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Abstract

The replacement of animal use in testing for regulatory classification of skin sensitizers is a 

priority for U.S. federal agencies that use data from such testing. Machine learning models that 

classify substances as sensitizers or nonsensitizers without using animal data have been developed 

and evaluated. Because some regulatory agencies require that sensitizers be further classified into 

potency categories, we developed statistical models to predict skin sensitization potency for 

murine local lymph node assay (LLNA) and human outcomes. Input variables for our models 

included six physicochemical properties and data from three non-animal test methods: the direct 

peptide reactivity assay, human cell line activation test, and KeratinoSens™ assay. Models were 

built to predict three potency categories using four machine learning approaches and were 

validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled 

all three categories of response together while a two-tiered strategy modeled sensitizer/

nonsensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-

tiered model using support vector machine with all assay and physicochemical data inputs 

provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 

substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered 

model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By 

comparison, the LLNA predicts human potency categories with 69% accuracy (60/87 substances 
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correctly categorized). These results suggest that computational models using non-animal methods 

may provide valuable information for assessing skin sensitization potency.
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Introduction

Allergic contact dermatitis (ACD) is an adverse health effect that frequently develops in 

workers and consumers exposed to skin-sensitizing substances and products. ACD can 

adversely impact quality of life (Brutti et al., 2013; Heisterberg et al., 2011; Kadyk et al., 
2003). The prognosis for ACD includes the development of new skin allergies and the 

persistence of clinical symptoms for approximately 10 years after diagnosis, with 

occupational cases of ACD generally having poorer prognoses than non-occupational ACD 

cases (Macan et al., 2013).

Occurrences of ACD can be reduced by minimizing exposure to skin-sensitizing substances. 

To this end, national and international regulatory authorities require that products be labeled 

to identify the potential skin sensitization hazards posed by these items. Such hazards have 

historically been characterized using animal tests that can require large numbers of animals 

and produce a painful allergic reaction during testing. For example, the guinea pig 

maximization test and the Buehler test use 20 to 40 animals per substance (OECD 1992). An 

alternative animal method, the murine local lymph node assay (LLNA), reduces animal use 

compared to guinea pig tests and causes less pain and distress to test animals. Regardless, 

even as a reduction alternative, the LLNA requires 20 animals per substance (OECD 2010) 

and its 72% accuracy for predicting human skin sensitization hazard leaves much room for 

improvement (ICCVAM 1999).

A number of factors are driving increased international interest in replacement of animal use 

for chemical safety testing, including ethical concerns about potential pain and distress to 

test animals, financial concerns about the cost of animal testing, and scientific concerns 

about the relevance of animal test results to human outcomes. These concerns have resulted 

in regulatory efforts to limit animal use in testing, including bans on animal use for testing 

of cosmetics in the European Union and other countries. Prohibitions on animal testing have 

increased the need for adequately validated tests for skin sensitization and other chemical 

safety endpoints.

The recent development of a number of non-animal methods for skin sensitization has been 

aided by the well-developed mechanistic understanding of the process, which has been 

codified in an adverse outcome pathway for skin sensitization initiated by covalent binding 

to proteins (OECD 2012a; OECD 2012b). The adverse outcome pathway includes four key 

events that can be assessed using non-animal test methods: (1) binding of haptens to 
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endogenous proteins in the skin, (2) keratinocyte activation, (3) dendritic cell activation, and 

(4) proliferation of antigen-specific T cells (OECD 2012b).

A number of in chemico and in vitro tests targeting the different key events for skin 

sensitization have been developed (reviewed in Mehling et al. (2012) and evaluated in, e.g., 

Reisinger et al. (2015)). Because skin sensitization is a complex process, it is unlikely that 

any individual non-animal method will completely replace the current animal tests (Rovida 

et al., 2015). Thus, a number of approaches have also been developed to integrate relevant 

information from multiple non-animal methods as a way to overcome the limitations of 

individual tests and more accurately assess the potential for skin sensitization (Hirota et al., 
2015; Jaworska et al., 2015; Natsch et al., 2009; Natsch et al., 2013; Nukada et al., 2013; 

Strickland et al., 2016a; Strickland et al., 2016b; Urbisch et al., 2015).

For more than a decade, fostering the evaluation and promoting the use of alternative test 

methods for regulatory use for assessing skin sensitization potential has been a top priority 

for the U.S. federal agencies participating in the Interagency Coordinating Committee on the 

Validation of Alternative Methods (ICCVAM) (Dean et al., 2001; ICCVAM 1999; NIEHS 

2013; Sailstad et al., 2001). Most recently, the National Toxicology Program Interagency 

Center for the Evaluation of Alternative Toxicological Methods (NICEATM) has supported 

ICCVAM in building predictive machine learning models for skin sensitization hazard that 

integrate in chemico, in silico, and in vitro data (Strickland et al., 2016a; Strickland et al., 
2016b). Such models could be useful for regulatory applications that require the 

identification of skin sensitizers for classification and labeling.

In the United States, labeling to identify substances with any potential for skin sensitization 

hazard is required by the U.S. Environmental Protection Agency (EPA 2011; EPA 2012b; 

2012c) and the Occupational Safety and Health Administration (OSHA; OSHA 2012). The 

European Registration, Evaluation, Authorization and Restriction of Chemicals Regulation 

(REACH) No. 1907/2008 (EC 2006) mandates similar labeling. However, some regulatory 

applications require the assessment of skin sensitization potency to distinguish strong 

sensitizers from weak sensitizers. For example, the U.S. Consumer Product Safety 

Commission requires labeling for strong sensitizers, and both the European Classification, 

Labeling, and Packaging Regulation (CLP) No. 1272/2008 (EC 2008) and OSHA require 

potency classification if the skin sensitization data are adequate to characterize potency 

(OSHA 2012).

The objective of the project described in this paper was to build predictive models for skin 

sensitization potency using non-animal data to predict three categories of response for both 

human and LLNA outcomes based on the Globally Harmonized System of Classification 

and Labelling of Chemicals (GHS) (UN 2015). The GHS is an internationally harmonized 

approach for hazard classification and labeling to ensure the safe use, transport, and disposal 

of chemicals. The GHS criteria for the classification of sensitizers using human or LLNA 

data are shown in Table 1. OSHA, REACH, and CLP use the GHS for hazard classification 

and labeling. A previous ICCVAM evaluation of the usefulness of the LLNA for predicting 

human potency in the GHS categories noted that the LLNA underclassified one-third of 

strong human sensitizers as weak sensitizers (ICCVAM 2011). The accuracy of the LLNA 
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for predicting human skin sensitization potency in all three categories was 54% (74/136). 

Our criterion for success was for our models to classify human skin sensitizers more 

accurately than the LLNA using the GHS potency categories.

Materials and methods

Data collection and substance database

Sources of data used in the study are listed in Supplemental Table S1. We compiled two 

datasets, one containing LLNA data on 120 substances and the other containing human skin 

sensitization data on 87 substances. All 87 substances in the human sensitization dataset are 

represented in the LLNA dataset. Published data for all substances were obtained for three 

non-animal skin sensitization test methods: direct peptide reactivity assay (DPRA), 

KeratinoSens™, and human cell line activation test (h-CLAT). DPRA, KeratinoSens, and h-

CLAT were selected because the Organisation for Economic Co-operation and Development 

(OECD) has issued test guidelines for each of these methods (OECD 2015a; 2015b; 2016a).

