = 0.001 and b0 = 0.001 to make the

prior for θ noninformative, making its standard deviation

wide to express large uncertainty [19]. For attractiveness/
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expansiveness parameters αi and αj, we followed the

approach used by Adams et al. [30].
(

αR
i

αP
i

)

∼ N

((

0

0

)

,�

)

(8)

�−1 ∼ Wishart

((

1 0

0 1

)

, 2

)

(9)

Here, αR
i and αP

i represent the expansiveness/

attractiveness parameters for the network model of

resistant and parental conditions, respectively.

Drug resistant cross-talk prediction

Since, Lapatinib is an EGFR and ErbB inhibitor, we con-

sidered the cross-talks between the EGFR/ErbB signaling

pathway and other signaling pathways. Here cross-talks

can be defined as any gene-pair (genei, genej) in which

genei ∈ {genes in EGFR/ErbB signaling pathway} and

genej ∈ {genes in other signaling pathways}, or vice versa

[31]. Thus if both genes in any gene-pair were found

in the same signaling pathway, that particular gene-pair

was trivially ignored. For that purpose, we collected 24

signaling pathways from Reactome [32] (downloaded at

19/05/2014), 35 signaling pathways from KEGG [33,34]

(downloaded at 21/10/2014), and 63 signaling path-

ways fromWikiPathway [35] (downloaded at 16/10/2014)

databases. Each signaling pathway downloaded from these

databases was encoded as tab-delimitated lists of gene

symbols.

To determine whether a given gene-pair is involved in

drug resistance, we calculated a simple odds ratio of the

corresponding two posterior probabilities:

odds =
Pr

(

YR
ij1 = 1

)

Pr
(

YP
ij1 = 1

) (10)

where, YR
ij1 and YP

ij1 are gene-gene relationships defined

over resistant and parental networks, respectively, and

the probabilities are estimated using MCMC sampling.

We then selected only those gene-pairs for which the

odds score and Pr
(

uRij = 1
)

are greater than conservative

thresholds, and identified these as the gene-pairs which

are potentially involved in drug-resistance.

Results
Developing the network

For building gene-gene relationship networks, we con-

sidered the genes (nodes) from the Cancer Gene Census

[23] only, since our aim was to find those gene-gene

relationships which could be potential cross-talks among

cancer signaling pathways. In order to identify such gene-

pairs, we applied thresholds on their absolute Pearson

Correlation Coefficient (PCC) values. These thresholds

were 0.545 and 0.54 for parental and resistant conditions,

respectively, which we selected from the corresponding

distributions of all-pair absolute PCC values with the pur-

pose of considering approximately the top 20% gene-pairs

as pairwise relationships only. Applying these thresholds

to the relationship values, 27,865 and 26,865 pair-wise

relationships were identified in parental and resistant data

matrices, respectively.

Bayesian analysis

For the two gene-gene relationship networks Yk
R and Yk

P ,

Bayesian inference of the parameters of the p1-model for

an undirected network was applied. We used WinBUGS

for scripting this inference and our scripts were inspired

by Adams et al. [30]. We used 6000 MCMC iterations

for parameter estimation with the first 5000 as ‘burn-in’.

All the parameters in the p1-model appeared to converge

rapidly during the burn-in iterations (data not shown).

With the above settings, we estimated the posterior proba-

bilities of each edge (gene-gene relationship) Pr
(

Yij1 = 1
)

in the two networks Yk
R and Yk

P. For each edge, the pro-

portion of the 1000 sampled networks containing the edge

was considered as the posterior probability of that edge

being present in the network.

Next, for each edge we calculated the odds ratio of their

posterior probabilities as defined above. The rationale

behind this calculation was that the edges (gene-pairs)

found with high probabilities in resistant conditions but

lower probabilities in parental conditions are more likely

to be due to acquired resistance in cell lines. Therefore,

we chose only gene-pairs with high odds ratio (≥ 10.0)

and high posterior probabilities (≥ 0.5) of occurring in

resistant conditions. We found 11,515 such gene-pairs

(Additional file 2: Table S1) among all 68,265 [= (370 ×

369) ÷ 2] possibilities.

We then observed whether the above gene-pairs overlap

with the list of potential cross-talks between EGFR/ErbB

signaling and other signaling pathways. Here, we collected

24 signaling pathways from Reactome [32], 35 signaling

pathways from KEGG [33,34], and 63 signaling path-

ways from WikiPathway [35] databases, and respectively

identified 1,083 (841 distinct), 2,179 (1,050 distinct) and

3,084 (876 distinct) gene-pairs (Additional file 3: Table S2,

Additional file 4: Table S3 and Additional file 5: Table S4)

between EGFR/ErbB and other signaling pathways (see

Materials and method). Of the 11,515 gene-pairs identi-

fied above, we found 104 (97 distinct), 188 (99 distinct)

