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ABSTRACT

In this paper we address the problem of building user models that

can predict the rate at which individuals consume items from a

�nite set, including items they have consumed in the past and items

that are new. This combination of repeat and new item consumption

is common in applications such as listening to music, visiting web

sites, and purchasing products. We use zero-in�ated Poisson (ZIP)

regression models as the basis for our modeling approach, leading

to a general framework for modeling user-item consumption rates

over time. We show that these models are more �exible in capturing

user behavior than alternatives such as well-known latent factor

models based on matrix factorization. We compare the performance

of ZIP regression and latent factor models on three di�erent data

sets involving music, restaurant reviews, and social media. The ZIP

regression models are systematically more accurate across all three

data sets and across di�erent prediction metrics.
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1 INTRODUCTION

In many aspects of our daily lives the way we consume products

and items has evolved from interactions in a physical world to

interactions in digital worlds. We purchase books online instead

of shopping at brick-and-mortar stores, stream music and movies

online instead of purchasing physical copies, and so on. The digital

nature of our consumption provides the opportunity for tailoring of

individual user experiences that can bene�t both the consumer and

the provider. As a consequence, the ability to develop predictive

individual-level models for user-item consumption from past obser-

vations is increasingly important across a variety of applications.
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Building accurate models of consumption in a typical digital

environment is challenging for multiple reasons. In particular, as

an individual moves forward through time, the items an individual

consumes are a combination of (a) items that they have consumed

in the past (i.e., repeat consumption), and (b) novel items that they

have not consumed in the past (i.e., new consumption). User models

in this context must balance these two aspects of behavior.

Individual heterogeneity, in the form of signi�cant variability in

behavior across users, further complicates the modeling process.

In particular, when the set of possible items to be consumed is

large, di�erent users may have very di�erent consumption patterns.

Another signi�cant challenge is data sparsity, given that the number

of items a user typically consumes is often a very small fraction of

the total number of available items.

In this paper we focus on the problem of predicting rates of item

consumption per unit time (days, weeks, months) for individual

users. The prediction of rates is broadly useful in a variety of ap-

plications since it allows us to predict not only which items a user

will consume, but also how often those items will be consumed. For

example, prediction of rates of consumption for speci�c items and

speci�c sets of users is important in the design and engineering

of proxy-caching systems for online streaming media content [19].

For contexts where items have di�erent costs associated with them,

predictions of the rates at which a user will consume speci�c items

can be used for estimating the expected value of a customer from

the provider perspective. Rates also can be used to help evaluate

the expected bene�t of interventions such as providing incentives

to a user. For example, if some users have a high rate of usage for

a particular app on their mobile phones and other users have low

rates of usage for the same app, the latter group is likely to be a

better target for incentivization than the former [8].

As mentioned above, in many real-world applications consump-

tion behavior is characterized by a combination of repeat and new

consumption. For example, some users’ behaviors may be highly

repetitive in nature, e.g., they tend to visit the same restaurants or

listen to the same music artists, and rarely try new items. Other

users may have behavior at the other extreme, continuously ex-

ploring new items and rarely returning to old items. This trade-o�

between exploration and exploitation is well known in computer

science in the context of reinforcement learning, and is also well-

established in cognitive science as a basic trait of how humans

interact with the world around them (e.g., [4, 24]).

These observations suggest that in addition to handling signi�-

cant heterogeneity in terms of individual behavior, the notion that

there is a steady-state behavior for many users may be a fallacy in

the sense that users are continuing over time to both exploit and ex-

plore the choice of items available to them. Rather than having user
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models that are represented as �xed distributions over items, indi-

vidual behavior can be thought as a dynamic process over time that

is driven by feedback from past item consumption, both positive

and negative. To capture these ideas we develop individual-level

Poisson-based regression models where the predicted rate that a

user will consume an item in the next time period is modeled as a

function of an individual’s past behavior. In addition, the models

use global contextual information (such as item popularity) in order

to better generalize to prediction of new items.

The primary contribution of this paper is the development of a

systematic approach formodeling user-item consumption rates over

time using Poisson-based regression models with zero-in�ation.

Through a systematic investigation of several user-item consump-

tion data sets from multiple domains, we demonstrate that this

modeling approach can capture individual-level user preferences

for both old and new items as a function of past behavior and

contextual information. We compare the proposed approach to

state-of-the-art alternatives both empirically and qualitatively and

also show that the proposed approach is scalable to large-scale data

sets.

On the surface the problem we address looks very similar to

that of the classic recommendation system problem. However, it is

important to note that the modeling goals and evaluation criteria in

our work are signi�cantly di�erent. Recommender systems focus

only on prediction and ranking of new items that a user has not

consumed in the past, e.g., for items such as movies or books, where

typically an item is only consumed once by a user. In contrast

we speci�cally focus on problems where consumption is a mix of

repeated and novel item consumption. In this context a natural

approach is to predict the rates at which items are consumed and

to evaluate how well these rates are predicted, rather than just

evaluating the likelihood of whether a user will consume an item

or not.

The remainder of this paper proceeds as follows. In Section 2

we explore di�erent user-item consumption sequence data sets,

and provide motivation for our modeling approach in Section 3. In

Section 4 we describe the proposed ZIP model for understanding

and predicting user-item consumption rates and we show how

this model is learned using user-item consumption observations in

Section 5. Section 6 provides an overview of the existing approaches

for modeling user-item consumption data. In Section 7 we compare

our proposed model to a variety of state-of-the-art alternatives

and interpret the results. Section 8 discusses the scalability of the

approach and we conclude with a brief discussion in Section 9.