Most of the LLNA data used in this study were collected previously by NICEATM (http://

ntp.niehs.nih.gov/go/40500, NICEATM LLNA Database). LLNA data are expressed as 

stimulation indices for each concentration tested. For sensitizers, the estimated test 

substance concentration that produces a stimulation index of three (EC3) represents a 

measure of skin sensitization potency. LLNA data for five substances that were not in this 

database were obtained from published literature (Supplemental Table S1).

Most of the human skin sensitization potency data used in this study were previously 

published either in an ICCVAM test method evaluation report on the usefulness and 

limitations of the LLNA for human potency categorization (ICCVAM (2011)) or by 

Basketter et al. (2014), with the exception of chlorobenzene (Basketter and Kimber (2006)). 

While ICCVAM (2011) compiled sensitization results from human predictive patch tests, the 

potency assessments listed in Basketter et al. (2014) were developed by a panel of experts 

that evaluated prevalence from dermatologic clinic data as well as data from predictive patch 

tests. Conflicts between these references (n = 9) were resolved by choosing the 

categorizations in Basketter et al. (2014).

We also collected data on six physicochemical properties of these substances relevant to skin 

exposure and penetration (octanol:water partition coefficient, water solubility, vapor 

pressure, melting point, boiling point, and molecular weight). These properties have been 

used in other models or weight-of-evidence assessments for skin sensitization potential 

(Jaworska et al., 2013; Jaworska et al., 2011; Patlewicz et al., 2014; Strickland et al., 2016a; 

Strickland et al., 2016b). Data sources for these properties are provided in Supplemental File 

1.

Characterization of the substances

LLNA and human sensitizers were categorized using the GHS criteria in Table 1. For 

sensitizers identified using the LLNA, EC3 values were used to assign 1A and 1B 

classifications. Classification of 1A is referred to here as a “strong” sensitizer and 1B as a 

“weak” sensitizer to reflect the relative potency. Negative results are considered 
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“nonsensitizers”. If a substance had multiple sensitizer/nonsensitizer results, the most 

prevalent result was used. If multiple LLNA EC3 values were available for a particular 

sensitizer, the geometric mean of the EC3 values for the positive results, regardless of 

solvent, was calculated and this value used for classification. For sensitizers identified using 

human patch test data (ICCVAM (2011)), induction doses per unit skin area that produced a 

5% response in the test population (DSA05) were used to assign 1A or 1B classifications 

based on the human threshold criteria in Table 1. The geometric mean DSA05 was used to 

classify human sensitizers with multiple values. Sensitizers identified using Basketter et al. 
(2014) were characterized according to the alignment of the six categories used in that 

publication with the GHS. Basketter et al. (2014) noted that their Categories 1 and 2 

corresponded to GHS 1A, Categories 3 and 4 correspond to GHS 1B, and Categories 5 and 6 

correspond to nonsensitizers.

Of the 120 substances in the LLNA dataset, 35 (29%) were 1A (strong) sensitizers, 52 

(43%) were 1B (weak) sensitizers, and 33 (28%) were nonsensitizers. The 87 substances in 

the human dataset consisted of 26 (30%) 1A sensitizers, 31 (36%) 1B sensitizers and 30 

(34%) nonsensitizers (Fig. 1). For the LLNA substance list, of the 87 sensitizers, three are 

prehaptens that require oxidation to induce a skin sensitization response, 16 are prohaptens 

requiring metabolism, and six are pre/prohaptens requiring both oxidation and metabolism 

to become sensitizers. Out of the 57 human sensitizers, three are prehaptens, 13 are 

prohaptens, and two are pre/prohaptens (Fig. 2). The substances in both databases represent 

14 product categories. The most common product categories were manufacturing use, food 

additives, pharmaceuticals, chemical synthesis, fragrance agents, personal care products, and 

pesticides. See Supplemental File 1 for the prehapten/prohapten characterization and product 

category information on each substance.

Model variables

The non-animal methods used as input variables in the machine learning approaches align to 

the adverse outcome pathway (AOP) for skin sensitization initiated by covalent binding to 

proteins (OECD 2012b).

DPRA—DPRA is an in chemico test that assesses the ability of a substance to form a 

hapten–protein complex (Gerberick et al., 2004; 2007; OECD 2015a), the molecular 

initiating event in the skin sensitization AOP as described by OECD (2012b). We used the 

average percent depletion of cysteine and lysine peptides (Avg.Lys.Cys) as the DPRA input 

variable.

KeratinoSens—The KeratinoSens test method assesses the ability of a substance to 

activate cytokines and induce cytoprotective genes in keratinocytes (Emter et al., 2010; 

OECD 2015b), the second key event in the skin sensitization AOP (OECD 2012b). We used 

the EC1.5 value, the concentration of test substance that produces 1.5-fold induction of 

luciferase activity controlled by the antioxidant response element, as the KeratinoSens input 

variable. KeratinoSens tests that had no significant induction of luciferase activity were 

assigned a value of 2001 to represent a negative result, since the highest concentration tested 

was 2000 μM.
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h-CLAT—h-CLAT assesses the ability of a substance to activate and mobilize dendritic 

cells in the skin (Ashikaga et al., 2006; OECD 2016a), the third key event of the skin 

sensitization AOP (OECD 2012b). Specifically, h-CLAT measures the induction of the 

CD86 and CD54 cell surface markers, with results expressed as the effective concentration 

at 150% induction for the CD86 marker (EC150) and the effective concentration at 200% 

induction for the CD54 marker (EC200). Tests that yielded no significant induction of CD86 

or CD54 were arbitrarily assigned 2001 to represent a negative result. We used the minimum 

induction threshold of the CD54 EC200 and CD86 EC150 as the h-CLAT input variable.

Physicochemical Properties—For each substance in both datasets, we collected 

experimental data, where available, for octanol:water partition coefficient, water solubility, 

vapor pressure, molecular weight, melting point, and boiling point. For 10 substances, 

experimental values for one or more physicochemical properties could not be found in the 

literature. In these cases, values were imputed via quantitative structure–property 

relationship models built using binary molecular fingerprints and machine learning 

approaches (Zang et al., 2016). See Supplemental File 1 for the individual physicochemical 

properties and data sources.

Data processing and distribution

Table 2 shows the ranges of the nine variables that served as model input data. The 

distributions of DPRA, h-CLAT and KeratinoSens values in 1A and 1B sensitizer potency 

classes for both LLNA and human datasets are illustrated in Fig. 3, where h-CLAT and 

KeratinoSens are log-scaled. The DPRA distribution showed better separation of 1A and 1B 

classes than the other two non-animal methods, suggesting the DPRA variable can better 

distinguish between strong and weak sensitizers.

The following conventions were adopted for data processing:

• KeratinoSens and h-CLAT values that were provided as less than a specified 

value were replaced with the specified value. For example, a CD86 EC150 for 

the h-CLAT expressed as <9 μg/mL was replaced with 9 μg/mL.

• Substances with multiple test results for the same assay were represented by the 

median response value. If a substance had multiple Avg.Lys.Cys values for the 

DPRA, the median of those results was calculated after negative peptide 

depletion values were set to zero.

• Values for octanol:water partition coefficient were provided as log values.

• We converted water solubility and vapor pressure to log values because the range 

of values covered several orders of magnitude.

Selection of training and test sets

For each dataset, the substances were divided into training and test sets in approximate 

proportions of 75% to 25% for building and evaluating the predictive models, respectively. 

