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1. Introduction

Multivariate modeling has gained popularity in several
process industries, especially in the petrochemical sector.
The Partial Least Square (PLS) is one of the various multi-
variate techniques where the relationship between multiple
Y (responses) and large number of X variables (predictors)
are modelled. Recently, the technique has been used in the
steel industry."™ The PLS is emerging as the most robust*>
and reliable prediction tool when huge amounts of collinear
data are to be handled. Collinear data means any two
columns in the data set are linearly dependent and the in-
verse of the matrix is non-existent since the determinant is
zero. The other multivariate techniques like multiple linear
regression (MLR) fails to handle collinear data as it in-
volves inversion of matrix to estimate the regression coeffi-
cients.

The present work deals with the application of PLS to
predict the silicon content of hot metal. This is a novel ap-
plication of PLS in ironmaking since PLS has traditionally
been used in many other scientific fields like chemometrics,
chemistry, biology etc. to name a few.>® Use of PLS in hot
metal silicon prediction is a novel application since most of
the reported Si prediction models have employed ANN"?
and nonlinear time series methods.''™'¥

2. Methodology

First introduced by Wold'® in the field of econometrics,
PLS has become an important technique in many areas and
especially in process control and process monitoring. It is a
method for relating two data matrices, X and Y, by a linear
multivariate model, but goes beyond traditional regression
in that it also models the structure of X and Y.® The very
nature of the PLS algorithm (outer relation, inner relation,
exchange of scores, mixed relation efc.) itself guarantees a
good predictive model.>'> This will be discussed in Sec.
2.3.

2.1. Pre-processing of Data

The analysis, like any other data modeling technique,
consists of two steps-training and prediction steps. Before
the model is developed, it is convenient to tailor the data in
the training step to make the calculations easier by ensuring
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zero mean and unit standard deviation for each column. In
the present analysis, a standard Mahalanobis scaling has
been employed prior to model building. For example, any
data value x, has been replaced by its scaled value x " ac-
cording to the relation: x **d=(x,— u(x))/o(x), where u(x)
and o(x) are mean and standard deviation of all data for the

variable x.

2.2. Principal Component Analysis (PCA)

The PLS is basically built on the concept of principal
component analysis (PCA). So, a good understanding of
PCA is helpful in interpreting the results from PLS. PCA is
a method of writing a matrix X of rank r as a sum of » ma-
trices of rank 1 as below:

X=M,+M,+ - +M, ... (1)

Rank is a number expressing the true underlying dimen-
sionality of a matrix. A collinear matrix will have a rank
less than the number of columns present in the matrix.
These rank 1 matrices, M, can all be written as outer prod-
uct of two vectors, a score t, and a loading p;;:

X=t,p}+6p5+ +,D= D D) oo )

or the matrix equivalent X=TP’. Here we can deflate the
matrix X up to a number of component matrices where
a=<r. The scores and loadings are the projections of rows
and columns of the data matrix onto a single dimension re-
spectively. For further physical interpretations of the scores
and loadings, the reader may refer to Geladi er al.”
Amongst other algorithms,'® the nonlinear iterative partial
least squares (NIPALS)® algorithm is used to calculate the
component matrices. The scores are nothing but the eigen-
vectors of the matrix X. Therefore, NIPALS basically com-
putes the eigenvectors. The component matrices are
arranged so that the first one (i.e., M) contributes mostly to
the variation of the data matrix, the second component ma-
trix has the second largest contribution and so on.

2.3. Partial Least Squares (PLS)

In PLS model building, mainly three major steps® are
followed to calculate the model parameters. The three rela-
tions are called outer relation, inner relation and mixed re-
lation. The outer relation is nothing but the decomposition
or deflation of X and Y data matrices into their principal
components i.e., obtaining scores and loadings for X and Y
data matrices:

x=TP’+E:Zthp,;+E .................... A3)

Y=UQ’+F=2uhq;,+F .................... 4)

E and F are the residual matrices which are to be min-
imised. This step is identical to PCA except the fact that in
PLS both X and Y matrices are deflated whereas in PCA
only the X matrix is deflated. The principal components in
the case of PLS are called Latent Variables (LVs). The la-
tent variables are not same as original X variables, but they
are connected with the original variables through the load-
ing vector. Therefore, the general idea of PLS is to try to
extract these latent variables, accounting for as much of the
manifest factor variation as possible while modeling the re-
sponses well. Like in PCA, the NIPALS algorithm is also
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used here. In the inner relationship, the scores of both X
and Y data matrices are exchanged and linked to give rotat-
ed components for X and Y block and this is done to give
better predictive power to the model. The mixed relation-
ship is the final step in the model building. Here the model
parameter or the regression coefficient obtained from the
inner relationship is used for final prediction. Since no ma-
trix inversion is required, highly collinear data can be used
for analysis in PLS. The steps and the algorithm for devel-
oping a PLS model are illustrated in Wise et al.'>

The number of latent variables to be extracted depends
upon the prediction error. This is typically done by cross-
validation.'” Cross-validation is a procedure where the
available data is parted into training (calibration) and test
(prediction) sets. The prediction error (called PRESS, the
prediction residual sum of squares) on the test samples is
determined as a function of the number of latent variables
(LVs) extracted. The optimum number is the number of LV's
which produces minimum prediction error.