and 299 (96 distinct) gene-pairs overlap with the potential

EGFR cross-talks identified using Reactome, KEGG and

WikiPathway, respectively. Note the number of potential

cross-talks and the number of distinct gene-pairs are dif-

ferent because the same gene-pair can form cross-talks

between multiple pathway-pairs (pathways are overlap-

ping). We consider these overlapping gene-pairs as puta-

tive drug-resistant cross-talks between EGFR/ErbB and
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other signaling pathways. In these 104, 188 and 299 cross-

talks, we found candidate EGFR/ErbB cross-talks with 13,

26 and 51 other signaling pathways, respectively. More-

over, among all 104, 188 and 299 cross-talks from Reac-

tome, KEGG and WikiPathway, respectively, we found 32

distinct gene-pairs in at least two of these sets. Primary

findings and detailed descriptions of all these putative

cross-talks from the analyses of all three pathway sources

are listed in Table 1, and Additional file 6: Table S5,

Additional file 7: Table S6 and Additional file 8: Table S7,

respectively. The network views of all these cross-talk sets

from the analyses of individual pathway sources are shown

in Figure 2.

Netwalker analyses

We conducted further analyses using Netwalker, a net-

work analysis suite for functional genomics [36]. In this

analysis, we observed the changes in GE values for each

gene in the identified list of potential cross-talks. This

was to verify our expectation that, since lapatinib is

an EGFR/ErbB inhibitor, both genes involved in drug-

resistant cross-talks should be up-regulated in resistant

conditions compared to parental conditions, which may

imply that the activation of other compensatory signal-

ing pathways in resistant conditions can play a role in

acquired resistance to inhibitors by activating the targeted

pathway(s) [1,17]. Therefore, for all 67 genes involved in

the above sets of 104, 188 and 299 drug-resistant cross-

talks from Reactome, KEGG and WikiPathway, respec-

tively, we made a heatmap image of GE values from both

conditions (parental and resistant) (Figure 3A). For both

resistant and parental conditions, we first averaged the

gene expression values from the three samples corre-

sponding to the three treatment conditions. Then these

averaged gene expression values were transformed into

z-scores (zero mean, unit standard deviation) and each

z-score was normalized with the maximum of the abso-

lute values of the z-scores across that particular gene.

We observed that in 28 of these 67 genes (involved in

168 cross-talks), gene expression in one or more resis-

tant conditions (0, 0.1 μM and 1 μM of lapatinib) was

up-regulated relative to all the parental conditions (0, 0.1

μM and 1 μM of lapatinib) (Figure 3B) which may signify

the insensitivity of these genes to inhibitors under resis-

tant conditions. Note for Figure 3B only those genes are

depicted for which both genes in some identified cross-

talk had average GE values at resistant conditions greater

than the average GE values at parental conditions.

For these 28 selected genes (168 cross-talks), we

observed the relative changes in GE values (parental vs

resistant conditions) in their candidate signaling path-

ways. First we analyzed EGFR signaling pathway from

Reactome and found that many of the constituent genes

were up-regulated in one (or more) resistant conditions

whereas in all of their corresponding parental conditions

they were down-regulated (Additional file 1: Figure S1).

These 168 selected cross-talks associated EGFR (or ErbB)

signaling pathways with 6 other signaling pathways that

were found in at least two different pathway analyses

(i.e. Reactome and KEGG, or KEGG and WikiPathway,

or Reactome and WikiPathway). In those 6 other signal-

ing pathways, we also observed a similar phenomenon

as above (Additional file 1: Figure S1). These 6 signaling

pathways are Notch signaling (in Reactome, KEGG and

WikiPathway), Wnt signaling (in Reactome, KEGG and

WikiPathway), insulin receptor/IGF1R signaling (in Reac-

tome and WikiPathway), GPCR signaling (in Reactome

and WikiPathway), hedgehog (in KEGG and WikiPath-

way), and TGF-β receptor signaling (in Reactome and

WikiPathway). Again, for many of the constituent genes of

these 6 signaling pathways, expression was up-regulated

in at least one of the resistant conditions whereas in all

the corresponding parental conditions they were down-

regulated. Primary findings regarding these 168 selected

drug-resistant cross-talks are listed in Additional file 9:

Table S8, and the top 50 of those 168 cross-talks (based on

sorted Odds ratio) are shown in Table 2.