2 PROBLEM STATEMENT AND USER-ITEM
CONSUMPTION DATA

In this paper we consider user-item consumption counts mea-

sured in discrete time intervals (by day, week, month, etc.). We

de�ne yti j ∈ {0, 1, 2, . . .} as the number of consumptions of item

j ∈ {1, 2, . . . ,M} by user i ∈ {1, 2, . . . ,N } in time window t ∈

{1, 2, . . . ,T }. In this context the goal of our work is to predict the

expected number of items of type j that user i will consume during

time t + 1, E[yt+1i j | . . .] given the history of all user-item consump-

tion up through time t . It should be relatively straightforward to

extend the approach to continuous time, where each consumption

Dataset N M t T % non-zero

reddit 1000 1000 week 52 2.5

lastfm 931 19997 month 50 0.5

Yelp 2836 203 2 months 12 1.7

Table 1: Summary of the three datasets used in this paper:

number of unique users N , unique items M , time-window

t , number of windows T , and the percentage of data points

that are non-zero.

event has its own time-stamp—here we focus on the discrete-time

case.

Our work is motivated by the challenge of creating a general

framework for consumer behavior data across di�erent domains.

To that end, we investigate multiple publicly available data sets that

represent di�erent types of items and consumption activities. The

3 data sets are summarized and compared in Table 1.

Reddit: reddit is a popular social network with on the order of

1 million topic-focused subgroups (known as subreddits) where

users can post, comment, and vote on content. In this work we

considered data from a sample of N = 1000 users with high activity

andM = 1000 highly active subreddits throughout 2015. The value

ofyti j is de�ned as the number of times user i posted (or commented)

in subreddit j during a given week t .

Lastfm: lastfm is an online music streaming service that allows

users to listen to a selected song or playlist. The particular dataset

we use contains the listening actions over time of nearly N = 1000

users1. We consider artists as items and retain the top M = 20K

artists that are most frequently listened to during the period of time

of February 2005 to June 2009. In the lastfm dataset, yti j represents

the number of times that user i listened to a song performed by

artist j during a month t .

Yelp: Yelp is a popular review platform that allows users to share

their experience with di�erent service providers such as restaurants.

The dataset that we use has been widely used as a benchmark across

recommendation system studies2. For our experiments we focused

on the histories of N = 2836 unique users and their reviews of

M = 203 types of restaurants (e.g. fast food, Mexican, sushi, etc.)

in the Scottsdale and Phoenix (Arizona, USA) metropolitan areas

between June 2014 and June 2016. yti j is the number of times user i

reviewed a restaurant of type j during every two months t .

3 EXCESS ZEROS AND HETEROGENEITY

Two typical characteristics of sparse user-item data sets are (1) an

excess of zeros and (2) heterogeneity across both users and items.

We discuss both characteristics below in turn and describe our

approach to handling each from a modeling perspective.

3.1 Excess Zeros

A common feature of user-item consumption data sets, particularly

when the number of items is large, is a very high rate of zeros,

i.e., most users do not consume the vast majority of items. This

is certainly true of the 3 data sets we analyze in this paper where

roughly 98% to 99% of the entries are zero across the datasets. This

1http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
2http://www.yelp.com/dataset_challenge
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Figure 1: The distribution of item-consumption rates for a

sample of user-item pairs with similar average rates.

is not surprising: for high-dimensional data sets each user will

only be exposed to or be aware of a relatively small fraction of the

potential items that they could interact with. In addition, there are

practical limits (e.g., from cognitive and economic perspectives) in

terms of how many items a user can realistically interact with.

In statistical modeling an overabundance of zeros is often re-

ferred to as “zero-in�ation” [15, 20], to re�ect the phenomenon

that the frequency of zeros in the data is signi�cantly higher than

what a typical parametric model for count data (such as a Poisson

model) can handle. This observation has been made in application

contexts as diverse as epidemiology, economics, and manufacturing

(e.g., see [2]), but has seen relatively little application to the type of

high-dimensional user-item consumption data that we investigate

in this pape—exceptions are [9, 16, 18], which we discuss in more

detail later in the paper.

To illustrate the phenomenon of zero-in�ation Figure 1 shows a

histogram of the yti j values for a sample of user-item pairs from all

datasets with an average consumption rate between 5 and 6 across

time (values of yti j = 0 were excluded in computing the average).

The histogram illustrates the variability of yti j values across all time

windows. We can see that the consumption rate has a bimodal dis-

tribution with one mode at yti j = 0 and additional mode at yti j = 6.

We selected the average rate of 5 to 6 for illustration—similar bi-

modal patterns occur for di�erent values of average number of

user-item consumption. The bimodal nature of this data suggests

that user-item rate can be represented as a mixture of two processes:

an exposure process and a rate process.

Exposure Process: The exposure process describes whether or

not a user i has been exposed to item j at time t . The concept of

exposure captures the idea that for large item sets a typical user is

likely to be unaware of (or unexposed to) most items in the “item vo-

cabulary" (see also [9, 16, 18]), e.g., in music-listening many artists

are unknown to many users. We de�ne zti j ∈ {0, 1} as an indicator

variable to indicate if user i was exposed to item j at time t . We

can model P(zti j = 1) via a Bernoulli distribution with parameter

π ti j , where the Bernoulli parameter will be a function of the past

history of user i and item j.

