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We give a review of the theoretical approaches for predicting spectral phonon mean free path and thermal conductivity of solids.
�emethods can be summarized into two categories: anharmonic lattice dynamics calculation andmolecular dynamics simulation.
In the anharmonic lattice dynamics calculation, the anharmonic force constants are used 	rst to calculate the phonon scattering
rates, and then the Boltzmann transport equations are solved using either standard single mode relaxation time approximation
or the Iterative Scheme method for the thermal conductivity. �e MD method involves the time domain or frequency domain
normal mode analysis. We present the theoretical frameworks of the methods for the prediction of phonon dispersion, spectral
phonon relaxation time, and thermal conductivity of pure bulk materials, layer and tube structures, nanowires, defective materials,
and superlattices. Several examples of their applications in thermal management and thermoelectric materials are given. �e
strength and limitations of these methods are compared in several di
erent aspects. For more e�cient and accurate predictions,
the improvements of those methods are still needed.

1. Introduction

In recent years, increasing attention has been focused on
seeking novel structures and materials with desired thermal
properties, especially thermal conductivity. High thermal
conductivity can help remove heat rapidly and reduce device
temperatures so as to improve performance of nanoelectron-
ics and optoelectronics, while low thermal conductivity is
desired in thermoelectrics for improving the 	gures of merit�� [1] of the material:�� = �2��/�, where �, �, �, and � are
Seebeck coe�cient, electronic conductivity, temperature, and
thermal conductivity, respectively. �e thermal conductivity� is a summation of the lattice contribution �� and electron
contribution ��. Since, in most thermoelectric materials,
the phonon mean free path is much longer than that of
electrons, one major strategy to enhance �� is to reduce ��
without much a
ecting ��. �is is made possible by the rapid
development of nanofabrication techniques.

Gaining a deeper physical insight into the spectral
phonon properties, for example, the spectral phonon

relaxation time and mean free path, is necessary to correctly
explain experimental results and accurately predict and
guide the further designs and applications. Analytical
models have been used by Balandin and Wang to estimate
frequency-dependent phonon group velocity and various
phonon scattering rates including phonon-phonon, phonon-
impurity, and phonon-boundary scattering processes. �ey
used this approach to observe the strong modi	cation of
acoustic phonon group velocity and enhanced phonon
scattering rate due to boundary scattering in semiconductor
quantumwells, so as to successfully explain their signi	cantly
reduced lattice thermal conductivity [2]. �is e
ect of
phonon con	nement was then extended to nanowires
and quantum dot superlattices [3–5]. Analytical models
of spectral phonon properties are advantageous in their
clear physical insights, but they usually contain empirical
	tting parameters, and this limitation has motivated the
development of numerical methods based on 	rst principles
and molecular dynamics that can predict these spectral
properties from their atomic structure, without 	tting
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parameters and with greater accuracy. �is review will be
focused on these predictive simulation methods.

�e methods of predicting spectral phonon relaxation
times and mean free paths become increasingly important
for predicting the thermal properties of numerous novel
materials. For instance, superlattice structure is found to
be an e
ective way to suppress the thermal conductivity
because of the interface mass mismatch scattering [6–8], but
the phenomenon in which the short-period superlattice can
have even higher thermal conductivity still needs the deep
insight of phonon relaxation time. Doping and alloying are
widely used to explore novel high performance materials
[9], and the natural materials are rarely pure; thus the study
of impurity scattering contributing to phonon relaxation
time is important. Layer and tube structured materials, for
example, graphene [10–13] and carbon nanotube (CNT) [14–
17], are proved to have unusual phonon transport features
such as high thermal conductivity [18–20], which still need
to be further understood. Comprehensive reviews of their
thermal transport can be found in [21–23]. Nanowires are
most commonly studied and used in both theoretical and
experimental research [24–32], and the accurate prediction
of thermal conductivity needs the knowledge of spectral
phonon scattering by boundaries.

Manymethods have been proposed and applied to predict
spectral phonon relaxation time in the last half century.
At the earliest, Klemens and other researchers obtained
the frequency-dependent phonon relaxation time mostly by
long-wave approximation (LWA) andDeybemodel: Klemens
obtained the phonon relaxation times by Umklapp (�)
three-phonon scattering [33, 34] and defect scattering [35],
Herring studied normal (�) three-phonon scattering [36],
Holland extended the results to dispersive transverse mode
range [37], and Casimir studied boundary scattering [38–
40]. A more accurate method, the third-order anharmonic
lattice dynamics (ALD) calculation which can predict the
intrinsic spectral phonon relaxation times without LWA,
was presented by Maradudin and the coworkers [41, 42].
ALD methods were then applied to silicon and germanium
by ab initio approach 	rst by Debernardi et al. [43] and
Deinzer et al. [44]. Beyond the standard ALD calculation,
Omini and Sparavigna [45, 46] proposed an Iterative Scheme
which gives exact solutions to the linearized Boltzmann
transport equation (BTE). �e Iterative Scheme has been
successfully applied tomany structures in the recent ten years
by Broido, Lindsay, Ward, and so forth [47–65]. Other than
the lattice dynamics calculation, a time domain normalmode
analysis (NMA)method based onmolecular dynamics (MD)
simulation was proposed by Ladd et al. [66] and extended
by McGaughey and Kaviany [67]. Another version of normal
mode analysis is implemented in frequency domain, so called
spectral energy density (SED) analysis. �e normal mode
analysis was early implemented by Wang et al. [68–75] to
obtain the relaxation times of a few phonon modes and then
extended by de Koker [76] and �omas et al. [77, 78] to
calculate lattice thermal conductivity.

In this work, we present a review of the methods of
predicting spectral phonon properties, discuss the applica-
tions to each method, and compare them in di
erent aspects.

Section 2 gives an overview of thermal conductivity and the
frequency-dependent relaxation time predicted from early
long-wave approximation (LWA) andDebyemodel. Section 3
presents the ALD calculation which is divided into three
subsections: Section 3.1 covers the standard single mode
relaxation time approximation (SMRTA), Section 3.2 gives
the Iterative Scheme, and Section 3.3 reviews examples of
the applications to pure bulk, layer and tube structures,
nanowires, defective materials, and superlattice. In Section 4,
we introduce the time domain NMA and frequency NMA
methods based on MD simulations and their applications.
�e summary is presented in Section 5. �e appendix pro-
vides some derivations of ALD methods.

2. Theory Overview

Spectral phonon mean free path (MFP), determined by
phonon scattering rate, dominates the behavior of thermal
properties, especially the thermal conductivity �. Based on
BTEunder the relaxation time approximation (RTA), thermal
conductivity is determined by the spectral phonon relaxation
time 	�, phonon group velocity k� = ∇k�, and phonon
speci	c heat �� [34]:

�� = 1
∑� (k� ⋅ �̂)2��	�, (1)

where �̂ denotes the transport direction, � is the shorthand
of phonon mode (k, ]) with k representing the phonon wave
vector and ] labeling phonon dispersion branch, 
 is the
volume of the domain, and the summation is done over the
resolvable phononmodes in the domain.�e speci	c heat per

mode is �� = ℏ����0
�/�� = ���2��/(�� − 1)2, where �0

� is
phonon occupation number of the Bose-Einstein distribution�0
� = (�� − 1)−1 and � is the shorthand of ℏ�/���. Equation
(1) can also be expressed in terms of phonon mean free path
→Λ � = k�	�. �e continuous form of (1) is, with the help of∑

k
= (
/(2�)3) ∫ �k,

�� = 1
(2�)3∑] ∫ (k� ⋅ �̂)2��	��k. (2)

If isotropic heat transport is assumed, the integration of|V�,�|2 in (2) gives V2�/3, and ∫�k gives ∫ 4��2��, we get the
commonly used formula

�� = 4�3 1
(2�)3∑] ∫ ��V�Λ ��2��. (3)

�e early theoretical predictions of phonon relaxation
times for di
erent scattering processes are brie�y summa-
rized in Table 1 [37, 79]. � is temperature; subscripts �, �,�, and  indicate the Umklapp scattering, normal scattering,
transverse wave, and longitudinal wave, respectively; !, "’s,
and #’s are constants; $ is Debye temperature; % is numerical
constant in [34]; Low�means� ≪ $, and high�means� ≫$. �1 is the transverse mode frequency at which the group
velocity starts to decrease, and �2 is the maximum transverse
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Table 1: Analytical models of inverse relaxation time for di
erent
scattering processes.