Signaling cross-talk between EGFR/ErbB and other

signaling pathways

Cross-talk between EGFR/ErbB and Notch signaling

We investigated literature evidence regarding the putative

cross-talks between EGFR/ErbB signaling and other sig-

naling pathways. We found AKT2:MAML2 (in Reactome

Table 1 Primary findings from the analyses using signaling pathways from Reactome, KEGG andWikiPathway in breast

cancer cell-line: SKBR3 (GSE38376)

Pathway # of signaling Pathway of All Distinct All putative Distinct # of other

source pathways interest Cross-talks gene-pairs§ drug-resistant gene-pairs¶ signaling

of interest cross-talks pathways

REACTOME 23 EGFR 1,083 841 104 97 13

KEGG 35 ErbB 2,179 1,050 188 99 26

WikiPathway 63 ErbB 3,084 876 299 96 51

¶Number of distinct gene-pairs involved in all EGFR/ErbB cross-talks with all other signaling pathways; §Number of distinct gene-pairs commonly involved in all

EGFR/ErbB cross-talks and drug resistance.
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Figure 2 Network view of (A) 104, (B) 188, and (C) 299 putative drug-resistant cross-talks between pathways using Reactome, KEGG, and

WikiPathway pathway databases in Breast Cancer Cell-line: SKBR3 (GSE38376). Nodes are genes, and the edges are the cross-talks. Note, all

the cross-talks here possess posterior probabilities of appearing in resistant network ≥ 0.5 and Odds Ratio ≥ 10.0, which means the posterior

probabilities of that cross-talk for appearing in parental network is ≤ 0.05.
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Figure 3 Heatmap of genes in putative drug-resistant cross-talks in breast cancer cell-line: SKBR3 (GSE38376). Heatmap image of

comparative gene expression changes of parental and resistant conditions in (A) all 67 genes in all 104, 188 and 299 putative drug-resistant cross-

talks using signaling pathways from Reactome, KEGG and WikiPathway database, respectively, and (B) 28 selected genes based on their differential

regulation. Here, for each gene, the expression value at each of the 6 conditions (3 parental conditions, and 3 resistant conditions) is the average

value of 3 sample patients [17]. For each gene, these 6 expression values (each of them is the average of 3 samples) were transformed into z-scores

(zero mean, unit standard deviation) and each z-score was normalized with the maximum absolute value of the z-scores across that particular gene.

Note, (B) includes only those genes which belonged to gene-pairs for which the average of GE values at resistant conditions was greater than the

average of GE values at parental conditions. For both (A) and (B), red and green bars indicate up-regulation and down-regulation, respectively.

and KEGG), AKT2:TP53 (in Reactome), AKT2:MYC (in

Reactome), KIT :MAML2 (in Reactome), KIT :TP53 (in

Reactome),MDM2:MAML2 (in Reactome and WikiPath-

way), MDM2:TP53 (in Reactome), and TP53:MAML2 (in

WikiPathway) gene-pairs as putative cross-talks between

EGFR/ErbB signaling and Notch signaling pathways. Up-

regulation of the Notch signaling pathway inhibits apop-

tosis and thus contributes to breast carcinogenesis [37].

The Notch signaling pathway cross-talks with EGFR/ErbB

signaling at the mediator level [1], e.g. when activated,
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Notch1 contributes to cell growth and survival via Akt-

activation in melanoma [38]. The Notch1 co-activator

complex binds to the HES1 promoter [39] which encodes

a transcription repressor that represses the expression of

PTEN, a PI3K/Akt pathway inhibitor [40] contributing to

tyrosine kinase inhibitor (TKI) resistance. Furthermore,

Notch1 stimulates MYC transcription [41] and this stim-

ulation can lead to the down-regulation of MYC via the

Akt-pathway [42,43]. This putative gene-pair, AKT2:MYC

was also found in our results as a potential drug-resistant

cross-talk between the EGFR/ErbB and TGF-β receptor

signaling pathways. Again, in HER2/neu-mediated resis-

tance toDNA-damaging agents, theAkt pathway becomes

activated which eventually suppresses p53 functions via

enhancing MDM2-mediated ubiquitination [44]. Protein-

protein interaction between MDM2 and p53 is evident as

contributing to various cancer related activities [45,46].

Cross-talk between EGFR/ErbB andWnt signaling

We found MDM2:APC (in Reactome and WikiPath-

way), KIT :CDC73 (in Reactome), MDM2:CDC73

(in Reactome), CBL:APC (in Reactome and KEGG),

PDGFRA:APC (in Reactome), and CBL:CDC73 (in

Reactome), AKT2:APC (in KEGG), AKT2:TP53 (in

KEGG), and TP53:APC (in WikiPathway) as putative

drug-resistant cross-talks between EGFR/ErbB and Wnt

signaling pathways. Deregulation of the Wnt/β-catenin

signaling pathway plays a critical role in various cancers

including breast, colorectal, pancreatic and colon can-

cer [47,48], and its association with drug-resistance has

been studied by several research groups [47-50]. Recently,

it has been reported that resistant cell lines exhibited

increased Wnt signaling in both breast and colon cancer

[49,50]. Loh et al. showed that genes in the Wnt signaling

pathway, in both the β-catenin dependent (AXIN2, MYC,

CSNK1A1) and the independent arms (ROR2, JUN), were

up-regulated in cell lines resistant to tamoxifen com-

pared to the parental MCF7 cell line [49]. Furthermore,

ROR1, a constituent gene of Wnt signaling pathway,

plays a sustainer role in EGFR-mediated prosurvival sig-

naling in lung adenocarcinoma via signaling cross-talk

and was therefore reported to be a potential therapeu-

tic target [51]. APC and MDM2 in the MDM2:APC

cross-talk are both tumor suppressors; they co-regulate

DNA polymerase-β [52,53] which is reported to be

hyper-activated in a cis-diamminedichloroplatinum(II)

resistant P388 murine leukemia cell line [54]. Again,

β-catenin whose stability is negatively regulated by APC

[55], confers resistance to PI3K/Akt inhibitors in colon

cancer [56].