Rate Process: Conditioned on exposure, i.e., zti j = 1, the rate

process accounts for the number of times user i consumes item j at

time t . A natural and simple distribution for the rate process is the

Poisson model, parameterized by the expected consumption rate

Figure 2: Average number of unique consumed items (left)

and total number of consumed items (right) per week for

each user across each of the 3 data sets.

λti j :

P(yti j = k |λ
t
i j ) =

λti j
k
e
−λti j

k!
(1)

where k = 0, 1, 2, . . . is the number of consumptions. There are a

number of other alternatives for de�ning probability distributions

over count data that we could have used in our modeling approach,

such as the non-negative Binomial distribution (NBD). We chose

to use the Poisson distribution since it is straightforward to inter-

pret the model parameters and is simple to implement. Using an

NBD model, within the same general modeling framework that we

propose here, could in principle lead to more accurate predictive

models than the Poisson.

3.2 Data Heterogeneity

Another common feature of high-dimensional user-item data sets

is heterogeneity. Figure 2 shows boxplots of the average number of

unique items each user consumes (left panel) and the average num-

ber of total consumed items for each user (right panel), per week,

for each of the 3 data sets. The �gure clearly indicates (a) signi�cant

variability across users, as well as (b) signi�cant variability across

the di�erent data sets. A plausible explanation for user variability is

that di�erent users can have signi�cantly di�erent budgets, either

monetary or non-monetary (e.g. time), for consuming items. In

addition there can be signi�cant variation in the domain-speci�c

cost for the consumption of a typical item across di�erent data sets,

leading to signi�cant di�erences in the scale of user-item consump-

tion across di�erent domains, i.e., domain-speci�c cost o�sets. For

example, the e�ective cost to a user of listening to a song (lastfm)

is signi�cantly less than the cost of visiting a restaurant for a meal

(Yelp).

Another contribution to data heterogeneity is the natural varia-

tion across users (and datasets) of some users to explore new items

compared to their tendency to exploit known items. For example, a

user who has a low tendency for exploration will naturally tend to

repeat their behavior and the number and identity of unique items

this user consumes is likely to remain relatively small and static

over time. On the other hand a di�erent user could have a tendency

to be easily bored with items (a state that could be detected from

recent activity [12]) and a corresponding tendency to often explore

new items, where the new items are perhaps strongly in�uenced

by global popularity and trends in the data.
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4 POISSON REGRESSIONWITH
ZERO-INFLATION

Given the prevalence of zero-in�ation and heterogeneity in user-

item data sets we propose to model the observations yti j for user i ,

item j, at time t , as

(1) a mixture of an exposure process and a rate process, where

π ti j is the mixture weight and where λti j is the expected rate

that user i will consume item j at time t (conditioned on

being exposed to the item), and

(2) regression models for each of π ti j and λti j , conditioned on

features xti j .

4.1 Zero-In�ated Poisson Models

The exposure and rate processes are modeled via a mixture of two

components: (a) a delta function at zero and (b) a Poisson distri-

bution. The mixture model weights and Poisson rate parameters,

π ti j and λ
t
i j respectively, are user and item-dependent and are im-

plicit functions of the features xti j—we provide more details on the

conditional models for these parameters later in this section.

We can write the probability of Pzip (y
t
i j = k |π

t
i j , λ

t
i j ) as:

Pzip (y
t
i j = k) =

{

(1 − π ti j ) + π
t
i jPλ(k |λ

t
i j ), k = 0

π ti jPλ(k |λ
t
i j ), k = 1, 2, . . .

(2)

where Pλ(k |λ
t
i j ) is the Poisson probability de�ned in Equation 1.

The model above is known as the zero-in�ated Poisson (ZIP) re-

gression model, where the regression aspect arises through the

conditioning of π ti j and λ
t
i j on the features [15]. In the ZIP model,

zeros can be generated either by (a) the Bernoulli random variable

π ti j taking value 0 or (b) π
t
i j taking value 1 and the Poisson model

generating a value k = 0. From a generative perspective these two

“routes" for generating zeros can be interpreted as either (a) the

user i not being exposed to item j, or (b) the user being exposed

but deciding not to consume the item (by drawing a zero from the

Poisson distribution).

An alternative to the ZIPmodel is to use a shifted Poisson process

for the rate that has a minimum value of k = 1 (rather than k = 0).

In the statistical literature this is known as a hurdle model in the

sense that the Poisson model is invoked if the count is greater than

the “hurdle" (where here the hurdle value is 0). We empirically

compared the hurdle and the ZIP model (results not shown) and

found that the ZIP model systematically outperformed the hurdle

variant for our 3 data sets in terms of modeling and predicting

user-item consumption rates. For this reason we focus on the ZIP

model in the rest of the paper.

4.2 Regression Modeling of Mixture
Parameters

We model heterogeneity across users and items via generalized

linear regression models for both π ti j and λ
t
i j , where the regression

models depend on feature vectors xti j that vary by user i , item j and

time t . The regression models use two constant intercepts, globally-

shared and individual-speci�c, capturing (respectively) the e�ect of

Covariate Notation Value

Global domain costs x0 1

User-speci�c Budget xi0 1

Past user-item preference x t̄i j log

(

1 +

∑t
τ=1 y

τ

i j

t

)

Current user-item activity xti j log(1 + yti j )

Historical item popularity x t̄j log(1 +

∑

i

∑t
τ=1 y

τ

i j

tN )

Current item popularity xtj log(1 +

∑

i y
t
i j

N )

Table 2: De�nition of features used in our regressionmodels,

based on user and item historical data.

global domain costs and heterogeneity in individual-speci�c budgets.