Scattering process Inverse relaxation time

Intrinsic �ree-Phonon

� process

Herringa 	−1
	,
 = "	�2�3, low �
	−1
�,
 = "���4, low �
	−1
	,
 = "�

	�2�, high �
	−1
�,
 = "�

���, high �
Callawayb 	−1


 = "
�2�3

� process

Klemensc 	−1

 = "
�2�3 exp(− $%�), low �

Klemensd 	−1

 = "
��3 exp(− $%�), low �
	−1

 = "��2�, high �

Callawayb 	−1

 = "
�2�3

Hollande 	−1
�,
 = "�
�2

sinh (�) , �1 ≤ � ≤ �2

0, � < �1

Asen-Palmer et al.f 	−1
�,
 = "�

�
�2� exp(#�� )
	−1
	,
 = "�

	
�2� exp(#	� )
Boundaryg

	−1
� = V�78 7: diameter, 7 = 2√7172/�;8: surface roughmess

Impurityh 	−1
im = �2 :�2;(�) ≈ 
0:4� ⟨V3⟩�4 ∼ !�4

References: a[36], b[80], c[33], d[34], e[37], f[81], g[38–40], and h[35].

frequency. �e intrinsic three-phonon scattering rates are
derived mostly in LWA or linear dispersion approximation.

Boundary scattering 	−1
� exists anywhere, since every

sample has a 	nite size. 8 captures the boundary scattering
characteristic of the sample with 8 = 1 representing
completely di
usive and 8 → ∞ meaning specular. 7 =2√��/� is ameasure of the size perpendicular to the transport
direction, with �� being the area of cross section. V� is o�en
replaced by the average phonon speed of the three acoustic
branches Vave for simplicity [37]:

Vave = [13
3∑
]

1
V
]

]
−1

= [13 ( 2
V�

+ 1
V	
)]−1. (4)

�e last equation in Table 1 takes into account the impu-
rity scattering rate, where

: = ∑
�
I�(1 − J�J )2

(5)

is a measure of mass disorder, ;(�) is phonon density of
states normalized to unity, I� is the concentration of the
impurity species K, and J� and J are the mass of K and
average mass for the given composition, respectively. �e

exact expression for ⟨V3⟩ is found in [82], while, in long

wave approximation, ⟨V3⟩ approximates the cube of acoustic

phonon speed of the material. �is equation was derived by
Klemens for isotope scattering with only mass disorder. For
crystal defects other than isotope doping, such as vacancy,
interstitial, and antisite defects, the impurity scattering comes
fromnot only themass disorder but also the interatomic force
change and link break. Klemens took into account such e
ect
by adding a modi	cation to ::

:̃ = : + 2∑
�
I�(ΔP�P − 6.4RΔS�S )2, (6)

where P�/P, and ΔS�/S describe the average relative variations
of the local force constants and atomic displacements [35, 83–
85], respectively. Some consider the dislocations by adding a

scattering term 	−1
� ∼ � to the total phonon scattering rate

[84], predicted from single dislocation assumption by [34, 35,

86, 87]. Although 	−1
im = !�4 is derived for low frequency

phonons, many works use it to predict thermal conductivity
or explain data from experiments for alloys and crystals with
impurities [24–26, 37, 81, 84, 85, 88–91]. In Section 3.3.4, we
will give more precise expressions for isotope scattering.

For the system that contains several scattering mecha-
nisms, the Matthiessen rule is o�en used to evaluate the total
scattering rate,

	−1 = ∑
�
	−1
� . (7)

In most cases the Matthiessen rule gives reasonable results,
although it is found to be not accurate in some cases recently
[58, 92, 93].

�ese frequency dependent relaxation time expressions
in Table 1 have been used in many works for thermal
conductivity prediction and analysis, and the choice of those
expressions looks quite arbitrary. For instance, in the choice
of intrinsic phonon relaxation time in the thermal conductiv-
ity analysis of silicon, Glassbrenner and Slack [94] used 	−1 ∼�2�, while Asen-Palmer et al. [81] and Mingo et al. [24, 25]

used 	−1 ∼ �2� exp(#/�) for all phononmodes; Martin et al.
[26] used 	−1

	 ∼ �2�3 for longitudinal mode, while Holland

added 	−1
� ∼ �2/ sinh(�) to dispersive transverse range. �e

thermal conductivity results predicted by these expressions
can be reasonable due to the adjustable 	tting parameters.
�erefore, it becomes important to accurately predict spectral
phonon relaxation time without any 	tting parameter, which
allows us to understand thermal transport and examine (a)
the validity of low-frequency approximation or the Debye
model, (b) the importance of optical branch to thermal trans-
port, (c) the contributions of phonons with di
erent mean
free path or di
erent wavelength to thermal conductivity, (d)
the relative importance of di
erent scattering mechanisms in
a given material, and so forth.

3. Anharmonic Lattice Dynamics Methods

In perturbation theory, the steady-state phonon BTE [34,
79, 95] describes the balance of phonon population between
di
usive dri� and scattering as

k� ⋅ ∇�� = ����T
UUUUUUUU�, (8)
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where �� = �0
� + ��

� is the total phonon occupation number

with ��
� representing the deviation from the equilibrium

phonon distribution �0
�. With ∇�� = (���/��)∇� and

assuming that ��
� is independent of temperature: (���/��) ≃(��0

�/��), we have
k� ⋅ ∇���0

��� = ���
��T
UUUUUUUUU�. (9)

�e RTA assumes that deviation of single phonon mode
population decays exponentially with time:

��
� ∼ exp(− T	�) , (10)

where 	� is the relaxation time. �erefore, the collision term
in BTE (9) becomes

���
��T
UUUUUUUUU� ≃ −��

�	� . (11)

Generally, the value of 	� is considered as the average time
between collisions of the phonon mode � with other modes,
whereby 	� = 1/Γ�, where Γ� denotes the scatting rate.

Considering only three-phonon scattering, (9) becomes
[95]

k� ⋅ ∇���0
���

= −∑
�����

{ [����� (1 + ����) − (1 + ��) (1 + ���) ����]L+

+12 [�� (1 + ���) (1 + ����) − (1 + ��) �������]L−} ,
(12)

where the summation is done over all the phonon modes ��

and ��� that obey the energy conservation �� ± ��� = ����
and quasimomentum conservation k ± k� = k

�� +G withG =
0 for � processes and G ̸= 0 for � processes, where G is a
reciprocal-lattice vector.L± is the probability of �±�� → ���

scattering occurrence, determined via Fermi’s golden rule

L± = ℏ�4�0

UUUUU
(3)
±
UUUUU2 ] (�� ± ��� − ����)���������

, (13)


(3)
± = ∑

�����������
∑
���

Φ���
0�,���� ,������

�����±��
��� �−���

����√J�J��J���
�±�k� ⋅r�� �−�k��⋅r��� ,

(14)

where _’s and 7’s are the indexes of basis atoms and unit cells,
respectively, %, `, and R represent coordinate directions, J�
is the mass of basis atom _, considering that some doping

material J� is the average mass in the _th basis sites, ���,�
is the % component of the _th part of the mode � =(k, ])’s eigenvector, andΦ is the third-order interatomic force
constant (IFC). �e factor “1/2” in (12) accounts for the

double counting in the summation of �� and ��� for the “−”
process. In (14), the factor ��k⋅r� is o�en omitted, since it is a
constant in the summation and thus contributes nothing to|
(3)

± |2.
3.1. Standard Single Mode Relaxation Time Approximation.
�e Standard SMRTA assumes that the system is in its
complete thermal equilibrium, except that one phononmode� has its occupation number �� = �0

� + ��
� di
ering a

small amount from its equilibrium value �0
�. �erefore, on

the right hand side of (12), replacing �� by �0
� + ��

�, whilst��� and ���� by �0
�� and �0

��� , respectively, one can obtain the

phonon relaxation time 	0
� of mode � (for the derivation, see

Appendix A.1):

1	0
�
= +∑

�����
Γ+
������ + 12

−∑
�����

Γ−
������ +∑

��
Γext��� , (15)

where the 	rst two terms on the right hand side are intrinsic
three-phonon scattering rates (�� ± ��� = ����):

Γ±
������ = ℏ�4�0

{ �0
�� − �0

����0
�� + �0

��� + 1 }
× UUUUU
(3)

±
UUUUU2 ] (�� ± ��� − ����)���������

.
(16)

�e last term Γext��� represents the extrinsic scattering such as
boundary scattering and impurity scattering.