Cross-talk between EGFR/ErbB and GPCR signaling

Between EGFR/ErbB and GPCR signaling pathways,

we found KIT :GNAQ (in Reactome), MDM2:GNAQ (in

Reactome and WikiPathway), CBL:GNAQ (in Reactome),

FGFR2:GNAQ (in Reactome), PDGFRA:GNAQ (in Reac-

tome), KIT :TSHR (in Reactome), MDM2:TSHR (in Reac-

tome), CBL:TSHR (in Reactome), PDGFRA:TSHR (in

Reactome), KIT :GNAS (in Reactome), MDM2:GNAS (in

Reactome and WikiPathway), KIT :SMO (in Reactome),

MDM2:SMO (in Reactome), TP53:GNAQ (in WikiPath-

way), and MYC:GNAQ (in WikiPathway). GPCR-like sig-

naling contributes to acquired drug resistance after being

mediated by Smoothened (SMO) via activating Gli, a

canonical hedgehog (Hh) transcription factor [57]. GPCR

and EGFR/ErbB over-expression often contributes to can-

cer growth. Cross-talk between the two at the receptor

level contributes to HNSCC (head and neck squamous

cell carcinoma) via triggering EGFR/ErbB signaling by

a GPCR ligand [58]. For the MDM2:SMO cross-talk,

found between the EGFR/ErbB and GPCR signaling path-

ways, a SMO-mutant from Hh signal transducer activates

PI3K/Akt/Gli pathway that eventually increases MDM2

phosphorylation [59]. This in turn increases MDM2-

mediated p53 degradation and thus reduces p53-induced

apoptosis [59]. Furthermore, recently it has been reported

that SMO (Hh signal transducer) functions like a G-

protein coupled receptor due to its structural resemblance

to GPCRs [60,61] which may be further evidence for a

drug-resistant cross-talk between hedgehog signaling and

EGFR/ErbB signaling [1].

Cross-talk between EGFR/ErbB and IR (insulin

receptor)/IGF1Rsignaling

Several studies have reported extensive cross-talk

between IR (insulin receptor)/IGF1R (insulin-like growth

factor-1 receptor) and EGFR/ErbB signaling pathways

contributing to acquired drug resistance in various

cancers [62-64]. Loduvini et al. reported significant cor-

relation between worse disease-free survival and high

co-expression of both EGFR/ErbB and IGF1R in NSCLC

(non-small-cell lung cancer) patients [65]. EGFR/ErbB

can physically interact with other non-ErbB family recep-

tors at the cell surface and can form heterodimers with

receptors like IGF1R, PDGFR etc. [62]. Moreover, the

EGFR/ErbB and IGF1R pathways can also cross-talk indi-

rectly via physical interactions between their downstream

shared-components [62]. It has been reported recently

that gefitinib (an EGFR TKI) inhibits the phosphory-

lation of IRS1 by IR, but also triggers the association

between IRS1 and IGF1R which in turn induces drug-

resistance [66]. Knowlden et al. showed the cross-talk

between IGF1R and EGFR signaling pathways occurred

in tamoxifen-resistant MCF7 and T47D breast cancer

cell-lines but not in non-resistant cells [18]. Our find-

ings suggest KIT :STK11 (in Reactome), MDM2:STK11

(in Reactome), MDM2:AKT2 (in WikiPathway), MYC:

AKT2 (in WikiPathway), TP53:AKT2 (in WikiPathway),
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MDM2:CBL (in WikiPathway), MDM2:SOCS1 (in Wiki-

Pathway), and TP53:SOCS1 (in WikiPathway) as puta-

tive drug-resistant cross-talks between the IGF1R/IR

and EGFR/ErbB signaling pathways. For the MDM2 and

STK11 (also known as LKB1) genes, which we identified

as a putative cross-talk between EGFR and IGF1R sig-

naling, we did not find any direct supporting evidence in

the literature. However, this association is plausible in the

resistant conditions given that Yamaguchi et al. suggested

EGFR signaling may cross-talk with the AMPK/LKB

signaling pathway [1]. Moreover, Levine et al. reported

interconnections between p53 and IGF1R/AKT/mTOR

pathways where both LKB1 and MDM2 participate in a

series of pathway cross-talks [67].