Substances were placed in the training and test sets so that the sets would have similar 

ranges of activity and structural characteristics, such as the distributions of potency, product 
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use categories, diversity of chemical structures, prehaptens/prohaptens and mechanistic 

protein binding domains. For predictive modeling of LLNA results, this procedure placed 94 

and 26 substances into the training set and test set, respectively. For predictive modeling of 

human results, this yielded a training set of 63 substances and a test set of 24 substances. 

Table 3 summarizes the number and percentage of substances in each potency category in 

the training and test sets.

Random forest for variable importance ranking

A random forest (RF) analysis was conducted to assess the relative importance of the three 

non-animal methods and physicochemical properties for discriminating between 1A and 1B 

sensitizer potency categories. RF is a consensus algorithm that constructs an ensemble of 

decision trees via bootstrap sampling, conducted by random selection with replacement from 

the substances in the training data, where substances not used for tree growth are referred to 

as out-of-bag (OOB) substances. Each tree provides a prediction for the OOB substance set, 

and the average of these predictions over all trees produces an overall OOB validation (Diaz-

Uriarte 2007; Hao et al., 2011). RF can assess the importance of variables to the model 

based on the deterioration of classification performance via random permutation of the 

variables. After all the variables have been estimated, RF returns a list of the variables 

ranked according to their importance (Zang et al., 2013).

In general, the RF results ranked the three non-animal methods higher in importance when 

distinguishing between strong and weak sensitizers, indicating that they were more 

discriminative as individual variables than any of the physicochemical properties (Fig. 4). 

LogP was ranked as having greater importance than the other physicochemical properties for 

both LLNA and human data and ranked higher than h-CLAT and KeratinoSens when 

classifying 1A and 1B sensitizers in the LLNA data set (Fig. 4a). For the human data set, the 

most important variable was KeratinoSens followed by DPRA and h-CLAT, and the least 

important variables were the physicochemical properties (Fig. 4b). For classification 

modeling, the variables were used in four sets as defined in Table 4, with Variable Set IV 

composed of the four most important variables identified in the RF analysis.

Machine learning approaches and modeling strategies

Predictive models were developed using four machine learning approaches with different 

algorithm principles. These included classification and regression tree (CART) (Deconinck 

et al., 2005; Questier et al., 2005; Zang et al., 2011a), linear discriminant analysis (LDA) 

(Luan et al., 2005; Zang et al., 2011b), logistic regression (LR) (Varmuza and Peter 2009), 

and support vector machine (SVM) (Shen et al., 2011). The models were trained to predict 

potency classifications for LLNA and human data using the training sets described above.

Two strategies were applied to model strong potency, weak potency, and nonsensitizers. 

Strategy A, a one-tiered strategy, was a multiple-category classification that simultaneously 

modeled all three classes of substances (Fig. 5a). Strategy B shows a two-tiered approach 

(Fig. 5b), in which binary models were used for each tier. Tier One categorized substances 

into sensitizers and nonsensitizers based on models from Strickland et al. (2016a, 2016b), 
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and Tier Two categorized sensitizers into 1A (strong) and 1B (weak) subcategories based on 

the Globally Harmonized System of Classification and Labeling of Chemicals (UN 2015).

OECD Toolbox (OECD 2016b) can classify substances as sensitizers or nonsensitizers, but 

cannot predict if a substance belongs to 1A or 1B category. Thus, the read-across prediction 

from OECD Toolbox can be used only as a variable for sensitizer/nonsensitizer modeling 

(Tier One in Strategy B), and cannot be applied to Strategy A and Tier Two in Strategy B. 

Therefore the two-tiered strategy uses the variables described in this work with the addition 

of read-across predictions generated using the OECD Toolbox.

Evaluation of model performance

Once the predictive models developed using the various machine learning approaches were 

trained using the training sets, the test sets were used to evaluate model performance. We 

also applied a leave-one-out cross-validation (LOOCV) procedure on each complete dataset 

to assess model robustness and reliability. In LOOCV, n - 1 substances from the complete set 

of n substances were used as the training data for building the model and the remaining 

substance was used for testing the model. The cross-validation process was repeated n times 

with each of the substances used exactly once as the test set. The predictive accuracy was 

calculated by averaging individual values over the n runs.

Model performance was measured using accuracies of individual classes and overall 

accuracies for the three-category classification. For binary models, the performance was 

examined in terms of sensitivity, specificity, and overall accuracy given the assumption that 

the sensitizers and nonsensitizers were positive and negative classes, respectively, for the 

sensitizer-nonsensitizer model, while strong sensitizers and weak sensitizers represented 

positive and negative classes, respectively, for strong-weak potency models. These metrics 

were calculated by the following formulae:

We calculated 95% confidence limits of proportions for correct classification rate, 

overclassification rate, and underclassification rate using the formula (Brown et al., 2001):

with p being the rate and N the number of chemicals.

Statistical software

All data processing, variable ranking, and model building operations were conducted using 

the following packages in the R statistical analysis software for Windows (v3.2.1) (The R 

Core Team 2013): package randomForest for random forest, package MASS for linear 
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discriminant analysis and logistic regression, package rpart for classification and regression 

tree, and package e1071 for support vector machine.

Results

Strategy A: one-tier approach

To predict classification of test substances as strong sensitizers, weak sensitizers, or 

nonsensitizers, we developed a series of models for both LLNA and human potency 

outcomes using each of the four machine learning approaches and each of the four variable 

sets described in Table 4, yielding a total of 32 models. When all three potency categories 

were predicted simultaneously using Strategy A, models using the SVM approach provided 

superior predictions to models using other machine learning approaches across all four 

variable sets in Table 4 for both LLNA and human endpoint data. We report the detailed 

classification results from the SVM models in Table 5 and accuracy for all models in 

Supplemental Table S2.

The SVM LLNA models using Variable Set III input data, which included data from the 

three non-animal methods and the six physicochemical properties, achieved the best 

predictive performance for the three potency classes with a test set accuracy of 77%. This 

was followed by the models using Variable Set IV input data (three non-animal methods and 

LogP) with a test set accuracy of 69%. Models using Variable Set II input data, consisting of 

the six physicochemical properties only, had the poorest accuracy of 58% for the test set. 

However, it should be noted that these differences in performance are magnified by the small 

number of substances in the test set, which included only seven substances each in class Neg 

and class 1A. Misclassification of one or two substances resulted in highly variable 

classification accuracies. Using LOOCV to evaluate the classification models using the 

entire dataset (35 strong sensitizers, 52 weak sensitizers, and 33 nonsensitizers), Variable Set 

III achieved the highest accuracy of 78%, with 83%, 69% and 85% accuracy for classifying 

strong, weak, and nonsensitizers, respectively. This was superior to results from models 

using only input data from the three non-animal methods (Variable Set I) or physicochemical 

properties (Variable Set II), with overall LOOCV accuracies of 71% and 61%, respectively. 

These results suggest that, using a one-tiered classification approach, both non-animal assay 

data and physicochemical properties significantly contribute to the LLNA modeling, and the 

assays play more important roles than the properties.

Contrary to the LLNA predictions, the one-tiered human potency models using input data 

from Variable Sets III (all variables) and IV (three non-animal methods and LogP) achieved 

comparable predictive performance when considering the overall accuracy, although there 

were differences in the ability of these models to differentiate between 1A and 1B 

sensitizers. The model using input data from Variable Set III produced slightly better 

accuracy for identification of strong sensitizers than the model using input data from 

Variable Set I and hence had better overall accuracy of 71% vs 67% on the test set and 75% 

vs 71% on the LOOCV. Similar to LLNA modeling, the human models using Variable Set II 

input data (only physicochemical properties) produced the lowest accuracy of 46% on the 

test set and 60% on the LOOCV. Therefore, using a one-tiered classification approach, data 
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from the three non-animal methods appear to make more significant contributions to 

accurate human classifications than the physicochemical properties.