In addition, we use four data-driven features, de�ned in Table 2,

that are computed from each individual user’s historical data and

from contextual information.

The features capture di�erent aspects of user and item histories

and allow the model to capture the balance between explore and

exploit for each individual. Past user-item preference, x t̄i j , repre-

sents the average rate that user i consumes item j over time and

can capture the behavior of repetitive users who have a high prob-

ability of exploitation. Current user-item activity, xti j , captures

(on a log-scale) the recent activity of user i with item j, motivated

by recent studies on the e�ect of recency and boredom in item

consumption [1, 10–12]. Historical item popularity, x t̄j , re�ects

the overall popularity of an item and is expected to capture the

behavior of users whose exploration preferences are a�ected by

conformity [23]. Current item popularity, xtj , captures current

trends in item popularity, allowing the model to re�ect the behavior

of users driven by trends such as hype as a result of a sale, or the

“death” of an item.

The use of features based on a user’s past observations to predict

the future behavior of the individual is an instance of an observation-

driven time-series modeling approach (which we discuss further

in the related-work section below). In particular, this allows for

an individual’s behavior to change over time in a non-stationary

fashion. For example some individuals could be permanently in

exploration mode to the extent that their future behavior is always

di�erent to their past (in terms of speci�c item consumption). More

typical is the case where future behavior is a combination of repeat

and novel item consumption, to varying degrees across di�erent

individuals.

The features used in this paper (in Table 2) are somewhat general

and other features could be used depending on the application. For

example, more speci�c domain-dependent features could also be

incorporated, such as static features that provide side-information

about users and items [18], or exogenous time-varying features

such as seasonality or calendar e�ects [21].

Given the regression features we model the exposure and rate

processes parameters in the following way:

Exposure Process: The value of π ti j is estimated using logistic

regression, conditioned on the globally-shared and the individual-

speci�c intercept coe�cients η0 and ηi0 respectively, as well as the

individual-based feature coe�cient vector ηi = {ηi1,ηi2,ηi3,ηi4}.
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We denote the data-driven feature vector as xti j = {x t̄i j ,x
t
i j ,x

t̄
j ,x

t
j }

and write the logistic function as:

π ti j =
1

1 + e
−(η0x0+ηi0xi0+ηix

t
i j )

(3)

Rate Process: Similarly, the value of λti j is modeled via Poisson

regression with a globally-shared and individual-speci�c coe�cient

β0 and βi0, as well as an individual-speci�c coe�cient vector βi =

{βi1, βi2, βi3, βi4}. In addition, as proposed in [6] and [14], we added

an additional intercept (x j0 = 1) with an item-speci�c o�set βj0 to

accommodate heterogeneity across items.

The resulting Poisson regression model can be written as

log λti j = β0x0 + βi0xi0 + βj0x j0 + βix
t
i j (4)

where the feature vector xti j is de�ned in the same way as in Equa-

tion 3.

5 LEARNING ALGORITHMS

Since the ZIP regressionmodel can be expressed as a two-component

mixture model, with Pλ(y
t
i j |λ = 0) as the zero-in�ation component,

the model parameters can be estimated via a standard application

of the Expectation-Maximization (EM) algorithm. EM is a general

procedure for iterative optimization of a likelihood function with

missing information. For mixture models the missing information

for each data point yti j is the identity of which component gener-

ated that data point. In particular, for ZIP mixtures this information

is missing for all the zeros in the data set, yti j = 0, since these data

points could have been generated by either component. For values

yti j > 0 the data are unambiguously assigned to the rate component

Pλ(y
t
i j |λ

t
i j ).

The E-step computes the membership probability (equivalent to

the expected value of the binary membership indicator) for each

data point yti j = 0, conditioned on current estimates of the model

parameters. The M-step generates maximum likelihood estimates

of the parameters conditioned on the membership probabilities

provided by the E-step. Under fairly broad conditions, repeated

application of E and M steps is guaranteed to converge to a (local)

maximum of the likelihood function.

E-step: In the E-step, for each of the zero-valued data pointsyti j = 0,

we compute the membership probability wt
i j , namely the proba-

bility that this zero was generated by the rate component. These

membership probabilities can be computed by applying Bayes rule

to the de�nition of the mixture model above, Pzip (y
t
i j = k |π

t
i j , λ

t
i j ),

where the parameters π ti j , λ
t
i j are the current parameter estimates

(from the most recent M-step or their initial values at the �rst

iteration).

wt
i j =

π ti jPλ(y
t
i j |λ

t
i j )

(1 − π ti j )Pλ(y
t
i j |λ = 0) + π ti jPλ(y

t
i j |λ

t
i j )

(5)

Data points with membership weights closer to 1 are more likely

(according to the current parameters) to have been generated by the

rate component and, conversely, data with weights closer to 0 are

more likely to have been generated by the zero-in�ated component.

M-step: The M-step optimizes the parameters of the model con-

ditioned on the current estimates of the wt
i j membership values.

Our ZIP model has two sets of parameters, the logistic regression

parameters for the mixture weights η = {η0,ηi }, and the rate pa-

rameters for the Poisson rate component in the mixture model,

β = {β0, β j , βi }. The logistic regression uses the membership

weights as targets and the Poisson regression uses weighted re-

gression with the weights being the membership weights.