Validation of the framework using BT474 cell-line

(GSE16179)

To further illustrate our method, we analysed a second

dataset (GSE16179) containing gene expression profiles

of breast cancer cell-line BT474 under two conditions

(parental and lapatinib resistant) [16]. The reason for

choosing this dataset was that it was obtained using

a similar experimental design to the primary dataset

GSE38376, but with an additional treatment condition

using foretinib (GSK1363089) only and with combined

drug use (lapatinib + foretinib). There were three sam-

ples per treatment condition. However, to adapt simply

and be coherent with the previous experiment, we only

considered expression values of parental conditions (3

samples with basal condition: GSM799168, GSM799169

and GSM799170; 3 samples with 1 μM of lapatinib treat-

ment: GSM79917, GSM799172 and GSM799173), and

the same conditions with lapatinib resistant cells (3 sam-

ples with basal condition: GSM799174, GSM799175 and

GSM799176; 3 samples with 1 μM of lapatinib treatment:

GSM799180, GSM799181 and GSM799182). Among the

375 cancer genes from Cancer Gene Census [23], there

were 357 genes which had gene expression values. We

identified 27,358 and 26,292 pair-wise gene-gene rela-

tionships (undirected edges) in resistant and parental

networks by applying the thresholds 0.71 and 0.81, respec-

tively. Bayesian inference of the p1-model parameters for

an undirected network was applied to these two gene-

gene relationship networks as before. Thereafter, among

all 63,546 [= (357×356)÷2] possibilities, we found 10,811

gene-pairs (Additional file 10: Table S9) with the same

thresholds of odds ratio (≥10.0) as previously, but smaller

posterior probability (≥0.15) of occurring in the resistant

network. With this set of putative drug-resistant gene-

pairs, we also observed the overlap of potential cross-talks

of EGFR/ErbB with other signaling pathways using Reac-

tome, KEGG and WikiPathway databases. We found 83

(72 distinct), 133 (87 distinct) and 277 (81 distinct) cross-

talks between EGFR/ErbB and other signaling pathways

from Reactome, KEGG and WikiPathway (Additional

file 11: Table S10, Additional file 12: Table S11 and Addi-

tional file 13: Table S12), respectively. The numbers of sig-

naling pathways that were involved in those EGFR/ErbB

cross-talks were 10, 18 and 54, respectively. Among the 83,

133 and 277 cross-talks, we found 50 distinct gene-pairs

in at least two of these sets. Table 3 shows the comparative

findings between our primary dataset (SKBR3 cell-line,

GSE38379) and our secondary dataset (BT474 cell-line,

GSE16179). In Table 3, we show that some important sig-

naling pathways that were involved in the EGFR/ErbB

cross-talks (i.e. Notch, WNT, GPCR, IR/IGF1R, TGF-β

signaling pathways) in our primary dataset, have some

overlap with our secondary dataset.

There were 78 genes involved in these sets of 83, 133

and 277 putative cross-talks.We performed a similar Net-

walker analyses with these 78 genes as we did for the

dataset GSE38376, and found 37 genes (involved in 86

cross-talks (Additional file 14: Table S13)) consistent with

our hypothesis that both genes in a particular cross-talk

should be up-regulated in resistant conditions but down-

regulated in parental conditions. In Figure 4, the selected

genes from the secondary dataset exhibit an even clearer

pattern of up-regulation in resistant conditions than the

selected genes from our primary dataset.

Discussion
In this study, we developed a computational framework

to systematically predict signaling cross-talks between

EGFR/ErbB and other signaling pathways that contribute

to lapatinib (an EGFR and ErbB2/HER2 inhibitor) resis-

tance. We hypothesized that gene-pairs (cross-talks) that

can potentially cause drug-resistance have a high proba-

bility of occurring in the resistant condition(s) but a low

probability in parental conditions. We employed a fully

Bayesian statistical model: a special class of Exponen-

tial Random Graph Model known as the p1-model, to

infer the posterior probabilities of such gene-pairs from

corresponding networks inferred using gene expression

values [17] of resistant and parental conditions. In select-

ing gene-pairs as putative cross-talks, threshold values for

two parameters: odds and posterior probabilities of edges

in resistant networks were empirically selected. How-

ever, more robust procedures for the selection of these

two parameters can be made in future studies. All other

parameters in the p1-model discussed above were esti-

mated using Gibbs sampling (see Materials and method).