Strategy B: two-tier approach

Strategy B used a two-tiered approach for potency classification. Substances were first 

classified as either sensitizers or nonsensitizers. Sensitizers were then further classified as 

1A or 1B sensitizers.

Tier One: Sensitizers vs Nonsensitizers—For the Tier One sensitizer vs. 

nonsensitizer classification, we used previously published integrated decision strategies 

using non-animal in chemico and in vitro data, in silico predictions, and the six 

physicochemical properties to predict classification of test substances as sensitizers or 

nonsensitizers based on LLNA or human results (Strickland et al., 2016a; Strickland et al., 
2016b). The prior studies used the same chemical set as the current study, and therefore the 

results from those studies are being used in the current study for the Tier One results for 

Strategy B.

Tier Two: Strong vs. Weak Potency of Sensitizers—Substances predicted to be 

sensitizers in Tier One were further classified in Tier Two as strong or weak sensitizers. We 

developed a series of binary models for both LLNA and human outcomes to distinguish 

strong from weak sensitizers. For each machine learning approach, the variable sets that 

produced the best performance are shown in Table 6. Models using SVM performed best in 

modeling LLNA outcomes using input data from Variable Set III (the three non-animal 

methods and six physicochemical properties) with a balanced sensitivity and specificity of 

86% and 92% and an overall accuracy of 89% for the test set. For human potency prediction, 

classification models using SVM and input data from Variable Sets III and IV produced the 

highest test set accuracy of 81% (sensitivity of 86% and specificity of 78%). It is worth 

noting that although the human model using the CART machine learning approach achieved 

a specificity of 100%, sensitivity was low (43%) due to a bias towards the 1B class, leading 

to an overall accuracy of only 75%.

As described previously (Fig. 4), RF ranked the three non-animal methods and LogP as the 

top four variables for discriminating between strong and weak potency. To determine 

whether all of the physicochemical properties were necessary for the modeling, we 

compared the models using input data from Variable Set III (all nine input features) with 

those using input data from Variable Set IV (three assays and LogP). For this comparison we 

used the highest performing machine learning approach (SVM); the results are summarized 

in Supplemental Table S3.

For the LLNA data, models using input data from Variable Set III predicted test set 

classifications with a higher accuracy (89%) than models using input data from Variable Set 

IV (accuracy of 79%). The sensitivity for these two models was the same (86%), but the 

specificity decreased when LogP was used as the only physicochemical property input (92% 

for Variable Set III vs. 75% for Variable Set IV). For the LOOCV, models using input data 

from Variable Set III had the same sensitivity as those using input data from Variable Set IV 

(91%), but higher specificity (85% vs. 79%). Hence, using Variable Set III produced a 
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marginal increase in overall accuracy (87% vs. 84%). Models using only LogP instead of all 

six physicochemical properties did not predict LLNA potency as well, implying that the 

other physicochemical properties play important roles in determining sensitization potency.

For the human data, models using input data from Variable Set IV produced similar results 

to those using data from Variable Set III. For predicting classification of test set substances, 

the models both achieved sensitivity of 86%, specificity of 78%, and overall accuracy of 

81%. Models using input data from Variable Set IV performed almost as well as those using 

input data from Variable Set III on the LOOCV with an overall accuracy of 79% vs 81%. 

These results show that, unlike for the LLNA predictions, physicochemical properties other 

than LogP do not appear to add value in predicting human test outcomes.

For the LLNA potency models, overall accuracy assessed by LOOCV of the two-tiered 

Strategy B for the highest performing SVM model (using input data from Variable Set III) 

was 88% (Table 7). This accuracy is much higher than the overall accuracy assessed by 

LOOCV for the best performing SVM model for the one-tiered Strategy A (which also used 

input data from Variable Set III), which was 78% (Tables 5 and 7). Individual accuracies of 

91%, 81%, and 97% for classification of strong, weak, and nonsensitizers using Strategy B 

were higher than the corresponding accuracies of 83%, 69%, and 85% from Strategy A.

For the human potency models, overall accuracy assessed by LOOCV of the two-tiered 

Strategy B for the highest performing SVM model (using input data from Variable Set III) 

was 81% (Table 7). This accuracy is higher than the overall accuracy assessed by LOOCV 

for the best performing SVM model for the one-tiered Strategy A (which also used input 

data from Variable Set III), which was 75% (Tables 5 and 7). While the classification 

accuracy for strong sensitizers (85%) was the same and the classification accuracy for weak 

sensitizers was essentially the same (61% vs 65%) for Strategy A and Strategy B, individual 

accuracy of 93% for classification of nonsensitizers via Strategy B was substantially higher 

than the corresponding accuracy of 80% from Strategy A. It is important to note that, 

regardless of whether Strategy A or Strategy B was used, the highest performing model 

predicted human potency categories better than the LLNA. For the entire human data set the 

accuracy of the LLNA was 65% (17/26), 74% (23/31), and 67% (20/30) for classification of 

strong, weak, and nonsensitizers, respectively, and the overall accuracy was 69%.

Discussion

The adverse outcome pathway for skin sensitization involves multiple steps linking the 

structure and properties of a chemical to allergic contact dermatitis. These steps are not 

likely to be successfully modeled by a single non-animal method. Accordingly, the use of 

integrated decision strategies bringing together data from several non-animal methods is 

needed for reliable prediction of this adverse outcome (OECD 2012b). Previously published 

integrated decision strategies to predict skin sensitization hazard without the use of animals 

have principally focused on differentiation between sensitizers and nonsensitizers. However, 

potency data are necessary for some regulatory authorities and for use in risk assessment to 

identify the threshold level of exposure to a substance below which it is unlikely to produce 

skin sensitization. Some studies have been published describing approaches to predict 
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LLNA potency categories using simple test batteries (Natsch et al., 2009; Nukada et al., 
2013), testing strategies (Roberts and Patlewicz 2014; Takenouchi et al., 2015), or machine 

learning approaches (Jaworska et al., 2013; Jaworska et al., 2011; Jaworska et al., 2015; 

Luechtefeld et al., 2015; Tsujita-Inoue et al., 2014). In this study, we developed a novel 

machine learning approach capable of predicting GHS LLNA and human sensitizer potency 

categories using data from non-animal alternative methods.

To achieve the best results, we compared two strategies; Strategy A modeled all GHS 

potency categories simultaneously, while Strategy B first made sensitizer vs. nonsensitizer 

determinations and then performed a potency classification of predicted sensitizers. 

Comparing the two strategies demonstrated that the two-tiered approach outperformed the 

one-tiered approach for both LLNA and human potency predictions.

Consistent with our previous work (Strickland et al., 2016a; Strickland et al., 2016b), of the 

four machine learning approaches tested, SVM performed the best. For prediction of LLNA 

potency categories, SVM models using input data from Variable Set III (three non-animal 

methods plus six physicochemical properties) performed best for all individual GHS classes 

with an overall accuracy of 78% for the LOOCV when using the one-tiered strategy. While 

including the six physicochemical properties increased the accuracy of potency prediction, 

models relying solely on the physicochemical properties performed poorly. This suggests 

that data from both non-animal assays and physicochemical properties contribute to 

successful LLNA modeling. Greater predictive performance was achieved using the two-

tiered strategy (overall accuracy for the LOOCV was 88%).