Neither the logistic or Poisson regression can be performed in

closed-form, so we use gradient descent within each M-step to

estimate the coe�cients for each model. The gradients in both

cases (logistic and Poisson) involve dense sums over all N ×M ×T

data values, where N ,M and T are the number of users, items and

time-windows respectively. This is in contrast to sparse estimation

methods such as Poisson matrix factorization that can ignore the

zeros in the data, e�ectively working with only a tiny fraction

of the full data matrix for highly sparse data. Thus, in order to

achieve a scalable algorithm, we use stochastic gradient descent

(SGD) instead of full gradient methods, inspired by the success of

SGD in training of large-scale deep neural networks on large data

sets. SGD approximates the exact gradient at each gradient update

by estimating the gradient in a stochastic manner using a small

randomly-selected subset of rows (“mini-batches") from the data

matrix. We discuss the convergence of our EM + SGD method in

more detail in Section 8 later in the paper—at this point it is su�cient

to note that our implementation is as fast (or faster) in wall-clock

time when compared to publicly-available implementations of other

competing approaches.

The step size in each SGD step was determined via the ADAM

algorithm [13] which provides a systematic way of conditioning the

step size on the level of con�dence in the gradient. We found em-

pirically that ADAM worked well for our SGD-based optimization

problems (and that convergence could be di�cult to attain without

it) in agreement with work in deep learning where the combination

of SGD and adaptive step-size (such as ADAM) is essential to the

success of training models on large data sets.

One �nal note is that rather than maximizing the likelihood we

maximized the likelihood times a prior, i.e., maximum a posteriori

EM estimation. In log-space this corresponds to maximizing (in the

M-step) the log-likelihood plus a regularization term corresponding

to the log prior. In our experiments we found that empirically-

determined MAP priors were particularly e�ective. To compute

the empirical prior we trained the model using global coe�cients

(assuming all data belong to a single user) with L2 regularization.

The learned coe�cients were then used as a common prior for all

users.

6 RELATEDWORK

The conceptual basis of our work builds from a rich literature in

statistics on modeling of count data [2]. For example, within the

framework of generalized linear models the Poisson mean is mod-

eled as exp(
∑

βkxk ) where the βk ’s are regression coe�cients and

the xk ’s are the inputs to the model. In the context of longitudinal

data (data across multiple individuals) it is common to use �xed

and random e�ects to account for individual-level heterogeneity,

e.g., by allowing for individual-speci�c intercept terms in the mean
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such as exp(βi +
∑

βkxk )where βi is the o�set for individual i (e.g.,

[5], ch.7). The incorporation of time-dependence into such models

can typically be categorized into one of two general categories ([2],

ch 7.2): observation-driven models where the counts are modeled

directly as functions of past counts (such as autoregressive mod-

els for count data), or parameter-driven models where the counts

depend on a latent state-space process (such as a hidden Markov

model or a linear-Gaussian �lter). The models we propose in this

paper are in the observation-driven category, while the dynamic

matrix factorization methods (discussed below) that we compare

to in our experiments are in the parameter-driven category. The

use of zero-in�ation is also well-known in statistical modeling of

count data (e.g., [7, 15]) and can be combined with other modeling

components (as we do in our proposed approach) such as temporal

dependence and �xed e�ects.

While our approach builds on much of the above prior work in

statistics, a signi�cant di�erence is that we model high-dimensional

count vectors (i.e., a large number of items). These count vectors

are orders of magnitude larger in dimensionality than the low-

dimensional (often scalar) count data that is often the primary

focus in the statistical literature for modeling of count time-series

[2]. To handle the optimization challenges of parameter estimation

for high-dimensional counts we use techniques from stochastic

gradient optimization, which have not (to date at least) seen much

application in the statistical literature for count modeling.

Another signi�cant line of related work is in matrix factorization

of user-item consumption data. The most well-known approach in

this context over the past decade has been the bilinear Gaussian

model based on an SVD decomposition (e.g., [14]). The expected

target value yi j is usually represented in such models as

E[yi j ] = θ
′
iϕ j + β0 + βi + βj , (6)

where θ ′iϕ j is the inner product of low-dimensional latent vector

representations for useru and item i , and β0, βi , and βj are constant,

user, and item o�sets respectively. In this framework the latent

vectors θi and ϕ j and parameters β0, βi , βj are typically estimated

from the data using least-squares. This is equivalent to maximizing

the likelihood of a Gaussian model for the yi j ’s (e.g., [22]). This is a

useful approach for data that can be approximated by a symmetric

distribution but is not ideal for the types of highly skewed count

data we are focusing on in this paper.

More recent work in matrix factorization has built on ideas from

non-negative matrix factorization to develop models that are more

appropriate for count data, e.g., where the expectation in Equation 6

above represents the mean of a Poisson model for the yi j ’s—known

as Poisson matrix factorization (PMF). A typical approach is to

estimate the parameters within a Bayesian framework (such as

variational inference) and to place priors (such as Gamma priors)

on the parameters θi and ϕ j [6, 17].

Of particular relevance to this paper is the recently-introduced

dynamic Poisson matrix factorization model (DPMF) [3] which

models the expected counts as a function of time t as:

E[yti j ] = θ
′
itϕ jt + . . .

where t is a discrete time index (such as days, weeks, etc). Here

the latent user and item vectors are allowed to evolve dynamically

over time, such that predictions for time t + 1 are a functions of the

latent vectors estimated at time t . This DPMF approach (and matrix

factorization in general) can be viewed as an instantiation of a

parameter-driven latent-space model, in contrast to the observation-

driven model that we pursue here.