Our results primarily focus on compensatory signal-

ing pathways i.e. Notch signaling, Wnt signaling, GPCR

signaling, and IR/IGF1R signaling, which cross-talk with

EGFR/ErbB signaling to reduce the inhibiting effect of lap-

atinib. We present additional literature evidence that the

identified cross-talks of the above compensatory signal-

ing pathways with EGFR/ErbB signaling may contribute
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Table 2 Description of top 50 (based on sorted Odds ratio) cross-talks among all 168 potential drug-resistant cross-talks

between EGFR/ErbB signaling and other pathways from all the analyses using Reactome, KEGG andWikiPathway

databases in GSE38376

genei ::genej EGFR/ErbB :: Pr
(

YR
ij

= 1
)

Pr
(

YP
ij

= 1
)

Odds ratio Avg
(

GEP
i

)

: Avg
(

GER
i

)

:

Signaling pathwayj Avg
(

GEP
j

)

Avg
(

GER
j

)

AKT2::MAML2§ ,¶ Notch signaling 0.5 0.03 16.67 87.71::76.59 96.84::78.6

MDM2::APC§ ,$ Wnt signaling 0.5 0.03 16.67 76.33::82.43 77.9::86.76

KIT::CDC73§ Wnt signaling 0.5 0.03 16.67 82.14::104.01 82.68::110.88

MDM2::CDC73§ Wnt signaling 0.5 0.03 16.67 76.33::104.01 77.9::110.88

KIT::GNAQ§ GPCR signaling 0.5 0.03 16.67 82.14::130 82.68::139.33

MDM2::GNAQ§ ,$ GPCR signaling 0.5 0.03 16.67 76.33::130 77.9::139.33

KIT::TSHR§ GPCR signaling 0.5 0.03 16.67 82.14::71.32 82.68::71.66

MDM2::TSHR§ GPCR signaling 0.5 0.03 16.67 76.33::71.32 77.9::71.66

AKT2::APC¶ Wnt signaling 0.5 0.03 16.67 87.71::82.43 96.84::86.76

AKT2::APC¶ Hippo signaling 0.5 0.03 16.67 87.71::82.43 96.84::86.76

AKT2::CDH1¶ Hippo signaling 0.5 0.03 16.67 87.71::74.2 96.84::79.8

AKT2::GNAQ¶ Gnrh signaling 0.5 0.03 16.67 87.71::130 96.84::139.33

AKT2::GNAQ¶ Calcium signaling 0.5 0.03 16.67 87.71::130 96.84::139.33

AKT2::MDM2¶ p53 signaling 0.5 0.03 16.67 87.71::76.33 96.84::77.9

MDM2::AKT2$ Regulation of toll-like 0.5 0.03 16.67 76.33::87.71 77.9::96.84

receptor signaling

MDM2::AKT2$ insulin signaling 0.5 0.03 16.67 76.33::87.71 77.9::96.84

MDM2::AKT2$ RANKL/RANK signaling 0.5 0.03 16.67 76.33::87.71 77.9::96.84

MDM2::AKT2$ AMPK signaling 0.5 0.03 16.67 76.33::87.71 77.9::96.84

MDM2::AKT2$ MAPK signaling 0.5 0.03 16.67 76.33::87.71 77.9::96.84

MDM2::AKT2$ Tweak signaling 0.5 0.03 16.67 76.33::87.71 77.9::96.84

MDM2::AKT2$ Toll-like 0.5 0.03 16.67 76.33::87.71 77.9::96.84

receptor signaling

MDM2::APC$ BDNF signaling 0.5 0.03 16.67 76.33::82.43 77.9::86.76

MDM2::APC$ Wnt signaling Netpath 0.5 0.03 16.67 76.33::82.43 77.9::86.76

MDM2::APC$ Wnt signaling 0.5 0.03 16.67 76.33::82.43 77.9::86.76

and Pluripotency

MDM2::COL1A1$ Nanoparticle-mediated 0.5 0.03 16.67 76.33::91.44 77.9::102.54

activation of receptor

signaling

MDM2::COL1A1$ Osteoblast signaling 0.5 0.03 16.67 76.33::91.44 77.9::102.54

MDM2::GNAQ$ TSH signaling 0.5 0.03 16.67 76.33::130 77.9::139.33

MDM2::GNAQ$ Serotonin Receptor 2 0.5 0.03 16.67 76.33::130 77.9::139.33

and STAT3 signaling

MDM2::GNAQ$ Serotonin Receptor 2 0.5 0.03 16.67 76.33::130 77.9::139.33

and ELK-SRF/GATA4

signaling

MDM2::ITK$ T-Cell Receptor and 0.5 0.03 16.67 76.33::89.86 77.9::93.27

Co-stimulatory signaling

MDM2::ITK$ Tcr signaling 0.5 0.03 16.67 76.33::89.86 77.9::93.27

MDM2::KIT$ Kit receptor signaling 0.5 0.03 16.67 76.33::82.14 77.9::82.68
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Table 2 Description of top 50 (based on sorted Odds ratio) cross-talks among all 168 potential drug-resistant cross-talks

between EGFR/ErbB signaling and other pathways from all the analyses using Reactome, KEGG andWikiPathway

databases in GSE38376 (Continued)