3.2. Iterative Scheme: Exact Solution to Linearized BTE.
Di
erent from the Standard SMRTA, the other method to
solve the phonon BTE allows all the modes to be in their
thermal nonequilibrium states at the same time. By replacing

the occupation numbers ��, ��� , and ���� by �0
� + ��

�, �0
�� + ��

�� ,

and �0
��� + ��

��� , respectively, on the right hand side of (12), the
relaxation time 	� of mode � is obtained (for the derivation
see Appendix A.2)

	� = 	0
� (1 + Δ �) , (17)

Δ � = (+)∑
�����

Γ+
������ (c����	��� − c���	��)

+ (−)∑
�����

12Γ−
������ (c����	��� + c���	��)

+∑
��
Γext���c���	�� ,

(18)

where c��� = V��,����/V�,���, and V� is phonon group velocity
component along the transport direction.

Equation (17) is solved iteratively because both the le�
and the right hand sides contain the unknown variable 	�,
and thus the method is called Iterative Scheme. �is scheme
is also based on RTA; thus (10) and (11) are still valid (one can
reach this by substituting (A.3), (A.4), (A.11), (A.12), (A.13),
and (A.14) into (9)). �e last summation in (18) is done over�� with �� ̸= �.
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3.3. Discussions and Applications. ALD methods can be
divided into classical method and ab initiomethod, di
ering
in how to calculate the harmonic and anharmonic IFCs,
which are the only inputs to these methods. �e classical
approach relies on empirical interatomic potential whose �th
order derivatives are taken as the �th order IFCs:

Φ�1⋅⋅⋅��
�1�1 ,...,���� = ��Φ�d1 (71_1) , . . . , �d� (7�_�) . (19)

In contrast, the ab initio approach is a 	rst principle calcu-
lation in the framework of density functional perturbation
theory (DFPT) [43, 96, 97] using norm-conserving pseu-
dopotentials in the local density approximation (LDA) with-
out introducing any adjustable parameters. �e formulism of
the IFCs using 	rst principle method can be found in [44]
and realized by, for example, the QUANTUM ESPRESSO
package [98]. Compared to the classical method, this method
can deal with new materials whose empirical interatomic
potentials are unknown. Further, this method can be more
accurate since the empirical interatomic potentials cannot
always represent the exact nature of interatomic force.

In (16), the delta function ](� ± �� − ���) is typically

approximated by ](�) = lim�→0+(1/�)(e/(�2 + e2)). To
accurately evaluate (16), the choice of e value is critical: it
must be small but larger than the smallest increment in
discrete �, which results from the use of 	nite grid of � points
in Brillouin zone. �e general practice is as follows: pick
the densest grid possible and start with a su�ciently small
guess, and increase it gradually until the 	nal results reach
convergence.

To calculate the relaxation time, one can use Standard
SMRTA scheme [43, 44, 99–111] or Iterative Scheme [47–
65, 112], and, in each of them, one can choose empirical
interatomic potential approach [47–49, 52–56, 58–60, 99–
102] or ab initio-derived IFC IFC [43, 44, 50, 51, 57, 61–65,
103–112]. �e methods can be used on pure bulk, nanowires,
doped bulk, doped nanowires, alloys, and so forth.

One way to predict thermal conductivity � without
working out all the phonon modes relaxation times is the
Monte Carlo integration technique [101, 113]. �e protocol
of this technique is as follows: (1) randomly sample some
phonon modes �, (2) for each of these modes, randomly
choose two other modes �� and ��� that interact with � to
calculate the relaxation time, and (3) select as many points as
necessary to ensure that the statistical error is small enough
in both cases. Monte Carlo technique only works for the
Standard SMRTA scheme, since the Iterative Scheme requires
the relaxation times of all the phonon modes to do iteration.
Monte Carlo technique reduces the computational cost but
lowers the accuracy.

In addition to intrinsic phonon scattering Γ±, extrinsic
scattering 1/	ext� plays an important role in nanostructures,

1	ext�
= ∑

��
Γext��� , (20)

such as boundary scattering 1/	bs� and impurity scattering1/	imp

� .
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Figure 1: Percent error (color online) in |
(3)
± |2 from the LWA

compared to 	rst principle for silicon at 300K. Insert shows
the normal (blue dashed curve), Umklapp (green dotted curve),
and total (red solid curve) relaxation times for the LA phonons
calculated from Standard SMRTA by ab initio approach. Adapted
with permission from [110]. Copyrighted by the American Physical
Society.

3.3.1. Intrinsic Phonon Scattering: Bulk Materials. Without
any 	tting parameters, Standard SMRTA with ab initio
approach can accurately predict spectral phonon relaxation
times and thermal conductivities. Ward and Broido [110]
checked the validity of some old approximations introduced
in Section 2: (1) long-wave approximation for three-phonon
scattering and (2) ignoring optical phonons, using silicon
and germanium as examples. First, the values of matrix

element |
(3)
± |2, which govern the scattering strength Γ, from

ab initio calculation for acoustic phonons are compared to

those given by LWA.�e percentage error of |
(3)
± |2 is shown

in Figure 1. We note that the LWA only works for the very
low frequency �e
 < 0.8THz, while, for most part 0.8 <�e
 < 12THz, the LWA gives large discrepancy, where�e
 ≡ (���������)1/3 is the geometric average of the three-
phonon frequencies. Second, the relaxation times of optical
modes are found to only contribute less than 10% to the total
thermal conductivity of silicon. However, ignoring optical
modes is erroneous since the optical phonons are essential to
provide channels for acoustic phonon scattering.�e explicit
calculation of millions of three-phonon scattering shows that
optical phonons are involved in 50–60% of the total acoustic
phonon-scattering processes in Si and Ge. Last, beyond the�, � dependencies of 	 listed in Table 1, which rely on many
approximations, the ALD calculation can give more precise	 �, � dependence.�is is illustrated in the inset of Figure 1,
the relaxation times of the LA phonons in Si for � = 300K.
By decomposing the total scattering into � process and �
process, we 	nd the � process has a stronger frequency
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dependence 	(
)(�) ∼ �−4 than � process 	(
)(�) ∼ �−2.
�e results also show that normal scattering governs the

total relaxation time 	(0)(�) at low frequency, while Umklapp

scattering dominates at high frequency. Such ∼�−4 relation is
not expected in the analytical models in Table 1.

One �aw of the Standard SMRTA is that it does not
grasp the interplay between the � process and � process.

�e right hand side of (15) can be decomposed as Γ(
)
� +Γ(
)

� (only consider intrinsic phonon scattering), according
to whether they are � or � scattering events. �e Standard
SMRTA scheme treats the � process and � process as two
independent scattering events and use Matthiessen’s rule to

account for the total relaxation time 1/	0
� = 1/	(
)

� + 1/	(
)
� ,

where 	(
,
)
� is de	ned as 	(
,
)

� ≡ 1/Γ(
,
)
� . However, it is

well know that � process does not contribute to thermal
resistance directly. Instead, it a
ects the � process (low-
frequency � scattering produces high-frequency phonons
which boosts � process), and then the � process produces
thermal resistance.�is error can be remedied in the Iterative
Scheme by doing the iteration in (17).�erefore, the Standard
SMRTA scheme only works for the system, where � process
dominates so that the � scattering makes little di
erence to� process as well as to thermal resistance [51, 110].

For Si and Ge at room temperature where the � process
is strong, the thermal conductivity predicted by Standard
SMRTA scheme is only 5–10% smaller than that by Iterative
Scheme [110], the latter shows excellent agreement with
experiment (see Figure 1 of [61]).

In contrast, the � scattering in diamond is much weaker
[114–116] due to the much smaller phase space [117]. As a
result, the thermal conductivity given by these two methods
can di
er by 50% at room temperature [110]. As shown in
Figure 2, this discrepancy increases with decreasing tem-
perature since the Umklapp scattering is weakened when
temperature decreases.�e thermal conductivity of diamond
predicted by Iterative Scheme with ab initio approach agrees
excellently with experiment as shown in [110]. It is also noted
that the Standard SMRTA scheme always underpredicts
the thermal conductivity because it treats � process as an
independent channel for thermal resistance. On the other
hand, if the relaxation time for � process only is used in the
calculation, the thermal conductivity is always overpredicted.
�is again con	rms that the � process has an indirect and
partial contribution to the thermal resistance.