3. Case Study

3.1. The Data Set

For the current study, hourly data for one month has been
collected from ‘G’ blast furnace of TATA Steel. The dataset
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contains 120 X type variables and only one type of Y vari-
able i.e., the % silicon content in hot metal. The X type
variables include process variables such as coke rate, coal
rate, amount and chemistry of other raw materials, hot
metal and slag, furnace instrument data, various probe data,
tuyere parameters and some derived parameters such as
RAFT, permeability, gas index efc. The initial 30 days’
hourly data (30X24=720) are used as the training set and
the next day’s data (1X24=24) are used for prediction.
Before it was used in modeling, the data matrices had un-
dergone pre-processing as discussed in Sec. 2.1.

3.2.

Figure 1 shows the results of PCA performed on the
training data. It is found that about first 20 principal com-
ponents (PCs) capture nearly 90% of the information in the
data set. So, majority of the information in the data set is
retained in first 20 principal components. Therefore, the
120 variables can be replaced by only 20 new variables,
which are again linear combinations of the original vari-
ables (refer to loadings in PCA), with little loss of informa-
tion from the original X data set. One interesting finding is
that the last 100 small components carry only 10% infor-
mation which can be attributed to noise in the original data.
The loadings plot for the first PC (or the first eigenvector) is
shown in Fig. 2. It is evident that a few process variables
(around 21) contribute most to the first PC scores and
hence, contribute to the first PC matrix i.e., M, [Eq. (1)].
The first PC, in turn, explains the maximum variation in the
data. These process variables correspond to coke rate, cen-
tral working index (CWI), upper furnace differential pres-
sure, gas index at centre, a particular hearth thermocouple
temperature, %C in HM, mid-furnace permeability, sinter
basicity (B2), %MgO in slag and temperatures of all 12
above burden probes. Therefore, variation in hot metal sili-
con is also strongly related to these variables as the final
PLS model relates the Y and X variables. The PCA, thus,
helps in identification of key variables and reduction of
data.

For building the PLS model, cross validation is to be
done on the training set to determine the optimum number
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Fig. 1. Percentage variance captured by PCA model (Bhat-
tacharya).
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Fig. 2. Plot for first principal component loadings obtained by PCA for training data set (X). The horizontal line corre-
sponds to a loading of 0.05. All the variables above this line are relatively dominant variables (Bhattacharya).
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Fig. 3. The variation of PRESS against the no. of latent variables

extracted in the PLS model (Bhattacharya).
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Fig. 4. The variation of actual and predicted silicon content with
time (Bhattacharya).

latent variables (LVs) to retain in the model. In the present
case, the PRESS (Fig. 3) goes through a clear minimum at
6 LVs. As more and more LVs are extracted the prediction
capability of the PLS model deteriorates because of inclu-
sion of insignificant variables and noises. Figure 4 shows
the plot of actual and predicted hot metal Si with time. The
prediction has been made using 6 LVs. The hourly predic-
tion was done for the 31st day (24 h) from the hourly train-
ing data of previous 30 d. There is a good agreement for the
initial 13 h and then the predictive power of the model di-
minishes slightly. The trend of predicted silicon content fol-
lows the actual values all along the time span. From the
hourly prediction of the model, we can find out a more reli-
able daily average of hot metal silicon content. For the pre-
sent case, the actual day average of silicon content on the
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31st day was 0.72 and the predicted day average is 0.76
(5.5% higher). Therefore, the PLS model can be of great
help in monitoring the hourly prediction of silicon as well
as in estimating the next day’s average silicon content a pri-
ori so that the appropriate control actions could be initiated
well in advance.

The predictive power could be enhanced by judiciously
choosing the training and prediction interval. The process
variables have to be selected correctly. Moreover, the data
set has to be proper with less outlier and no missing values.

4. Conclusions

The partial least squares (PLS) technique has been suc-
cessfully employed for prediction of silicon content in hot
metal. The PLS exploits the structure of the data sets and
helps in identifying the dominant process variables. It can
handle large number of highly collinear data as well as help
in data reduction.
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