The performance of our approach was on par with the aforementioned approaches to 

categorizing substances into LLNA potency categories. While the Bayesian network 

approach by Jaworska et al. (2015) predicted the correct GHS LLNA potency category 96% 

of the time in a test set of 60 chemicals, our approach uses fewer inputs and requires no unit 

conversions of test data. Our approach also utilizes open-source tools, which we believe 

makes it more accessible to the research community.

This work is one of only two studies to use an integrated decision strategy approach to 

predict human skin sensitizer potency. Natsch et al. (2015) used a regression approach that 

incorporated in vitro data to predict human skin sensitizer potency. However, this approach 

used only data from the KeratinoSens assay and a non-OECD validated kinetic peptide 

binding assay. Converting the results of this analysis to percent accuracy produced accuracy 

of 55% and 70% for classification of weak and strong sensitizers, respectively. Importantly, 

36% of the weak sensitizers and 11% of the strong sensitizers were misclassified as 

nonsensitizers. In our models, use of input data from Variable Sets III (three non-animal 

methods and six physicochemical properties) and IV (three non-animal methods and LogP) 

achieved similar predictive performance (75% accuracy) for human potency categories when 

using the one-tiered strategy. Predictive performance was improved using the two-tiered 

strategy, producing accuracy assessed by LOOCV of 81%.

While the predictive capacity of our models may have been impacted by the small size of the 

human dataset, the disparity between LLNA and human potency prediction may be due to 
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other factors. For instance, the in chemico and in vitro tests employed for this study were 

calibrated against the LLNA during assay development and, for this reason, the relatively 

high performance for predicting LLNA potency categories is not surprising. Additionally, it 

has been demonstrated that chemicals penetrate rodent skin more readily than that of 

humans (Garnett et al., 1994; Mint et al., 1994). An added complication is that the purity of 

the test substances was not necessarily the same for all tests or over time. Sensitization 

potency can be influenced by impurities and degradants, as well the actual amount of the 

parent chemical.

Furthermore, in the case of nickel allergy, it has been previously shown that species 

differences between rodents and humans at the molecular level can profoundly alter 

susceptibility to skin sensitization (Kimber et al., 2011). For example, mice lack the TLR4 

pathway required for the dermal sensitization effects induced by cobalt and nickel in humans 

(Schmidt et al, 2010). It is conceivable that other interspecies differences exist and have yet 

to be discovered. These points of divergence may bias in vitro model development towards 

prediction of rodent outcomes as long as the metric for success during development of 

alternative methods is the ability to predict rodent outcomes. Keeping in mind that in 
chemico and in vitro assays are often designed to model one specific event in the multi-step 

process leading to skin sensitization, these points further support the concept that reliable 

prediction of skin sensitization requires the integration of data from many sources.

In our study, the two-tiered strategy classified weak and strong sensitizers with 65% and 

85% accuracy, respectively (Table 7). Supplemental Tables S4a and S4b list the substances 

misclassified by the LLNA and human models that are summarized in Table 7. Seventeen 

substances were misclassified by the human model using Strategy B. In Tier 1, four weak 

sensitizers were misclassified as nonsensitizers and two nonsensitizers were misclassified as 

sensitizers. No strong sensitizers were misclassified as nonsensitizers. In Tier 2, four strong 

sensitizers were misclassified as weak sensitizers and seven weak sensitizers were 

misclassified as strong sensitizers. The three sensitizers misclassified by both the LLNA and 

human prediction models were formaldehyde, isoeugenol and 2-mercaptobenzothiazole. 

Isoeugenol is a prehapten that requires oxidation to induce a skin sensitization reaction and 

2-mercaptobenzothiazole is a prohapten that requires metabolic activation to produce skin 

sensitization. Coumarin was the only nonsensitizer that was misclassified as a sensitizer in 

both the LLNA and human prediction models. While our models appear to be somewhat 

more predictive than the approach developed by Natsch et al. (2015), the performance of our 

models cannot be directly compared with theirs because they were not tested using the same 

substance set and they did not evaluate performance using an external set. Consequently, 

additional studies using more chemicals are warranted to more accurately gauge 

performance of the models.

The biological mechanisms underlying sensitizer potency are not fully understood (Natsch et 
al., 2015). Thus, the reasons for the potency misclassifications we observed are not entirely 

clear. The strength of peptide reactivity contributes to skin sensitization potency. However, 

the DPRA was not designed to quantify reactivity; the stated goal of the test is to determine 

if “a chemical is reactive enough to be a sensitizer (Roberts and Patlewicz 2014). Recently, 

Jaworska et al. (2015) reported that cytotoxicity contributes more to the prediction of 
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potency categories than Cys and Lys reactivity. Thus, inclusion of other assays in models 

similar to ours may reduce potency misclassifications.

The three non-animal methods used in our models assess three of the four key events in the 

AOP for skin sensitization initiated by covalent binding to proteins. All three methods are 

described in internationally accepted test guidelines adopted by OECD. In isolation, each of 

these test methods has documented limitations, including incorrect identification of pre- and 

prohaptens, that hinder the identification of potential sensitizers (OECD 2015a; OECD 

2015b; OECD 2016a). DPRA has consistently classified prehaptens correctly for skin 

sensitization hazard (OECD 2015a), but KeratinoSens (OECD 2015b) and h-CLAT (OECD 

2016a) have not. Although DPRA has no metabolic capacity and is not be expected to 

correctly classify prohaptens as sensitizers (OECD 2015a), Patlewicz et al. (2016) notes that 

it has correctly identified some prohaptens and pre/prohaptens. KeratinoSens has also 

correctly identified some prohaptens and pre/prohaptens (OECD 2015b; Patlewicz et al. 

2016) and h-CLAT has correctly classified some (OECD 2016a) or all of the evaluated 

(Patlewicz et al. 2016) prohaptens and pre/prohaptens. The individual non-animal methods 

used in this study only predicted human skin sensitization hazard with 63–79% accuracy for 

the test set when used in isolation; however, integrating the data from these assays increased 

predictive capacity to 92% (Strickland et al., 2016b). Potency prediction adds a new layer of 

complexity to development of an integrated decision strategy to predict skin sensitization, 

and the ability to properly classify prehaptens and prohaptens is an important consideration 

for the prediction of skin sensitization classifications. Of the 25 pre- and prohaptens 

included in this study, one prohapten (2-mercaptobenzothiazole) was overclassified as an 

LLNA strong sensitizer and one prehapten (isoeugenol) was underclassified using Strategy 

B as an LLNA weak sensitizer. In the case of human sensitizer categories, one prehapten 

(isoeugenol) and one prohapten (3-dimethylaminopropylamine) were underclassified as 

weak sensitizers, while one prehapten (1,4-dihydroquinone) and one prohapten (2-

mercaptobenzothiazole) were overclassified as strong sensitizers. Given the known 

limitations of the individual assays and the relatively small dataset, additional studies using 

more chemicals are warranted to more accurately gauge performance of the models and 

bolster confidence in this approach.

Allergic contact dermatitis is the second most commonly reported occupational illness 

(Anderson et al., 2011) imparting a significant economic burden to industry (NIOSH 2012). 