One important application of ALD calculation is to
predict and understand the thermal conductivity of thermo-
electric materials and help to design higher thermoelectric
performance structures. Based on 	rst principle calculation,
Shiga et al. [104] obtain the frequency-dependent relaxation
times of pristine PbTe bulk at 300K as shown in Figure 3.
At low-frequency region, TA phonons have longer relaxation

times than LA phonons with 	’s exhibiting∼�−2 dependence.
Separating the scattering rates into those of normal and

Umklapp processes, they 	nd the relations 	Normal ∼ �−2

and 	Umklapp ∼ �−3, which again indicate that the normal
process dominates low-frequency region while the Umklapp
dominates high-frequency part. By further studying the
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Figure 2: �e calculated intrinsic lattice thermal conductivity of
diamond for the Standard SMRTA (dashed line) and the Iterative
Scheme (solid line), both by ab initio approach. Dotted line shows
percent error of the Standard SMRTA result compared to the
Iterative Scheme solution. Reprinted with permission from [51].
Copyrighted by the American Physical Society.

participation of each phonon mode to the total scattering
rates, they 	nd that the low thermal conductivity of PbTe
is attributed to the strong scattering of LA phonons by
TO phonons and the small group velocity of TA phonons.
Figure 4 compares phonon relaxation times of PbTe and
PbSe [106]. Although the anharmonicity of PbSe is normally
expected to be larger due to the larger average Gruneisen
parameter reported from experiments [121], in this work, it
is found that, for TA mode, the relaxation times of PbSe
are substantially longer than those of PbTe. Surprisingly, the
optical phonons are found to contribute as much as 25% for
PbSe and 22% for PbTe to the total thermal conductivity at
the temperature range 300–700K. Motivated by the question
that phonons with what kind of MFP contribute the most to
the total thermal conductivity, the cumulative �’s as functions
of phonon MFP are calculated by ALD method with 	rst
principle approach as shown in Figure 5. Silicon is found
to have phonon MFPs which span 6 orders of magnitude

(0–106 nm), while the thermal transport in diamond is
dominated by the phonon with narrow range of MFP (0.4–
2 hm). It is found that the phonons with MFP below 4 hm
for silicon, 1.6 hm for GaAs, 120 nm for ZrCoSb, 20 nm for
PbSe, and 10 nm for PbTe contribute 80% of total thermal
conductivity. GaAs/AlAs superlattice is found to have similar
phonon MFP with bulk GaAs. �e curves of the alloy
Mg2Si0.6Sn0.4 and its pure phases Mg2Si and Mg2Sn cross at
the intermediate MFPs. �ese results provide great guidance
for experimental works. For example, the PbTe-PbSe alloys
with size of nanoparticle below 10 nm are synthesized and
found to lead to as much as 60% reduction to the thermal
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Figure 3: (a) Spectral phonon relaxation times of pristine PbTe bulk at 300K by Standard SMRTA schemewith 	rst principle IFCs. Relaxation
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conductivity which provides large space for improving ZT
[122].

3.3.2. Single and Few-Layer 2D Materials, Nanoribbons, and
Nanotubes. For single- and multilayer 2D materials, the
boundary scattering from the sides perpendicular to the
transport direction ismuchweaker than for 3D systems [123],
making the boundary scattering expression in Table 1 unsuit-
able. Instead, when studying single-/multilayer graphene
(SLG/MLG) and graphite [54, 55], single-wall carbon nan-
otubes (SWCNTs) [52, 53], single-/multilayer boron nitride
(SLBN/MLBN), and boron nitride nanotubes (BNNTs) [56,
58], Lindsay and Broido only consider the boundary scatter-
ing from the two ends in the transport direction and show
that

1	bs =
2 UUUUk� ⋅ �̂UUUU (21)

works well in accounting for the boundary scattering, with  
being the length between boundaries in the transport direc-
tion �̂. Such formula has been shown to give correct thermal
conductivity values of nanotubes [124] and nanoribbons [125]
in the ballistic limit ( → 0) and di
usive limit ( → ∞).

Vibrations in 2D lattices are characterized by two types
of phonons: those vibrating in the plane of layer (TA and
LA) and those vibrating out of plane, so called �exural
phonons (ZA and ZO). Lindsay et al. [54] 	nd the selection

rule for all orders in anharmonic phonon-phonon scattering
in the 2D crystals: only even numbers (including zero) of
�exural phonons can be involved, arising from the re�ection
symmetry perpendicular to the plane of layer. �is selection
rule has forbidden about 60% of both � and � three-
phonon scattering phase space of ZA phonons for single
layer graphene. �ey show that such suppressed scattering
yields long relaxation time and mean free path for ZA
phonons, leading to ZA phonons contributing most of the
thermal conductivity of SLG, about 70% at room temperature
(another cause being the large density of states and occu-
pation number of ZA modes). However, this conclusion is
still under debate since this approach does not include the
fourth- and higher-order phonon scattering rates, which are
not necessarily low since the re�ection symmetry allowsmore
4-phonon processes than 3-phonon processes. Actually, the
method of spectral energy analysis based on MD (discussed
in Section 4) indicates that only 25%–30% of the total � is
contributed by ZA mode at room temperature [126–128]. It
should be noted that MD has its own drawback of not repro-
ducing the Bose-Einstein distribution for graphene phonons
at room temperature. Hence, the discrepancies between the
two methods still need further study.

�e selection rule mentioned above does not hold for
multilayer graphene, twisted graphene, graphite (because
of the interlayer coupling), CNT (due to the curvature),
graphene nanoribbon (GNR) (due to boundary scattering),
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Figure 4: Spectral phonon relaxation times of PbSe bulk (squares) and PbTe bulk (crosses) at 300K by Standard SMRTA scheme with IFCs
from 	rst principle calculation: (a) TA, (b) LA, (c) TO, and (d) LO. Reprinted with permission from [106]. Copyrighted by the American
Physical Society.

substrate-supported graphene (due to scattering with the
substrate), and defective graphene (due to defective scatter-
ing). �erefore, the thermal conductivity of these structures
is typically lower than that of single layer graphene, and
the contribution of each phonon mode changes [54, 129–
132]. In Figure 6, single-layer graphene, GNR, and SWCNT
are compared, where graphene has an in	nite width and
	nite length  , SWCNT has a 	nite diameter � and length , and GNR has a 	nite width i = �� with arti	cial
periodic boundary condition applied. As expected, �RTA
underpredicted thermal conductivity. SWCNT is found to
have a lower thermal conductivity than graphene with a
minimum value of 77% of �graphene at a critical diameter � ≈

1.5 nm. From this critical diameter, �SWCNT increases with
increasing diameter and reaches 90% of �graphene at � ≈ 4 nm.
On the other hand, if � goes small enough, phonon-phonon
scattering decreases and the thermal conductivity increases.
At this short limit of �, the system becomes more like a 1D
chain which generally has much larger thermal conductivity
than 2D and 3D systems. �e increasing trend of �GNR with
decreasing � comes from the reason that the decrease of the
width �� pushes the optical modes to higher frequencies and
thus the � scattering by optical phonons becomes weaker.

For 2D materials and nanotube structures, the� scatter-
ing is usually strong. For example, for CNT, Lindsay et al.
[52] 	nd that all the three-acoustic-phonon scatterings are�
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processes, so that the� process is, respectively, weak because
it must involve optical phonons, which are less likely to be
thermally excited. �us, the Iterative Scheme can be used to
layer and tube structure, rather than Standard SMRTAwhose
results are less accurate. Figure 7 shows the ratio between
thermal conductivities �	 (from Iterative Scheme) and �RTA
(from Standard SMRTA), where the discrepancy is typically
larger than 100%.�e ZAmode shows the largest divergence
which can reach 8-fold at length of 10 hm, because the �exural
phonons have lower frequencies than other modes and thus
stronger� process than � process.

3.3.3. Boundary Scattering: Nanowires. For nanowires, the
Casimir model (Table 1) has been applied to predict thermal
conductivity in many works [24–27, 27–32, 133] recently.
Generally, � decreases with decreasing nanowire diame-
ter; however, at some point, as the diameter continues to
decrease, � will increase due to the 3D-1D transition. �e
main problems are that the results strongly rely on 	tting
parameters and that the use of Matthiessen approximation is
still questioned. Instead, Ziman [95] presents an approach of
solving space-dependent BTE (Peierls-BTE [134]). �e 	nal
result of this Peierls-BTE approach gives, according to the
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simpli	cation by Li et al. [63, 64], the position-dependent
spectral phonon relaxation time

	r,� = 	0
� (1 + Δ�) {1 − �−|(r−r�)/�0�V�|qr,�} , (22)

where Δ� is the average value of Δ � over the cross section,
r� is the point on the surface with r − r� being the same
directionwith group velocity vector k�, andqr,� describes the
boundary condition with qr,� = 1 for completely di
usive
and qr,� = 0 for mirror like. �e average of 	r,� over cross
section is

	� = 	0
� (1 + Δ�) [ 1�� ∫��

{1 − �−|(r−r�)/�0�V�|qr,�} �s] . (23)

So far, the calculation for nanowire still needs an adjustable
parameter to account for the boundary scattering.