Another recent strand of related work (in the non-dynamic PMF

context) is the use of zero-in�ated models in probabilistic matrix

factorization. Liang et al. [16] proposed the framework of expo-

sure matrix factorization (ExpoMF) which uses zero-in�ation to

explicitly account for exposure e�ects in matrix factorization of

large binary user-item data sets. Liang et al. found that ExpoMF

systematically outperformed traditional PMF methods that did not

account for exposure. In a similar vein, Jain et al. [9] developed a

probabilistic matrix factorization framework with zero-in�ation

to handle exposure e�ects, for multi-label classi�cation with very

large numbers of labels, also �nding that explicit modeling of ex-

posure systematically outperforms methods that do not include it.

Finally, Liu and Blei [18] recently proposed a zero-in�ated expo-

nential family embedding approach for sparse binary and count

matrices, which from the perspective of this paper could be e�ec-

tively viewed as a “cousin" of traditional matrix factorization with

its low-dimensional embedding representation of the data.

Our work di�ers from the matrix factorization and embedding

approaches described above, in terms of our focus on (a) prediction

of consumption rates rather than ratings or binary data, (b) modeling

both repeat and novel consumption over time, and (c) the use of user-

and item-speci�c regression models rather than low-dimensional

factorizations or embeddings.

There has also been recent work on continuous-time modeling of

time-stamped user-item data, using Markov approaches [1, 11, 12],

Poisson point processes [8], and neural networks [10]. While these

papers share a common motivation with our work in terms of

analyzing explore/exploit aspects of user consumption, the focus

and methodologies are signi�cantly di�erent to what we pursue

in this paper, with less emphasis on user-item rate prediction and

without the use of zero-in�ation or regression models.

7 EXPERIMENTS AND RESULTS

Below we describe the results of comparing the ZIP model to base-

lines and to a number of well-known approaches from the literature

for modeling sparse user-item count data. For all of the experiments

described below the model parameters were estimated using data

up to time t − 2, with hyperparameter tuning via grid search using

data at time t − 1, and then evaluated on holdout test data from

time t . This was repeated for t = T − 4 to t = T and the prediction

metrics for the 5 test sets were then averaged.

7.1 Performance Metrics

We evaluated our models using four di�erent metrics.

Log-Loss: The log-loss is the average of the negative log-probability

(or negative log-likelihood) of each user-item consumption rate in

the test data:

− log P = −
1

Ntest

∑

i

∑

j

log P(yti j )
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where P(yti j ) is the probability of the observed count yti j , under the

model being evaluated, and where Ntest is the total number of test

points. The log-loss metric is bounded below by zero (attainable

only by perfect predictions) and is widely used in the evaluation

of machine learning algorithms that produce probabilistic predic-

tions. A model that assigns higher probability, or lower negative

log-probability, to the observed test data is preferred over a model

that assigns lower probability (or a higher negative log-probability).

Precision, Recall, and F1: Let ŷti j denote the expected number of

times (according to a particular model) that user i will consume

item j during time-window t . For the ZIP model, by the linearity of

expectation we have that ŷti j = π̂ ti j λ̂
t
i j where π̂

t
i j and λ̂

t
i j are point

(MAP) parameter estimates learned by the model on the training

data.

For each pair i, j we can compute the precision and recall of a

prediction ŷti j , relative to the observed value yti j , as follows. Pre-

cision can be de�ned in the context of count data as
min{yti j ,ŷ

t
i j }

ŷti j
,

i.e., it is the fraction of user-item consumptions that the model

predicted would occur that actually did occur. Similarly, recall can

be de�ned as
min{yti j ,ŷ

t
i j }

yti j
, which is the fraction of observed user-

item consumptions that did occur that the model predicted would

occur. These pairwise user-item precision and recall values can be

averaged over all user-item pairs to obtain overall precision and

recall numbers. Models that systematically underestimate yti j (e.g.,

that predict all zeros) will have high precision but low recall, and

vice-versa for models that systematically overestimate yti j . For our

experimental results below we report the F1 score, which combines

both precision and recall, in the standard fashion as:

F1 = 2 ×
Prec × Rec

Prec + Rec

MAE: Mean absolute error between the expected number of times

that a user i will consume item j during time-window t and the

observed value yTi j : MAE = 1
Ntest

∑

i
∑

j

�

�

�yti j − ŷti j

�

�

�

7.2 Poisson Regression with and without
Zero-In�ation

We �rst compare the ZIP Poisson regression model (ZIP) to a Pois-

son regression model (PR) without a zero-in�ation component. We

use the same features for both models. Table 3 shows that the ZIP

model systematically outperforms the PR model on holdout data,

for all three metrics across all three data sets.

To further analyze the contribution of the zero-in�ated compo-

nent we evaluated each of the models in terms of their ability to

predict the zeros. We focused on user-item pairs with yti j = 0 and

computed the Log-Loss for those pairs under each model. The Log-

Loss values for the PR model are 0.064, 0.035 and 0.042 in the reddit,

lastfm and Yelp data sets respectively. The corresponding values

for the ZIP model are an order of magnitude lower: 0.004, 0.004

and 0.017. This signi�cant improvement is directly attributable to

the presence of the zero-in�ation component in the ZIP model.