Current hazard classification labeling schemes are based largely on animal test results (EPA 

2012a; UN 2015) and the LLNA has been the preferred method for this purpose for a 

number of years (Basketter et al., 2009; ECHA 2015; EPA 2011). A wealth of data has been 

generated using the LLNA and regulators are accustomed to evaluating these data. The 

human predictive patch test data are sparse (Api et al., 2015) and, for cosmetic, are often 

negative because the goal of a human study in this case is usually to confirm that a particular 

dose determined not to cause an adverse reaction in an animal study will in fact not cause an 

adverse reaction in humans (Politano and Api 2008). These limitations make it challenging 

to model human outcomes. Given these points, it is not surprising that many efforts to 

develop an integrated decision strategy to predict skin sensitization emphasize LLNA 

outcomes (Bauch et al., 2012; Hirota et al., 2015; Jaworska et al., 2013; Jaworska et al., 
2011; Luechtefeld et al., 2015; Natsch et al., 2009; Natsch et al., 2013; Nukada et al., 2013; 
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Pirone et al., 2014; Strickland et al., 2016a; Takenouchi et al., 2015; Tsujita-Inoue et al., 
2014; Urbisch et al., 2015; van der Veen et al., 2014). This approach relies on the 

assumption that there is a clear and reliable linkage between LLNA and human outcomes. 

However, previous evaluations of LLNA performance report accuracies as low as 72% for 

LLNA predictions of human sensitization hazard (ICCVAM 1999). The utility of LLNA 

potency classification for human risk assessment is also questionable. An ICCVAM 

evaluation (ICCVAM (2011)) revealed that the LLNA underclassified one-third of strong 

human sensitizers as weaker sensitizers. In that one-tiered analysis of 136 substances, the 

overall accuracy of LLNA for predicting human potency categories was only 54%. LLNA 

EC3 values were deemed suitable for classification of 1A sensitizers (71% accuracy), but not 

1B sensitizers (52% accuracy). As a result, ICCVAM does not recommend the use of the 

LLNA as a stand-alone method to predict skin sensitization potency, but instead 

recommends including other types of supporting data (e.g. in chemico data and in vitro data) 

into an integrated decision strategy for categorization.

U.S. federal agencies represented on ICCVAM are committed to identifying and 

implementing reliable non-animal approaches to predicting human skin sensitization 

potency. The models developed here are an important step towards that goal. Future work 

will focus on testing the models with an expanded set of substances, including chemical 

formulations such as pesticides and a greater range of chemical structures. We will also 

investigate the impact of including additional data inputs such as cytotoxicity in predictive 

models for human sensitizer potency classification. Ultimately, we hope to advance a non-

animal approach that is considered sufficient for routine regulatory use and end the use of 

animals for identifying skin sensitization hazards.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of substances for the LLNA and human databases across the three GHS 

categories of skin sensitization. The LLNA database contains 120 substances, including 35 

1A (strong) sensitizers and 52 1B (weak) sensitizers. The human database contains 87 

substances, including 26 1A sensitizers and 31 1B sensitizers. GHS, United Nations 

Globally Harmonized System of Classification and Labeling; LLNA, murine local lymph 

node assay.
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Figure 2. 
Distribution of prehaptens, prohaptens and pre/prohaptens across the GHS 1A and 1B 

categories of skin sensitizers. There are 87 LLNA sensitizers (35 1A [strong] and 52 1B 

[weak]) and 57 human sensitizers (26 1A sensitizers and 31 1B). GHS, United Nations 

Globally Harmonized System of Classification and Labeling; LLNA, murine local lymph 

node assay; Pre, prehapten; Pre/Pro, pre- and/or prohapten; Pro, prohapten; U = unknown.
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Figure 3. 
Distributions of (a) DPRA, (b) h-CLAT and (c) KeratinoSens values for substances 

identified as GHS 1A and 1B sensitizers by LLNA and human data. The boxplot is graphed 

based on the data quartiles, which divide the distribution into the 25% (Q1), 50% (Q2) and 

75% (Q3) percentiles. The height of the box is determined by Q1 and Q3 while the median 

or Q2 is represented by the dark line inside the box. Avg.Lys.Cys, average depletion of 

lysine and cysteine peptides; DPRA, direct peptide reactivity assay; EC1.5, concentration 

producing a 1.5-fold induction of luciferase activity; h-CLAT, human cell line activation test; 
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GHS, Globally Harmonized System of Classification and Labeling of Chemicals (UN 2015); 

LLNA, murine local lymph node assay.
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Figure 4. 
Ranking of variable importance by random forest algorithm for (a) LLNA data set and (b) 

human data set for distinguishing between GHS 1A and 1B sensitizers. Avg.Lys.Cys, 

average depletion of lysine and cysteine peptides; BP, boiling point; GHS, Globally 

Harmonized System of Classification and Labeling of Chemicals (UN 2015); hCLAT, 

minimum induction values of the CD86 EC150 and the CD54 EC200; Keratino, EC1.5 for 

the induction of luciferase activity controlled by the antioxidant response element; LLNA, 

murine local lymph node assay; LogP, log octanol:water partition coefficient; LogS, log 

water solubility; LogVP, log vapor pressure; MP, melting point; MW, molecular weight.
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Figure 5. 
Two classification strategies for modeling three categories of sensitization potency.
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Table 1

GHS potency categories

GHS Category LLNA EC3 Human Threshold

1A (strong) ≤ 2% ≤ 500 μg/cm2 skin area

1B (other than strong –“weak”a) > 2% > 500 μg/cm2 skin area

Nonsensitizer Unclassified Unclassified

EC3, estimated test substance concentration that produces a stimulation index of 3, the threshold for a substance to be considered a sensitizer in the 
LLNA; GHS, United Nations Globally Harmonized System of Classification and Labeling; LLNA, murine local lymph node assay.

a
For simplicity in this paper, we refer to Category 1B sensitizers as “weak”; this term is not used in the GHS.
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Table 2

Data ranges of input variables

Name Description Rangea

DPRA Average lysine and cysteine peptide depletion measurement (%) 0 – 95

h-CLAT Minimum induction threshold [smallest value for CD54 EC200 and CD86 EC150] (μg/mL) 0.54 – 2001

KeratinoSens EC1.5 (μM) 0.50 – 2001

LogP Octanol:water partition coefficient −8.28 – 6.46b

LogS Water solubility (mol/L) −6.39 – 1.92b

LogVP Vapor pressure (mm Hg) −28.47 – 5.89b

MP Melting point (°C) −148.50 – 288.00

BP Boiling point (°C) −19.10 – 932.20

MW Molecular weight (g/mol) 30.03 – 581.57

BP, boiling point; DPRA, direct peptide reactivity assay; EC1.5, concentration producing a 1.5-fold induction of luciferase controlled by the 
antioxidant response element; EC150, estimated concentration inducing a 150% increase for CD86; EC200, estimated concentration inducing a 
200% increase for CD54; h-CLAT, human cell line activation test; LogP, log octanol:water partition coefficient; LogS, log water solubility; LogVP, 
log vapor pressure; MP, melting point; MW, molecular weight.

a
Human dataset with 87 substances is a subset of LLNA dataset with 120 substances; the two datasets cover the same range.

b
Range for base 10 logarithm of these measurements.
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Table 4

Variable sets for model building

Variable set Combination of input variables

I DPRA + h-CLAT + KeratinoSens

II LogP + LogS + LogVP + MP + BP + MW

III DPRA + h-CLAT + KeratinoSens + LogP + LogS + LogVP + MP + BP + MW

IV DPRA + h-CLAT + KeratinoSens + LogP

BP, boiling point; DPRA, direct peptide reactivity assay; h-CLAT, human cell line activation test; LogP, log octanol:water partition coefficient; 
LogS, log water solubility; LogVP, log vapor pressure; MP, melting point; MW, molecular weight.