3.3.4. Impurity-Isotope Scattering: Doping and Alloys. From
second-order perturbation theory [34, 95, 135], assuming that
the isotopes are distributed randomly, the single scattering
rate by the isotopes [82, 136] is given by

Γiso��� = �2��
�����

�∑
�
:�
UUUUUe�� ⋅ e�∗�� UUUUU2] (�� − ���) , (24)

where �� and � stand for the number of unit cells and

the number of atoms per unit cell, respectively, e�� is the
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eigenvector of � mode in the basis atom _ part, ∗ denotes
complex conjugate, and

:� = ∑
�
I��(1 − J��J�

)2
(25)

characterizes the magnitude of mass disorder, where K indi-
cates isotope types, I�� is the fraction of isotope K in lattice
sites of basis atom _,J�� is the mass of isotope K, andJ� is the
average atom mass of basis _ sites. Sum over all the modes ��

with �� ̸= �, the total scattering rate, or the inverse relaxation
time of mode � is

1	iso�
= ∑

��
Γiso��� = �2��

�2
�

�∑
�
∑
��
:�
UUUUUe�� ⋅ e�∗�� UUUUU2] (�� − ���) .

(26)

For cubic symmetry system [82] such as Si, Ge, and Ar, the
summation of eigenvectors in (26) can be reduced to

1	iso�
= �6���

:�2
�∑

��
] (�� − ���)

= �
06 :�2; (�)
(27)

= �2 :�2; (�) , (28)

where : is given by (5),
0 = 
/(���) is the volume per atom,;(�) = ∑�� ](��−���)/
 is density of states per unit volume,
and ;(�) is density of states normalized to unity, noticing
that the total amount of states is 3��� and the total volume
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is 
 = 
0���. Rewriting the ;(�) [82], one can obtain the
formula in Table 1. From (27), the relaxation time of mode� only depends on the frequency rather than the phonon
branches.

Equation (24) or (26) combined with the Standard
SMRTA or Iterative Scheme have been used to predict the
spectral phonon relaxation times of doped materials and
even alloys. For isotope-doped system, this method can be
directly applied, such as silicon and germanium [47, 60,
91], hexagonal boron nitride layers and nanotube [56, 58],
GaN [57], and SiC [48]. For alloy, the disordered crystal is
treated as an ordered one of the average atomic mass, lattice
parameter, and force constants. �is approach, the so-called
virtual crystal approach, 	rst introduced by Abeles [137],
has been applied to Si-Ge alloys [65, 109] and PbTe(1−x)Sex
alloys [106] by ab initio IFCs, (Bi(1−x)Sbx)2Te3 alloys [138]
with classical potential, and Ni0.55Pd0.45 alloys [139] for
comparison with experiment. It turns out that the second-
order perturbation ((24) or (26)) can give good prediction
even for large mass disorder.

3.3.5. Superlattices. Superlattices (SLs), composed of period-
ically arranged layers of two or more materials, have been
extensively investigated in the aspect of thermal transport.
Because of the heat transport suppression by interfaces and
mass mismatch, superlattice has been designed to have a
lower thermal conductivity than pure bulk. SLs are classi	ed
into two categories: di
use and specular interfaces. �e
phonons in the 	rst case are di
usively scattered by interfaces,
while the phonons in the latter one propagate through the
whole structure as if in one material, so-called coherent
phonon transport [119]. Although proposed in theoretical
studies long ago, the coherent phonon transport in SLs was
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not observed in experiments until Luckyanova et al. studied
	nite-thickness GaAs/AlAs SLs by time-domain thermore-
�ectance measurements [119]. It is found that the cross-plane� increases linearly with the number of periods when keeping
the periods constants. Such phenomenon suggests that the
phonon MFPs are equal to the sample thickness and the
phonons do not “see” interfaces. Luckyanova et al. performed
a 	rst principle calculation (Standard SMRTA scheme) of
GaAs/AlAs SLs to support their experimental results. �ey
found that the anharmonic scattering rates and interface
scattering rates, within the low-frequency region, had the

frequency dependence as ∼ �−2 and ∼ �−4, respectively. �e
high-frequency phonons are scattered by interfaces, while
the low-frequency phonons have long MFPs and thus can
propagate though the entire SLs. Another evidence that the
phonons in SL do not “see” interfaces is the fact that the
accumulated � of GaAs/ALAs SL is similar to bulk GaAs
as shown in Figure 5. All the calculated results support the
experimental 	nding of coherent phonon propagations. In
the following discussion of SLs, we only consider coherent
phonon transport.

Generally, � increases with increasing period length u	
(at the limit u	 → ∞ � increases to that of the pure

bulk material). However, it is found that, for extremely short
period length, � even increases with decreasing u	. �is leads
to a phenomenon that � as a function of u	 reaches its
minimum at a critical u	, and calculation of such value of u	
is crucially important for designing low thermal conductivity
materials. For instance, Yang et al. found that the isotope

silicon superlattice isoSi/28Si nanowire had its lowest � atu	 ≈ 1 nm [6]; Hu and Poulikakos noticed that the Si/Ge
superlattice nanowire with 3.07 nm diameter had its lowest �
atu	 ≈ 4 nm [7]; � ofGaAs/AlAs superlattice [8] as a function
of periodic length also obeys this principle.�e exact phonon
relaxation time explanation for such phenomenon is not
available until the ALD method is explored [50, 59, 101, 103,
108].

Garg et al. [108] studied short-period (0.3 nm)
Si/Ge[001]1+1 superlattice using Standard SMRTA with
ab initio IFCs. �ey 	nd that the thermal conductivity and
phonon relaxation time of such superlattice are even greater
than those of the two composition materials: pristine Si
and Ge bulks. To understand this unusual behavior, the
inverse relaxation time of TA mode is calculated and shown
in Figure 8. Also plotted are the detailed three-phonon
scattering rates for (a) TA + A→A, (b) TA + A→O, and



Journal of Nanomaterials 13

50

40

30

20

10

0
50403020100

P
h

o
n

o
n

 li
fe

ti
m

e 
(p

s)

Phonon frequency (THz)

ZA, s

TA, s

LA, s

ZO, s

TO, s

LO, s

ZA, p

TA, p

LA, p

ZO, p

TO, p

LO, p

Figure 13: �e relaxation time (color online) of suspended (“s”)
and SiO2 supported (“p”) single-layer graphene as a function of
phonon frequency for di
erent phonon branches at temperature
300K. Reprinted with permission from [140]. Copyright 2012, AIP
Publishing LLC.

(c) TA + O→O, where A and O stand for acoustic and
optical, respectively. �e “average material” is an imaginary
material with averaged mass and potential of Si and Ge
Bulk, for comparison with SiGe[001]1+1 superlattice. We
note that only the (a) component can provide scattering for
TA phonons, and that both (b) and (c) which a�liate with
optical modes are almost completely absent. �is indicates
that the gap between optical and acoustic modes becomes
so larger that the acoustic phonon can hardly be scattered
by optical phonons. Such reduced scattering makes the
relaxation times and thermal conductivity much larger than
the two composition bulk materials.

More generally, Broido and Reinecke [59] and Ward and
Broido [50] studied s1/s2[�+�] superlattice (the diamond
structure with periodical � layers of mass s1 atoms and
masss2 atoms in [0, 0, 1] direction) using Iterative Scheme.
In these two works, the IFCs are determined using Keating
model [144, 145] and adiabatic bond charge (ABC) model
[146, 147], respectively. In such s1/s2[�+�] superlattice, the
high thermal conductivity is also found for � = 1 (Figure 9).
When � and mass ratio s1/s2 are increasing, � is deter-
mined by the competition between the decease of phonon
group velocity and the increase of phonon relaxation time. It
turns out that, fromabouts1/s2 = 2.3, the latter competitor
dominates and thus � increase with increasing mass ratio.
In Figure 9, as expected the �’s from Iterative Scheme are
generally larger than those from Standard SMRTA method.
�is di
erence increases with increasing mass ratio because

the occurrence of � process increases when the acoustic-
optical gap gets larger.