MDM2::PAX5$ ID signaling 0.5 0.03 16.67 76.33::68.91 77.9::71.02

MDM2::TSHR$ TSH signaling 0.5 0.03 16.67 76.33::71.32 77.9::71.66

AKT2::TP53§ Notch signaling 0.5 0.04 12.5 87.71::128.73 96.84::155.09

KIT::APC§ Wnt signaling 0.5 0.04 12.5 82.14::82.43 82.68::86.76

KIT::MAML2§ Notch signaling 0.5 0.04 12.5 82.14::76.59 82.68::78.6

KIT::STK11§ IGF1R signaling 0.5 0.04 12.5 82.14::71.97 82.68::74.95

KIT::STK11§ insulin receptor signaling 0.5 0.04 12.5 82.14::71.97 82.68::74.95

KIT::TP53§ Notch signaling 0.5 0.04 12.5 82.14::128.73 82.68::155.09

MDM2::MAML2§ ,$ Notch signaling 0.5 0.04 12.5 76.33::76.59 77.9::78.6

MDM2::STK11§ IGF1R signaling 0.5 0.04 12.5 76.33::71.97 77.9::74.95

MDM2::STK11§ insulin receptor signaling 0.5 0.04 12.5 76.33::71.97 77.9::74.95

MDM2::TP53§ Notch signaling 0.5 0.04 12.5 76.33::128.73 77.9::155.09

AKT2::GNAS¶ Gnrh signaling 0.5 0.04 12.5 87.71::5465.46 96.84::6212.43

AKT2::GNAS¶ Calcium signaling 0.5 0.04 12.5 87.71::5465.46 96.84::6212.43

AKT2::NF2¶ Hippo signaling 0.5 0.04 12.5 87.71::85.75 96.84::87.36

AKT2::TP53¶ P53 signaling 0.5 0.04 12.5 87.71::128.73 96.84::155.09

AKT2::TP53¶ Wnt signaling 0.5 0.04 12.5 87.71::128.73 96.84::155.09

CBL::CDH1¶ RAP1 signaling 0.5 0.04 12.5 194.46::74.2 208.45::79.8

Cross-talks found using signaling pathways from §Reactome, ¶KEGG, and $WikiPathway Databases; Pathwayj is the pathway containing genej ; Pr
(

YRij = 1
)

and

Pr
(

YPij = 1
)

are the posterior probabilities of genei :genej in Resistant and Parental networks, respectively; Avg
(

GEPi

)

is the average GE value of all Parental conditions

(each of which is an average of 3 samples) for genei , Avg
(

GERi

)

is similar but with Resistant conditions, and others are likewise similar.

to drug-resistance by maintaining key cell survival and/or

proliferation signals in common down-stream pathways,

including PI3K/Akt signaling [1].

Komurov et al. [17] hypothesized that cross-talks

between EGFR/ErbB signaling and metabolic pathways

contribute to resistance to lapatinib. More specifically,

they identified that glucose deprivation reduces the

inhibiting effects of lapatinib by up-regulating con-

stituent genes and thus providing an EGFR/ErbB2-

independent mechanism of glucose uptake and cell sur-

vival [17]. Here, by using the same gene expression

datasets, we found MDM2:STK11 cross-talk between

EGFR/ErbB and IGF1R signaling, where STK11 (also

known as LKB1) phosphorylates and activates AMPK in

absence of glucose [67]. Again, in the integrated signal-

ing circuitry of pathways: p53-IGF-1-AKT-TSC2-mTOR,

a positive feedback loop (p53-PTEN AKT-MDM2-p53)

is formed which enhances p53-mediated apoptosis and

senses nutrient deprivation [67]. Thus our results com-

plement the findings of Komurov et al. by finding

signaling cross-talks between EGFR/ErbB and IGF1R

pathways.

In Netwalker analysis of our primary dataset (SKBR3

cell-line, GSE38376),we compared the expression changes

of all the samples in parental conditions (basal, 0.1 μM

and 1.0 μM) with those of all the samples in resistant

conditions (basal, 0.1 μM and 1.0 μM). However, we

conducted another experiment on both of our primary

(SKBR3 cell-line, GSE38376) and secondary datasets

(BT474 cell-line, GSE16179) in which we first identified

genes dysregulated in treatment vs basal conditions in

parental samples and then checked if those genes were

reversely changed in treatment conditions in resistant

samples. To that end, for each sample, first we calcu-

lated the fold-change(s) of parental treatment condition(s)

compared to parental basal condition, and then we cal-

culated the fold-changes of resistant basal and resistant

treatment conditions compared to parental basal condi-

tion (Additional file 1: Figure S2A and S3A). Then, we

chose only those genes for which, in any of the 3 sam-

ples, expressions were dysregulated (up-/down-regulated)

in (all the) parental treatment condition(s) (log2 of fold-

changes were positive/negative), and for that particular

sample, expressions were reversely changed (the fold-

change sign was opposite to that of parental condition)

in all the resistant treatment conditions (Additional file

1: Figure S2B and S3B). This may be a strong indicator

of sensitivity to an inhibitor in parental conditions and
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Table 3 Comparative results betweenprimary dataset (SKBR3 cell-line, GSE38376) and validationdataset (BT474

cell-line, GSE16179)