J Appl Toxicol. Author manuscript; available in PMC 2018 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zang et al. Page 31

Ta
b

le
 5

A
cc

ur
ac

y 
of

 in
di

vi
du

al
 c

at
eg

or
y 

an
d 

ov
er

al
l c

la
ss

if
ic

at
io

n 
pr

ed
ic

tio
ns

 u
si

ng
 S

tr
at

eg
y 

A
a  

an
d 

SV
M

L
L

N
A

/H
um

an
b

V
ar

ia
bl

e 
Se

t
D

at
a 

Se
t

1A
c  

(%
)

1B
c  

(%
)

N
eg

 (
%

)
A

cc
ur

ac
y 

(%
)

L
L

N
A

I

T
ra

in
in

g
79

 ±
 1

5
63

 ±
 1

5
85

 ±
 1

4
73

 ±
 9

Te
st

86
 ±

 2
6

50
 ±

 2
8

71
 ±

 3
4

65
 ±

 1
8

L
O

O
C

V
83

 ±
 1

2
62

 ±
 1

3
73

 ±
 1

5
71

 ±
 8

II

T
ra

in
in

g
82

 ±
 1

4
75

 ±
 1

3
65

 ±
 1

8
75

 ±
 9

Te
st

71
 ±

 3
4

58
 ±

 2
8

43
 ±

 3
7

58
 ±

 1
9

L
O

O
C

V
68

 ±
 1

5
60

 ±
 1

3
55

 ±
 1

7
61

 ±
 9

II
I

T
ra

in
in

g
96

 ±
 7

80
 ±

 1
2

96
 ±

 8
89

 ±
 6

Te
st

86
 ±

 2
6

67
 ±

 2
7

86
 ±

 2
6

77
 ±

 1
6

L
O

O
C

V
83

 ±
 1

2
69

 ±
 1

2
85

 ±
 1

2
78

 ±
 7

IV

T
ra

in
in

g
96

 ±
 7

73
 ±

 1
4

96
 ±

 8
86

 ±
 7

Te
st

71
 ±

 3
4

58
 ±

 2
8

86
 ±

 2
6

69
 ±

 1
8

L
O

O
C

V
83

 ±
 1

2
60

 ±
 1

3
85

 ±
 1

2
73

 ±
 8

H
um

an

I

T
ra

in
in

g
79

 ±
 1

8
55

 ±
 2

1
95

 ±
 9

76
 ±

 1
1

Te
st

71
 ±

 3
4

56
 ±

 3
2

75
 ±

 3
0

67
 ±

 1
9

L
O

O
C

V
77

 ±
 1

6
58

 ±
 1

7
80

 ±
 1

4
71

 ±
 1

0

II

T
ra

in
in

g
58

 ±
 2

2
64

 ±
 2

0
77

 ±
 1

8
67

 ±
 1

2

Te
st

43
 ±

 3
7

44
 ±

 3
2

50
 ±

 3
5

46
 ±

 2
0

L
O

O
C

V
58

 ±
 1

9
65

 ±
 1

7
57

 ±
 1

8
60

 ±
 1

0

II
I

T
ra

in
in

g
89

 ±
 1

3
59

 ±
 2

1
82

 ±
 1

6
76

 ±
 1

1

Te
st

86
 ±

 2
6

56
 ±

 3
2

75
 ±

 3
0

71
 ±

 1
8

L
O

O
C

V
85

 ±
 1

4
61

 ±
 1

7
80

 ±
 1

4
75

 ±
 9

IV

T
ra

in
in

g
84

 ±
 1

6
64

 ±
 2

0
82

 ±
 1

6
76

 ±
 1

1

Te
st

86
 ±

 2
6

56
 ±

 3
2

75
 ±

 3
0

71
 ±

 1
8

L
O

O
C

V
88

 ±
 1

3
58

 ±
 1

7
80

 ±
 1

4
75

 ±
 9

L
L

N
A

, m
ur

in
e 

lo
ca

l l
ym

ph
 n

od
e 

as
sa

y;
 L

O
O

C
V

, l
ea

ve
-o

ne
-o

ut
 c

ro
ss

-v
al

id
at

io
n;

 S
V

M
, s

up
po

rt
 v

ec
to

r 
m

ac
hi

ne
.

T
he

 v
al

ue
s 

af
te

r 
±

 in
di

ca
te

 9
5%

 c
on

fi
de

nc
e 

lim
its

 o
f 

pr
op

or
tio

n 
fo

r 
co

rr
ec

t c
la

ss
if

ic
at

io
n 

ra
te

.

J Appl Toxicol. Author manuscript; available in PMC 2018 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zang et al. Page 32
a St

ra
te

gy
 A

 m
od

el
ed

 a
ll 

th
re

e 
ca

te
go

ri
es

 o
f 

re
sp

on
se

 s
im

ul
ta

ne
ou

sl
y.

b T
he

 L
L

N
A

 d
at

a 
se

t c
on

ta
in

ed
 1

20
 s

ub
st

an
ce

s:
 3

5 
st

ro
ng

 s
en

si
tiz

er
s,

 5
2 

w
ea

k 
se

ns
iti

ze
rs

, a
nd

 3
3 

no
ns

en
si

tiz
er

s.
 T

he
 h

um
an

 d
at

a 
se

t c
on

ta
in

ed
 8

7 
su

bs
ta

nc
es

: 2
6 

st
ro

ng
 s

en
si

tiz
er

s,
 3

1 
w

ea
k 

se
ns

iti
ze

rs
, a

nd
 

30
 n

on
se

ns
iti

ze
rs

.

c 1A
 (

st
ro

ng
) 

an
d 

1B
 (

w
ea

k)
 a

re
 s

ub
ca

te
go

ri
es

 f
or

 s
en

si
tiz

er
s 

in
 th

e 
G

lo
ba

lly
 H

ar
m

on
iz

ed
 S

ys
te

m
 o

f 
C

la
ss

if
ic

at
io

n 
an

d 
L

ab
el

in
g 

of
 C

he
m

ic
al

s 
(U

N
 2

01
5)

.