4. MD Simulation

4.1. Time Domain Normal Mode Analysis. �e time domain
normal mode analysis based onMD simulation was 	rst pro-
posed by Ladd et al. [66] and then modi	ed by McGaughey
and Kaviany [67]. From (10), a result of SMRTA, the relax-
ation time 	� can be obtained by

	� = ∫∞
0 ⟨��

� (T) ��
� (0)⟩ �T⟨��2

� (0)⟩ . (29)

According to the analysis by Ladd et al. [66], the �uctuation��
� in (29) can be replaced by the total phonon occupation
number ��, which does not in�uence the calculation of
thermal conductivity when considering that the ensemble-
average heat current is zero. From lattice dynamics [34, 148],
the occupation number �� is proportional to the energy
of single phonon mode � described by the normal mode
amplitude:

y� = 12 ( ̇{� ̇{∗
� + �2

�{�{∗
�) , (30)

where {� is the normal mode coordinate. �us, (29) is
transformed to

	� = ∫∞
0 ⟨y� (T) y� (0)⟩ �T⟨y2

� (0)⟩ , (31)

which is exactly what McGaughey and Kaviany [67] got, with

the equivalent form ⟨y�(T)y�(0)⟩/⟨y2
�(0)⟩ = exp(−T/	�).

Originally, Ladd et al. [66] only considered the potential
energy and assumed y� ∼ {�{∗

� , which does not in�uence
the result since the normal mode has the form [66, 149]

{� (T) = {�,0 exp [K (��
� + K~�) T] , (32)

where {�,0 is the vibration amplitude, a constant for a given

mode �, ��
� = �� + Δ � is the anharmonic frequency, and ~�

is linewidth. With the help of this equation, both y� ∼ {�{∗
�

and y� ∼ ̇{� ̇{∗
� give the equivalent value of 	� = 1/2~�.

�e calculation of normal mode coordinate {�(T) is
required to evaluate y� in (30) and further predict 	� in (31).
From lattice dynamics [148],

{� (T) = 3∑
�

�∑
�


�∑
�
√J���

d�,�
� (T) ��∗�,� exp [Kk ⋅ r�0]

= 3∑
�

�∑
�
��∗�,�{�

� (k, T) ,
(33)

where % indicates �, �, � directions, d�,�
� (T) is % component

of the displacement of the _th atom in 7th unit cell from its

equilibrium position, r�0 is the equilibrium position of unit

cell 7, the star denotes complex conjugate, and {�
�(k, T) denotes
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Figure 14: (a) Contributions (color online) and (b) the corresponding percentages of thermal conductivity from ZA, TA, LA, and TOmodes
in suspended (“s”) and supported (“p”) SLG at di
erent temperatures. Reprinted with permission from [140].

the contribution of the _th basis atom in % direction to the
total normal mode with

{�
� (k, T) =


�∑
�
√J���

d�,�
� (T) exp [Kk ⋅ r�0] . (34)

In (33), the time history of the atomic position displacementd(T) is extracted from MD simulation, and the eigenvector �
is obtained from LD calculations.

4.2. Frequency Domain Normal Mode Analysis. Here, the
frequency domain normal mode analysis is demonstrated by
a simpli	ed version; for detailed derivation, see [76, 77, 150].
Staring from (32), we have the spectral energy density (SED):

Φ� (�) = UUUU ̇{� (�)UUUU2 = UUUUUUUU∫
+∞

0
̇{� (T) �−����TUUUUUUUU

2

= #�(� − ��
� )2 + ~2

�
,

(35)

where#� = (��
�

2+Γ2
�){2

�,0 is a constant related to�. Physically,Φ�(�) is the kinetic energy of single-phonon mode � in the
frequency domain, in contrast to (30) which is the energy in
time domain. Equation (35) is actually a Lorentzian function

with peak position ��
k,] and full width at half maximum 2~�.

By 	tting this SED function as Lorentzian form, the relaxation
time 	� = 1/2~� can be obtained.

In some works, the total SED function for a given wave
vector Φ(k, �) = ∑

]
Φ�(�), which is the summation of the

SEDs of phonons with the same � but from di
erent phonon
branches, is evaluated instead of that of each mode. �omas
et al. [77, 150] and Feng et al. [151] pointed out that the
eigenvectors are unnecessary due to the orthogonality; thus,

Φ (k, �) = 3�∑
]

Φ� (�)

= 14�	0
3,�∑
�,�

J���

UUUUUUUUUUUU

∑
�

�0∫
0

ḋ�,�
� (T) exp [Kk ⋅ r�0 − K�T]

UUUUUUUUUUUU
2

= 3∑
�

�∑
�

UUUUU ̇{�
� (k, �)UUUUU2,

(36)

where ̇{�
�(k, �) is time derivative and Fourier Transform of

(34). From (33) to (36), the eigenvector has been abandoned,
and the mathematical proof of this is presented in [151].

According to Ong et al. [152], the expression (36) is
equivalent to the SED functions in [68–76]. In some of the
works, the mass J� and unit cell number �� in (34) are
discarded for single-mass system, since the constants do not
in�uence the 	tting results of the Lorentzian function in (35),
so that only atomic velocities are needed.

4.3. Discussion and Applications. Figures 10 and 11 show
two examples of time-domain NMA and frequency-domain
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Figure 15: Spectral phonon relaxation time bulk PbTe (color online) at 300K and 600K. Reprinted with permission from [141]. Copyright
(2011), with permission from Elsevier.

NMA methods. Figure 10 presents the autocorrelation func-
tions of total energy and potential energy of normal mode
as functions of time of the TA mode of argon at 50K.
�e oscillation of the potential energy indicates that the
phonon frequency and the decay rate of total energy gives the
relaxation time. Figure 11 shows the SED functions of empty
CNT and water-	lled CNT. From the 	tting of these peaks as
Lorentzian functions, the phonon frequencies and relaxation
times are obtained. �e linewidth broadening caused by the
water 	lled is clear from Figure 11(b).

�e relaxation times predicted from MD simulation
includes the e
ects of three-, four-, and higher-order phonon
scattering processes; in contrast, ALD calculation only con-
siders the lowest one. �us, the ALD calculation may lose

its accuracy when temperature increases, since the higher-
order anharmonicity of lattice becomes greater for higher
temperature due to thermal expansion. For instance, Turney
et al. [102] compared the relaxation times of argon bulk
predicted from the Standard SMRTA ALD calculation and
the time-domain NMA at di
erent temperatures. Figure 12
shows the inverse relaxation times of LA and TA phonon
modes for argon at 20K and 50K.We note that, at 20K, these
two methods give reasonable agreement, whilst, at 50 K, the
ALD calculation underpredicts the scattering rate by asmuch
as 2 or more times.

Compared to ALD calculation, MD simulation is a better
tool for predicting the phonon properties of complex systems,
such as theCNT	lledwithwater and the graphene supported
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Figure 16: Contribution (color online) of each phonon mode to total thermal conductivity of PbTe bulk at 300K and 600K. Reprinted with
permission from [141]. Copyright (2011), with permission from Elsevier.

150

100

50

0 1 2 3 4 5

Frequency (THz)

L = 12

L = 9

L = 6

Acoustic phonon

Low-frequency
optical phonon

optical phonon
High-frequency

R
el

ax
at

io
n

 t
im

e 
(p

s)

(a)

Phonon frequency (THz)

0

150

100

50

0.2 0.4 0.6 0.8

Predicted by NMA

R
el

ax
at

io
n

 t
im

e 
(p

s)

Fitting with A�−2

(b)

Figure 17: (a) Phonon relaxation times (color online) of of Bi2Te3 along the Γ-� direction computed using time-domain NMA.  denotes
the number of cells along axis at 300K. (b) Phonon relaxation times of low frequency acoustic phonons along Γ-� and the power law 	tting.
Reprinted with permission from [142]. Copyright 2013 by ASME.

by substrate. So far, it is hard for ALD method to handle
the extrinsic phonon scattering processes other than the
Umklapp scattering without 	tting parameters. However, in
the MD simulation, the surrounding in�uence is re�ected
by the atomic vibrating trajectory of the studied system. Qiu
and Ruan [127, 128, 140] studied the phonon transport in
suspended and silicon dioxide supported SLG by frequency
domain NMA with the results shown in Figures 13 and
14. We note that the �exural phonon modes (ZA and ZO)
have much longer relaxation times than the other modes
for suspended SLG, which qualitatively agree with the ALD
calculation results discussed in Section 3.3.2. �e MD result
indicates that ZA mode contributes about 29% to the total� for suspended SLG, while TA and LA modes contribute
33% and 26%, respectively. Chen and Kumar [126] performed
the same NMA method and obtained the similar results

that ZA, TA, and LA modes contribute 23%, 21%, and 41%,
respectively.�e relaxation times of supported SLG are found
generally shorter, by about 10 ps, than suspended SLG. �is
indicates that the SiO2 substrate provides strong phonon
scattering by the interface and breaks down the re�ection
symmetry in suspended SLG. As a result, the percentage
thermal conductivity contribution from ZA mode decreases
about 10%, while those of TA and LA modes increase about
3% and 8%, respectively.