Pathway name Found in Pathway source Found in Pathway source Common cross-talks in both Studies¶

(GSE38376) (GSE16179)

Notch Signaling Reactome, Reactome, MAP2K4::NOTCH1

KEGG, KEGG,

WikiPathway WikiPathway

GPCR signaling Reactome, Reactome, CBL::TSHR

WikiPathway WikiPathway FGFR1::TSHR

PDGFRA::GNAQ

KIT::TSHR

LCK::TSHR

MDM2::TSHR

PDGFRA::TSHR

WNT Signaling Reactome, Reactome, AKT2::CCND2

KEGG, KEGG, MAP2K4::CCND2

WikiPathway WikiPathway MAP2K4::TP53

MDM2::MAP2K4

Insulin (IGF1R) Signaling Reactome, Reactome, MDM2::MAP2K4

WikiPathway WikiPathway TP53::MAP2K4

TGF-β Signaling Reactome, Reactome, MDM2::TFE3

WikiPathway KEGG, TP53::TFE3

WikiPathway

MAPK signaling KEGG, KEGG, MDM2::MAP2K4

WikiPathway WikiPathway

¶These common cross-talks were found using the primary dataset (104, 188 and 299 cross-talks from Reactome, KEGG and WikiPathway databases, respectively) and

validation datasets (83, 133 and 277 cross-talks from Reactome, KEGG andWikiPathway databases, respectively). Cross-talks mentioned with Bold face are those

consistent with our hypothesis that both genes in the particular cross-talk are up-regulated in resistant conditions but down-regulated in parental conditions.

the development of acquired resistance. Next, we com-

pared these selected genes to cross-talks found in results

from GSE38379 (104, 188 and 299 EGFR/ErbB cross-talks

from Reactome, KEGG and WikiPathway, respectively)

and GSE16179 (83, 133 and 277 EGFR/ErbB cross-talks

from Reactome, KEGG and WikiPathway, respectively).

Although we didn’t find any such cross-talks overlapping

with the results from the primary dataset (GSE38379),

we found 401 from our secondary dataset (GSE16179)

(Additional file 15: Table S14).

Currently, our network modeling only considers undi-

rected edges among genes. In future we would like to

generalise the approach to identify directed and indi-

rect interactions among genes. In network modeling,

a combination of both direct and indirect relation-

ships among gene-pairs was found to provide better

insights into biological systems in our previous stud-

ies [68]. The rationale for combining these two types

of gene-gene relationships in signaling networks is that

EGFR/ErbB and IGF1R can both cross-talk (EGFR/IGF1R

heterodimerization) directly at the receptor level, and

indirectly mediated by GPCR signaling, as reported

by Van der Veeken et al. [62]. Other high-throughput

datasets such as miRNA expression data, copy number

aberration data, and methylation data could also be incor-

porated into our framework to obtain a better under-

standing of gene dependencies. Note that our method-

ology exploits a fully data-driven approach for finding

putative drug-resistant cross-talks, without incorporat-

ing other prior information regarding gene-gene rela-

tionships, such as Protein-Protein Interactions. Hence,

although our data-driven approach may inherently yield

some false-positive predictions, it may also provide the

possibilities of finding novel cross-talks contributing to

drug- resistance.

Conclusions
Our proposed computational framework is able to pre-

dict putative cross-talks among signaling pathways that
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Figure 4 Heatmap of genes in putative drug-resistant cross-talks in breast cancer cell-line: BT474 (GSE16179). Heatmap image of

comparative gene expression changes of parental and resistant conditions in (A) all 78 genes in all 83, 133 and 277 putative drug-resistant

cross-talks using signaling pathways from Reactome, KEGG and WikiPathway database, respectively, and (B) 37 selected genes based on their

differential regulation. Here, for each gene, the expression value at each of the 4 conditions (2 parental conditions, and 2 resistant conditions) is the

average value of 3 sample patients [16]. For each gene, these 4 expression values (each of them is the average of 3 samples) were transformed into

z-scores (zero mean, unit standard deviation) and each z-score was normalized with the maximum absolute value of the z-scores across that

particular gene. For both (A) and (B), red and green bars indicate up-regulation and down-regulation, respectively.

play a role in drug resistance in two breast cancer

cell-lines, SKBR3 and BT474. Our framework could also

be useful for other types of cancer to enhance understand-

ing of the role of signaling cross-talks in drug resistance.

Most importantly, we believe our method can be used to

find a range of compensatory pathways that nullify/reduce

the inhibiting effects of drugs via cross-talk with targeted

pathways. These novel compensatory pathways can be

further considered as novel targets for single or combina-

tion therapies.
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