J Appl Toxicol. Author manuscript; available in PMC 2018 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zang et al. Page 33

Ta
b

le
 6

In
di

vi
du

al
 c

at
eg

or
y 

ac
cu

ra
cy

 a
nd

 o
ve

ra
ll 

ac
cu

ra
cy

 o
f 

se
ns

iti
ze

r 
cl

as
si

fi
ca

tio
na  

fr
om

 T
ie

r 
Tw

o 
of

 S
tr

at
eg

y 
B

 u
si

ng
 f

ou
r 

m
ac

hi
ne

 le
ar

ni
ng

 a
pp

ro
ac

he
s

L
L

N
A

/H
um

an
a

A
pp

ro
ac

h
V

ar
ia

bl
e 

se
tb

D
at

a 
se

t
Se

ns
it

iv
it

y 
(1

A
 %

)
Sp

ec
if

ic
it

y 
(1

B
 %

)
A

cc
ur

ac
y 

(%
)

L
L

N
A

C
A

R
T

II
I/

IV
T

ra
in

in
g

86
 ±

 1
3

88
 ±

 1
0

87
 ±

 8

Te
st

57
 ±

 3
7

75
 ±

 2
5

68
 ±

 2
1

L
D

A
I

T
ra

in
in

g
71

 ±
 1

7
75

 ±
 1

3
74

 ±
 1

0

Te
st

71
 ±

 3
4

83
 ±

 2
1

79
 ±

 1
8

L
R

I
T

ra
in

in
g

82
 ±

 1
4

73
 ±

 1
4

77
 ±

 1
0

Te
st

86
 ±

 2
6

67
 ±

 2
7

74
 ±

 2
0

SV
M

II
I

T
ra

in
in

g
89

 ±
 1

2
88

 ±
 1

0
88

 ±
 8

Te
st

86
 ±

 2
6

92
 ±

 1
5

89
 ±

 1
4

H
um

an

C
A

R
T

I/
II

I/
IV

T
ra

in
in

g
68

 ±
 2

1
86

 ±
 1

5
78

 ±
 1

3

Te
st

43
 ±

 3
7

10
0 

±
 0

75
 ±

 2
1

L
D

A
I

T
ra

in
in

g
79

 ±
 1

8
73

 ±
 1

9
76

 ±
 1

3

Te
st

71
 ±

 3
4

78
 ±

 2
7

75
 ±

 2
1

L
R

II
I

T
ra

in
in

g
84

 ±
 1

7
64

 ±
 2

0
73

 ±
 1

4

Te
st

57
 ±

 3
7

78
 ±

 2
7

69
 ±

 2
3

SV
M

II
I/

IV
T

ra
in

in
g

90
 ±

 1
4

77
 ±

 1
8

83
 ±

 1
1

Te
st

86
 ±

 2
6

78
 ±

 2
7

81
 ±

 1
9

C
A

R
T,

 c
la

ss
if

ic
at

io
n 

an
d 

re
gr

es
si

on
 tr

ee
; L

D
A

, l
in

ea
r 

di
sc

ri
m

in
an

t a
na

ly
si

s;
 L

R
, l

og
is

tic
 r

eg
re

ss
io

n;
 L

L
N

A
, m

ur
in

e 
lo

ca
l l

ym
ph

 n
od

e 
as

sa
y;

 S
V

M
, s

up
po

rt
 v

ec
to

r 
m

ac
hi

ne
.

T
he

 v
al

ue
s 

af
te

r 
±

 in
di

ca
te

 9
5%

 c
on

fi
de

nc
e 

lim
its

 o
f 

pr
op

or
tio

n 
fo

r 
co

rr
ec

t c
la

ss
if

ic
at

io
n 

ra
te

.

a C
he

m
ic

al
s 

pr
ed

ic
te

d 
to

 b
e 

se
ns

iti
ze

rs
 u

si
ng

 th
e 

St
ri

ck
la

nd
 e

t a
l.,

 2
01

6,
 m

od
el

s 
w

er
e 

us
ed

 in
 T

ie
r 

Tw
o.

 T
he

 L
L

N
A

 a
nd

 h
um

an
 d

at
as

et
s 

re
sp

ec
tiv

el
y 

in
cl

ud
ed

 8
4 

(3
4 

1A
 a

nd
 5

0 
1B

) 
an

d 
53

 (
26

 1
A

 a
nd

 2
7 

1B
) 

ch
em

ic
al

s 
pr

ed
ic

te
d 

to
 b

e 
se

ns
iti

ze
rs

.

b V
ar

ia
bl

e 
se

ts
 a

re
 d

ef
in

ed
 in

 T
ab

le
 4

.

J Appl Toxicol. Author manuscript; available in PMC 2018 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zang et al. Page 34

Ta
b

le
 7

Pe
rf

or
m

an
ce

 o
f 

on
e-

tie
re

d 
(A

) 
an

d 
tw

o-
tie

re
d 

(B
) 

cl
as

si
fi

ca
tio

n 
st

ra
te

gi
es

 u
si

ng
 S

V
M

a

M
od

el
St

ra
te

gy

C
la

ss
if

ic
at

io
n 

R
at

e

O
ve

ra
ll 

A
cc

ur
ac

y
1A

 (
St

ro
ng

)
1B

 (
W

ea
k)

N
eg

 (
N

on
se

ns
it

iz
er

s)

C
or

re
ct

U
nd

er
O

ve
r

C
or

re
ct

U
nd

er
C

or
re

ct
O

ve
r

L
L

N
A

A
83

 ±
 1

2%
(2

9/
35

)
17

 ±
 1

2%
(6

/3
5)

17
 ±

 1
0%

(9
/5

2)
69

 ±
 1

2%
(3

6/
52

)
14

 ±
 9

%
(7

/5
2)

85
 ±

 1
2%

(2
8/

33
)

15
 ±

 1
2%

(5
/3

3)
78

 ±
 7

%
(9

3/
12

0)

B
91

 ±
 9

%
(3

2/
35

)
9 

±
 9

%
(3

/3
5)

15
 ±

 1
0%

(8
/5

2)
81

 ±
 1

1%
(4

2/
52

)
4 

±
 5

%
(2

/5
2)

97
 ±

 6
%

(3
2/

33
)

3 
±

 6
%

(1
/3

3)
88

 ±
 6

%
(1

06
/1

20
)

H
um

an

A
85

 ±
 1

4%
(2

2/
26

)
15

 ±
 1

4%
(4

/2
6)

26
 ±

 1
5%

(8
/3

1)
61

 ±
 1

7%
(1

9/
31

)
13

 ±
 1

2%
(4

/3
1)

80
 ±

 1
4%

(2
4/

30
)

20
 ±

 1
4%

(6
/3

0)
75

 ±
 9

%
(6

5/
87

)

B
85

 ±
 1

4%
(2

2/
26

)
15

 ±
 1

4%
(4

/2
6)

22
 ±

 1
5%

(7
/3

1)
65

 ±
 1

7%
(2

0/
31

)
13

 ±
 1

2%
(4

/3
1)

93
 ±

 9
%

(2
8/

30
)

7 
±

 9
%

(2
/3

0)
81

 ±
 8

%
(7

0/
87

)

L
L

N
A

, m
ur

in
e 

lo
ca

l l
ym

ph
 n

od
e 

as
sa

y;
 S

V
M

, s
up

po
rt

 v
ec

to
r 

m
ac

hi
ne

.

T
he

 v
al

ue
s 

af
te

r 
±

 in
di

ca
te

 9
5%

 c
on

fi
de

nc
e 

lim
its

 o
f 

pr
op

or
tio

n 
fo

r 
co

rr
ec

t c
la

ss
if

ic
at

io
n 

ra
te

.

a L
ea

ve
-o

ne
-o

ut
 c

ro
ss

-v
al

id
at

io
n 

re
su

lts
.

J Appl Toxicol. Author manuscript; available in PMC 2018 July 01.


	Abstract
	Introduction
	Materials and methods
	Data collection and substance database
	Characterization of the substances
	Model variables
	DPRA
	KeratinoSens
	h-CLAT
	Physicochemical Properties

	Data processing and distribution
	Selection of training and test sets
	Random forest for variable importance ranking
	Machine learning approaches and modeling strategies
	Evaluation of model performance
	Statistical software

	Results
	Strategy A: one-tier approach
	Strategy B: two-tier approach
	Tier One: Sensitizers vs Nonsensitizers
	Tier Two: Strong vs. Weak Potency of Sensitizers


	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7