Due to the low computational complexity, the NMA
methods have been applied to many cases. Time-domain
NMAwas used for Ar [66, 67, 102], Si [143, 153], Ge [154], and
polyethylene [155, 156]; in the meanwhile, frequency domain
NMA has been applied to Ar [150], Ge [151], MgO [76], CNT
[77, 78, 157], supported CNT [152], suspended and supported
graphene [140], and thermoelectric materials such as PbTe
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Figure 18: �e normalized accumulated thermal conductivity
(color online) of several bulk materials at room temperature as a
function of phononMFP. (Si (MD) [143]; Si (ALD) [107]; PbTe (MD)
[141]; PbTe (MD600K) [141]; PbTe (ALD) [106]; Bi2Te3 (MD) [142]).

[141] and Bi2Te3 [142]. So far, only few works applied NMA
to defective bulk, nanowires [153], and nanoribbons. As a
representative application of frequency domainNMA to bulk
material, the spectral phonon relaxation times of pristine
PbTe bulk at di
erent temperatures in di
erent directions
are given in Figure 15. �e results reveal typical features
of phonon relaxation time in bulk materials: (a) acoustic
phonons generally have much higher relaxation times than
optical phonons, (b) for acoustic modes, the relaxation times
always decrease with increasing frequency except for the
high-frequency ranges which o�en showopposite trend, such
phenomenon is also found in other materials such as argon
[67, 102], silicon [143], and germanium [151], (c) the value
of % in frequency dependence relation 	 ∼ �−� of the
acoustic phonon o�en deviates from 2 and ranges from 0.5
to 4, (d) 	 of optical mode has weak frequency dependence,
and (e) increasing temperature typically shortens the phonon
relaxation time and mean free path. �e order of relaxation
time amplitudes of PbTe bulk at 300Kobtained by frequency-
domain NMA agrees well with those obtained from ALD
calculation in previous sections [104, 106]. It is important
to note that NMA methods do not distinguish between �
scattering and � scattering but give a total scattering rate
just as the method of ALD calculation based on Standard
SMRTA. Figure 16(a) gives the contribution of each phonon
mode to total thermal conductivity of PbTe bulk at 300K and
600K. �e results show that optical modes only contribute
5% to the total �, di
erent with 20% given by 	rst principle
ALD calculation. �e discrepancy may come from the igno-
rance of higher-order phonon scattering in ALD calculation.
Figure 16(b) gives the accumulated �’s as functions phonon
MFP for Silicon at 300K and PbTe at 300K and 600K. 80%

of the total � of PbTe is contributed by the phonons with
MFP below 50 nm, di
erent from the value of 10 nm in ALD
calculation [106]. �is suggests that the relaxation times of
low-frequency phonons predicted from ALD are longer than
those from NMA, since both ALD and NMA results give
reasonable total thermal conductivity. �e MFPs of phonons
of PbTe decrease roughly by a factor of 2 when temperature
increases from 300K to 600K. It is found that the phonons
with MFP below 10 nm contribute about 32% of � at 300K
while about 65% of � at 600K.

�e phonon properties of Bi2Te3 are studied by time-
domain NMA [142]. �e relaxation times and power law
	tting of the low-frequency range are presented in Figure 17.
�e phonons with wavelength of 125 nm have relaxation
time 16.9 ns, which indicate that those phonons do not
experience obvious scatteringwhen traveling for about 400 ps
in Bi2Te3, consistent with experimental measurements [158].
�e normalized accumulated thermal conductivity of Bi2Te3
as a function of phonon MFP is plotted in Figure 18. It is
found that 90% and 50% of total thermal conductivity are
contributed by the phonons with MFPs shorter than 10 nm
and 3 nm, respectively. Also shown in Figure 18 is comparison
between the results from ALD calculation and MD simula-
tion. �e two curves for Si agree well with each other, while
a discrepancy is found for bulk PbTe. �is discrepancy may
come from the inaccuracy of the interatomic potential used
in performingMD simulation.�ese results are useful for the
nanodesign of Bi2Te3/PbTe/Si based thermoelectricmaterials
in the future.

5. Summary

�e three methods, anharmonic lattice dynamics based on
Standard SMRTA, iterative anharmonic lattice dynamics, and
normalmode analysis, can all predict thermal conductivity by
calculating the velocities, relaxation times, and speci	c heats
of all phonon modes. �e applications are listed in Table 2,
and the features of these methods are compared and listed in
Table 3.

All the three methods are based on phonon Boltzmann
Transport Equation and relaxation time approximation. To
obtain the spectral phonon relaxation time, the 	rst two
methods calculate three-phonon scattering rates from anhar-
monic interatomic force constants, while the last method cal-
culate the linewidth of spectral energy in frequency domain
or the decay rate of spectral energy in time domain from
molecular dynamics. Since the 	rst two methods ignore the
4th- and higher-order phonon scattering processes, they are
only valid at low temperature. �e 	rst two methods di
er
with each other at solving the phonon BTE: the 	rst method
assumes single mode RTA, while the second one solves the
linearized BTE iteratively instead. As a result, the 	rstmethod
treats � scattering and � scattering as two independent
processes that provide thermal resistance individually. How-
ever it is well known that the � scattering only contribute
to thermal resistance by in�uencing the � scattering rate.
�e Iterative ALD remedies this error by recording all the
phonon scattering processes step by step and evaluates the
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Table 2: Applications of the numerical methods in predicting spectral phonon properties and thermal conductivity.

Materials Methods∗ FP† Reference Year

Ar 1 and 3 [66] 1986

Ar 2 [46] 1995

Ar and Kr 2 [45] 1996

Ar 3 [67] 2004

Ar 1 and 3 [102] 2009

Ar, Si thin 	lms 1 [92] 2010

C, Si, and Ge 1 √ [43] 1995

C, isotope-doped C, Si, and Ge 1 and 2 √ [51] 2009

C (Pure and natural) (extreme pressure) 1 and 2 [62] 2012

C nanowire 1 and 2 √ [64] 2012

Si (isotope-doped) 1 [136] 1999

Si (isotope-doped) 1 [91] 2001

SiC 2 [48] 2002

Si and Ge 1 √ [44] 2003

Si 1 and 2 [60] 2005

Si and Ge 2 √ [61] 2007

Si 3 [143] 2008

Si (isotope-doped) 2 [47] 2009

Si 1 √ [107] 2011

Si 1 [99] 2012

Si Nanowire 3 [153] 2009

Si, Ge 1 √ [110] 2010

Si/Ge,s1/s2 SLs 1 and 2 [59] 2004

Si/Ge SLs 1 √ [108] 2011

Si/Ge SLs 1 [101] 2013

Si/Ge SLs 1 √ [103] 2013

SiGe alloys with embedded nanoparticles 2 √ [65] 2011

SiGe alloys 1 √ [109] 2011

Si, Ge, and Si0.5Ge0.5 1 [100] 2012

Si/Ge, GaAs/AlAs, ands1/s2 SLs 1 and 2 √ [50] 2008

Ge 3 [154] 2010

Ge 4 [151] 2013

Semiconductors (Groups IV, III–V, and II–VI) 1 [117] 2008

Graphene 1 and 2 [54] 2010

Graphene and graphite 1 and 2 [55] 2011

Graphene (supported and suspended) 4 [140] 2012

Graphene (free-standing and strained) 1 √ [105] 2012

Graphene and graphite 1 √ [111] 2013

CNT to graphene (diameter dependence) 1 and 2 [53] 2010

CNT 4 [157] 2006

CNT 1 and 2 [52] 2009

CNT (empty and water-	lled) 4 [77] 2010

CNT (on amorphous silica) 4 [152] 2011

BN (pristine and isotope-doped) 1 and 2 [56] 2011

BN (multilayer and nanotubes) (pristine and isotope-doped) 2 [58] 2012

Mg2Si�Sn1−� alloys (bulk and nanowire) 2 [63] 2012

Compound semiconductors (Si, Ge, GaAs, Al-V, Ga-V, In-V, SiC, AlN, etc.) 1 and 2 √ [112] 2013

Ionic solids (MgO, UO2, and SrTiO3) 2 [49] 2011

GaN (GaAs, GaSb, and GaP) (pristine and isotope-doped) 1 and 2 √ [57] 2012
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Table 2: Continued.