Log-Loss F1 MAE

Dataset PR ZIP PR ZIP PR ZIP

reddit 0.30 0.14 0.70 0.82 0.40 0.23

lastfm 0.20 0.08 0.08 0.25 0.08 0.04

Yelp 0.09 0.07 0.09 0.15 0.07 0.04

Table 3: Log-Loss, F1 measure and MAE on the test data for

the PR and ZIP models across di�erent data sets. Lower val-

ues are better for Log-Loss and MAE and higher values are

better for F1. Best performing methods indicated in bold

font.

7.3 Comparing ZIP to Baselines and Matrix
Factorization

Below we describe results obtained from comparing the ZIP model

to a set of simple baselines and to several well-known approaches

in the literature based on matrix factorization and embeddings for

count data.

GR (Global Rate): This is de�ned as the global rate at which each

item is consumed in the training data, computed by averaging

across all users and time-stamps:

λ̂GRi j = λ̂j =
1

N

1

t

N
∑

i=1

t
∑

τ=1

yτi j 1 ≤ j ≤ M

MPE (Mean Posterior Estimate): This is the mean posterior es-

timate (MPE) of each user-item rate, with a conjugate Bayesian

Gamma(γ0,γ1) prior, based on the counts in the training data:

λ̂MPE
i j =

∑t
τ=1 y

τ
i j + γ0

t + γ1

where γ0 and γ1 are determined via grid search to optimize the

log-loss of the validation data for the MPE model.

PMF (Poisson Matrix Factorization): This is a latent factor ma-

trix factorization model with a Poisson distribution for the observed

counts. In our results we used a state-of-the-art Bayesian PMF ver-

sion implementation by Liang et al. [17]. We �t the model to the

aggregated data across all time windows. At prediction time the

predicted rates from the model were divided by the number of time

windows in the training data set to scale the rate for prediction for

a single time window.

DPMF (Dynamic Poisson Matrix Factorization): This is an ex-

tension of the PMF model that learns latent-space decomposition

from a sequence of user-item consumption counts [3]. The latent-

space vectors for users and items are estimated for each time-

window jointly by modeling the change in θ ti and ϕtj between

di�erent time steps t using a Kalman �lter.

ZIE (Zero-In�ated Exponential Family Embeddings): This is

an exponential family embedding algorithm that uses a zero-in�ation

component to model exposure and e�ectively downweight zero

counts when learning item embeddings from sparse binary or count
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GR MPE PMF DPMF ZIE ZIP

reddit 2.984 0.248 0.362 0.845 4.214 0.136

lastfm 0.213 0.132 0.145 0.154 0.171 0.075

Yelp 0.078 0.084 0.076 0.076 0.074 0.069

Table 4: Log-Loss on the test data for di�erent algorithms

across di�erent data sets. Lower scores are better. Best-

performing methods indicated in bold font.

GR MPE PMF DPMF ZIE ZIP

reddit 0.07 0.62 0.63 0.57 0.01 0.82

lastfm 0.04 0.21 0.12 0.18 0.02 0.25

Yelp 0.10 0.11 0.13 0.10 0.11 0.15

Table 5: F1-scores on the test data for di�erent algorithms

across di�erent data sets. Higher scores are better. Best-

performing methods indicated in bold font.

GR MPE PMF DPMF ZIE ZIP

reddit 0.996 0.401 0.342 0.473 0.661 0.228

lastfm 0.057 0.049 0.051 0.043 0.136 0.038

Yelp 0.042 0.035 0.040 0.049 0.041 0.035

Table 6: MAE on the test data for di�erent algorithms across

di�erent data sets. Lower scores are better. Best-performing

methods indicated in bold font.

data [18]. We �t the model to the aggregated data across all time

windows using Poisson distribution and scaled to a single time

window at prediction time. The exposure covariates in this model

are individual-speci�c and represent external information (such

as demographic variables). In the absence of additional meta-data

about the individuals for the data sets used in this paper, we used a

single intercept for each item.

Hyperparameters for PMF, DPMF, and ZIE were determined via

grid search on the validation data. One hyperparameter of particu-

lar interest is the number of factors or dimensions used by these

models. We found that the matrix factorization techniques, PMF and

DPMF, had the best predictive performance when using extremely

high numbers of factors, to the point of almost memorizing the

data. Rather than using very high dimensional representations, in

keeping with typical matrix factorization experiments in the litera-

ture, we limited the number of factors for the models to a moderate

range of 200 to 500 dimensions. For the ZIE method, grid search on

the validation resulted in 50 to 100 embedding dimensions being

approximately optimal for prediction across the di�erent data sets,

with little to no improvement above 100.

Tables 4, 5 and 6 show the Log-Loss, F1, and MAE scores on the

test data, for each of the baselines and PMF, DPMF and ZIE models,

compared to the ZIP model. The ZIP model is signi�cantly more

accurate than the other methods for all metrics for all data sets,

except for the MAE score for the MPE model on the Yelp data set.

For both the reddit and lastfm data sets the margins of improve-

ment of the ZIP model over the PMF, DPMF and ZIE models are

quite large. There are two likely reasons for this improvement. The

�rst is that the zero-in�ation component in the ZIP model provides

a more �exible way to handle excess zeros than PMF or DPMF. The

second reason is that the the user-speci�c features in the regression

approach (such as the history variable of what speci�c items a user

consumed in the past) allows the regression model to more accu-

rately model individual-level details than the matrix factorization

(MF) or embedding approaches. These approaches are constrained

by the dimensionality of their latent spaces, limiting the level of

detail (e.g., speci�c combinations of items) available for modeling

individual users. We explore both of these in more detail below.

Figure 3: The ratio of probability for the number of con-

sumptions for selected users from reddit (top) and lastfm

(bottom) at time T assigned by the evaluated models com-

pared to the ground truth (GT). The number of consump-

tions predicted by the ZIE model were all lower than 1. As a

result the ratios of probabilities for the ZIE model are omit-

ted from the plot for clarity. Best viewed in color.

Modeling excess zeros: Modeling the zeros provides the ZIP

model with a principled way of down-weighting the zeros in the

process of learning the rate parameter. As a result the rate-process

coe�cients are free to �t a larger range of yti j values (in particular,

high numbers of consumptions). In Figure 3 we plot the ratio be-

tween (a) the predicted number of ŷti j counts, across di�erent ranges

of y, for the di�erent models, and (b) the ground truth number for

those values in the test data. These plots are for users with high

variance in their yti j values, for both the reddit (top) and lastfm

(bottom) data sets. We can see that in order to �t the excess of

zeros, the baselines tend to systematically and signi�cantly overes-

timate the low rates and to underestimate the high rates, relative

to ground truth. In contrast, the proposed ZIP regression model

(green squares) tends to be much more accurate (i.e., much closer

to 1 than the other methods across both data sets).

Balancing Explore-Exploit: By separately modeling the ex-

posure and rate processes, the ZIP model is able to capture the
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heterogeneity across users in terms of their explore/exploit behavior.

In particular, the exposure process coe�cient ηi0 corresponds to the

estimated user-speci�c budget and captures the number of unique

items a user will consume. As ηi0 increases, the probability that a

user will be exposed to an item and consume it is also predicted to

increase, corresponding to a higher predicted tendency for explo-

ration. To illustrate this, in Figure 4 we plot the correlation between

the value of ηi0 and the number of unique items the user consumed

in the lastfm (left) and reddit (right) data sets. The clear positive

correlation between the two (shown as the regression line in red)

demonstrates the ability of our model to achieve an appropriate

balance between exploration and exploitation, resulting in better

individual-level predictive models. In addition, the individual-level

coe�cients provide interpretable detail about each speci�c user,

quantifying their individual tendency for exploration within the

context of a broad rate-prediction model.

Figure 4: Number of unique items each user consumed as a

function of the user-speci�c budget coe�cient (ηi0) in the

lastfm (left) and reddit (right) data sets. The red line indi-

cates the exponential curve �tted to the scatter plot.

8 SCALABILITY

In �tting our regression models our dense data matrix can be

thought of as having N × M × T rows and d columns (for the

features), where d is the number of coe�cients in the regression,

N ,M and T are the number of users, items and time-windows re-

spectively. Thus, direct gradient optimization would be O(dNMT )

per gradient computation. Using SGD, the time complexity of a

single gradient step is O(d × R) where R is the minibatch size (i.e.,

Figure 5: Optimization cost value (negative log-Likelihood)

at each SGD iteration for each dataset. Markers denote the

point in the iterative process where E-steps were performed.

Best viewed in color.

the number of data points selected for computing each stochastic

estimate of the full gradient).

If we think of NMT as the e�ective total number of rows in the

full data set, then to gain the bene�ts of SGD we need to select R

such that R << NMT . In typical applications of SGD with dense

data the minibatch size can be quite small, e.g., R = 10,R = 100.

However, with highly skewed data (as in the user-item data sets of

interest here), the minibatch sizes need to be signi�cantly larger

to ensure that there are enough non-zeros in each minibatch. We

found that a minibatch size of R = 50, 000 worked well in terms of

relatively fast and reliable convergence. The time complexity of a

single E-step is O(d×N ×M×T ), i.e., proportional to the number of

rows, making it the most expensive part in the algorithm in terms of

time complexity. It is possible that some e�ciency could be gained

here via an approximate E-step but we did not investigate this here

given that we execute far more gradient steps (within the M-step)

than E-steps.

Figure 5 shows convergence plots, where the y-axis is the cost

function (Log-Loss) at each iteration. Each iteration on the x-axis

marks a single stochastic gradient (minibatch) step and the markers

indicate the point in the algorithm where E-steps occurred (each

M-step consists of multiple gradient steps). We see from the con-

vergence plots that the algorithm converges quickly for each of the

three data sets in our experiments. We implemented our algorithm

in Python (with Cython to speed-up)3. Each mini-batch iteration

in our implementation ran in a matter of few milliseconds and the

relatively expensive E-step took 7, 62, and 1 seconds on average for

the reddit, lastfm, and Yelp data sets respectively. Our implementa-

tion used a single core—it is relatively straightforward to distribute

the computation of the gradients and membership weights by using

multiple cores, rendering the algorithm scalable to much larger

data sets than what we used here.

9 CONCLUSIONS

We proposed and investigated a framework using zero-in�ated

Poisson regression for prediction of consumption rates in high-

dimensional user-item data sets. The approach is motivated by

applications where user consumption is a mix of repeat (exploita-

tion) and novel (exploration) behavior over time. The regression

component of the model allows for detailed modeling of individual

users based on their histories and provides an alternative to more

widely-used latent variable models such as matrix factorization.

Experimental results indicate that the proposed approach can sys-

tematically outperform existing alternatives such as PMF, DPMF

and ZIE for the problem of predicting the rates at which speci�c

users consume speci�c items. There are a number of natural direc-

tions for further explorations of models of this type, including for

example modeling of the dynamic changes between time windows

within the regression framework, potentially further enhancing the

predictive capabilities of the proposed ZIP regression model.
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