Materials Methods∗ FP† Reference Year

PbTe 1 √ [104] 2012

PbTe 4 [141] 2011

PbTe, PbSe, and PbTe1−�Se� 1 √ [106] 2012

Bi2Te3 4 [142] 2013

Heusler 3 [120] 2011

MgO 4 √ [76] 2009

Polyethylene 3 [155] 2009

Polyethylene 3 [156] 2009

GaAs 1 √ [118] 2013

GaAs/AlAs SLs 1 √ [119] 2012
∗Methods: 1: Standard SMRTA scheme; 2: Iterative Scheme; 3: time-domain NMA; 4: frequency-domain NMA.
†FP: 	rst principle.

Table 3: Comparison of di
erent methods for predicting spectral phonon relaxation time and thermal conductivity.

Methods Analytical model
ALD calculation MD simulation

Standard SMRTA Iterative Scheme Time NMA Frequency NMA

Equations Table 1
Equations (14),
(15), and (16)

Equations (14),
(15), (16), (17),

and (18)

Equations (30),
(31), and (33)

Equations (33)
and (35)

Equations (33)
and (36)

Characteristics
Lots of
approximations,
need 	tting
parameters

� and �
processes are
independent

thermal resistant
sources

� process does
not provide

thermal resistant
itself

Eigenvectors needed
Eigenvectors not

needed

Need 2nd- and 3rd-order IFCs Need interatomic potential (or ab initioMD)

Suitable for
Long wavelength,
Debye model

Low temperature higher-order
anharmonicity not large

Higher than Debye temperature

Temperature not too low, quantum e
ect negligible

Accuracy Low Medium Higher Higher

Computational
complexity

High Higher Low

Applications so
far

Some thermal
conductivity
analysis and
prediction

Pure and isotope-doped bulk, alloy
superlattice, nanostructures

Pure lattice Materials with surrounding in�uences

Further research
Temperature dependent IFCs, 4th-
and higher-order phonon scattering

Accurate interatomic potential, large domain 	rst
principle MD, defects, boundaries

� scattering rates in the end. Compared to Green-Kubo MD
(GK-MD) and Nonequilibrium MD (NEMD), these three
methods give deeper insight into the thermal conductivity:
the spectral phonon velocity, relaxation time, and mean free
path, and the contribution of each phonon mode to thermal
conductivity, which can guide the nanodesign. For accuracy
and capability, the ab initio ALD calculations are better than
GK-MD and NEMD, since calculating ab initio 3rd-order
IFCs is much easier than implementing ab initio MD. �e
limitations of the normal mode analysis are as follows: (1) it
cannot distinguish� and� processes and (2) it is of classical
nature so it cannot accurately capture the quantum distribu-
tion function (Bose-Einstein distribution) for high Debye-
temperature materials at relatively low temperatures (such as
graphene and CNT at room temperature). �e disadvantage
of these three methods is the much computational cost.
Compared to analytical models, these methods do not rely

on adjustable 	tting parameters and thus give more reliable
and accurate predictions.

�ese numericalmethods have been applied to numerous
materials and structures and revealed lots of physical nature
that has never been reached before. �e acoustic phonons
are veri	ed to have the ∼ �−� frequency dependence which
agrees with earlier analytical models, while the facts that
the value of % varies from 0 to 4 at low frequency and that
the frequency dependence becomes weak and abnormal at
high frequency were not observed clearly before. �e optical
modes are found to carry very little heat but contribute much
to the scattering of acoustic phonons and thus are essential
to thermal transport. In layer-/tube-structured materials, the
strict selection rule of phonon scattering because re�ection
symmetry severely blocks the scattering of �exural acoustic
phonons and thus causes extremely high relaxation time and
then high thermal conductivity. In short-period superlattice,
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the large gaps between acoustic and optical phonon branches
make the scattering rarely happen and thus lead to high ther-
mal conductivity, even higher than its corresponding pure
materials. �ese methods are also applied to defected and
alloy materials using virtual crystal approach. Despite these
applications, further work is still needed to predict spectral
phonon properties more accurately and e�ciently, such as
considering the temperature-dependent IFCs and higher-
order anharmonicities in ALD calculations, implementing
large domain ab initiomolecular dynamics for normal mode
analysis.

Appendix

A.

�emathematic preparations are

� + �� = ��� process,

(�0
� + 1) (�0

�� + 1) �0
��� = �0

��0
�� (�0

��� + 1) , (A.1)

� − �� = ��� process,

(�0
� + 1) �0

���0
��� = �0

� (�0
�� + 1) (�0

��� + 1) , (A.2)

taking advantage of �0 = [exp(ℏ�/���) − 1]−1.
Relaxation time approximation assumes

��
� = −Ψ�

��0
�� (ℏ��) = Ψ� ⋅ 1����

0
� (�0

� + 1) . (A.3)

�e expression of Ψ� is obtained from the single-mode
approximation (11)

Ψ� = 	� ℏ��� k� ⋅ ∇�. (A.4)

A.1. Standard SMRTA: �e Derivation from (12) to (15). In
Standard SMRTA, only �mode has perturbation:

�� = �0
� + ��

�,
��� = �0

�� ,
���� = �0

��� .
(A.5)

Substituting (A.5) and (A.3) into (12) with the help of
(A.1), we get

����� (1 + ����) − (1 + ��) (1 + ���) ����

= ��� [�0
�� (1 + �0

���) − (1 + �0
��) �0

���]
= ��� (�0

�� − �0
���)

(A.6)

= Ψ� ⋅ �
0
� (�0

� + 1) (�0
�� − �0

���)��� . (A.7)

And, with the help of (A.2), we get

�� (1 + ���) (1 + ����) − (1 + ��) �������

= ��� [(1 + �0
��) (1 + �0

���) − �0
���0

���]
= ��� (1 + �0

�� + �0
���)

(A.8)

= Ψ� ⋅ �
0
� (�0

� + 1) (1 + �0
�� + �0

���)��� . (A.9)

From (A.6) and (A.8), we reach the relation ����/�T ∼ ���
and, comparedwith (11), we obtain (15). From (A.7) and (A.9),
the expression of Ψ� is obtained, the same with (A.4).

A.2. Iterative Scheme: �e Derivation from (12) to (17). �e
Iterative Scheme solves phonon BTE (12) by assuming

�� = �0
� + ��� ,

��� = �0
�� + ��

�� ,
���� = �0

��� + ��
��� ,

(A.10)

where ��
�� and ��

��� have the same form as ��
�:

��
�� = −Ψ��

��0
��� (ℏ���) = Ψ�� ⋅ 1����

0
�� (�0

�� + 1) , (A.11)

��
��� = − Ψ���

��0
���� (ℏ����) = Ψ��� ⋅ 1����

0
��� (�0

��� + 1) ,
(A.12)

Ψ�� = 	�� ℏ���� k�� ⋅ ∇�, (A.13)

Ψ��� = 	��� ℏ����� k��� ⋅ ∇�. (A.14)

Substituting (A.3), (A.10), (A.11), and (A.12) into (12) with
the help of (A.1), abandoning the higher order terms Ψ�Ψ�� ,Ψ�Ψ��� , and Ψ��Ψ��� , we have

����� (1 + ����) − (1 + ��) (1 + ���) ����

= (Ψ� + Ψ�� − Ψ���) �0
��0

�� (1 + �0
���)���

(A.15)

and, with the help of (A.2), we have

�� (1 + ���) (1 + ����) − (1 + ��) �������

= (Ψ� − Ψ�� − Ψ���) �0
� (1 + �0

��) (1 + �0
���)��� . (A.16)

Substituting (A.4), (A.13), and (A.14) into (A.15) and (A.16),
we obtain the results (17) and (18).
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