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ABSTRACT: A scheme is introduced for generating a stress strain curve at any constant strain 

rate, temperature, pressure, in tension, shear or compression, and the annealing history, from a set 

of experimental stress-strain data by parametric scaling. The parameters are determined for each 

polymer empirically first, but their study reveals much in terms of the structure-properties in glassy 

and crystalline polymers. 
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The primary object of this work is to introduce a 

scaling scheme for generating a stress-strain curve 

of polymeric solids at any strain rate, temperature, 

pressure, in tension, shear or compression, and the 

annealing history, from a set of stress-strain data 

stored in file. The scaling procedure is simple, but 

the physical reasoning for why it works can be 

complex. 

THE STRAIN RATE DEPENDENCE 

In the simplest case of linear viscoelastic be­

havior with a single relaxation time, r, i.e., 

E(t)=E0 exp( -tjr) (1) 

where E(t) is the relaxation modulus, and £ 0 is the 

initial elastic modulus. If we now consider a special 

ca"Se where the strain is made to increase at a 

constant rate, 8, then the superposition principle is 

used to obtain the stress-strain relationship: 

a(s)=£08r(l-exp(-s/8r)) (2) 

where 8 is the strain rate. The stress-strain curves 

calculated with various 8 from eq 2 are shown in 

Figure 1, which exhibit the following two important 

features: (1) that increasing either the strain rate, 8, 

or the relaxation time, r, by the same multiplication 

factor will result in the identical stress-strain curve, 

and (2) that by varying 8 orr, the stress-strain curve 

will grow or shrink both in the horizontal and 

vertical directions by the same amount, maintaining 

the same congruent shape as shown. 

Glassy polymers, which neigher are linearly vis­

coelastic nor exhibit a single relaxation time, never­

theless exhibit stress-strain curves with both of the 

above two features, as evident from the curves for 

poly( vinyl chloride) shown in Figures 2 and 3. There 

are two major differences between the experimental 

curves of Figures 2 and 3 and the theoretical single 

relaxation curves of Figure 1. The first of these 

differences is that the "size" of the stress-strain 

curve in Figure 1 grows proportionately with the 

strain rate whereas the size of the experimental 

curve grows in the manner much less sensitive to a 

change in the strain rate, such as to some power, n, 

of the strain rate, with n being less than 1. Secondly, 

the curves in Figure 1 asymptotically approach the 

respective horizontal lines, whereas the experimen­

tal curves undergo the stress maximum. 

T.he first of these major differences, i.e., the linear 

vs. the less pronounced dependence of stresses and 

strains on the strain rate, is the consequence of the 

differences between a single vs. broadly distributed 

relaxation times. With real polymers, the time de­

pendence of stress relaxation or creep is known to 

be much more gradual than can possibly be repre-
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Figure 1. Stress-strain curves for linear viscoelastic 

single relaxation time. 
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Figure 2. Stress-strain curves for poly(vinyl chloride) 

with various strain rates. 

sented with a single relaxation time, manifesting a 

broad distribution of relaxation times. To represent 

such a spread in the distribution of relaxation times, 

the technique of substituting the time by the power 

of time is often used. 

For example, the relaxation modulus in eq I is 

replaced by the so called "power law": 
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Figure 3. Stress-strain curves for poly(vinyl chloride) 

at various temperatures. 

where n is an empirically determined number of less 

than unity. This form of approximation is good 

only for a limited time range, and never intended for 

use near t = t0 . The power law has been used for a 

variety of polymers in creep and relaxation analyses 

(Shapery, 12 Findley4), and in fact we will show that 

the power law works well with semicrystalline poly­

mers with the amorphous regions in the rubbery 

state. The analytical models of Rouse11 and Zimm16 

for the relaxation function of polymers in solution 

lead to the power law with n = 1/2 and 2/3 re­

spectively, and have been extended to polymer 

melts. 3 

The broad distribution of relaxation times has 

long been recognized by the workers concerned with 

dielectric relaxation phenomena. 1 The dynamic 

dielectric permittivity J* with single relaxation time, 

r: 

J*=Joc+M/(I+jwr) (4) 

has been modified by Cole2 into the form, known 

today as the Cole-Cole formula: 

J*=J oc +M/[1 +Uwr)"J (5) 

to account for the distribution of relaxation times, 

where J oc is the limiting (unrelaxed) permittivity at 

the high frequency and t-.J is the permittivity differ­

ence between the relaxed and unrelaxed values. w is 
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the circular frequency in radians, and n is an 

empirically determined number similar to n in eq 3. 

The Cole-Cole formula, and others like it such as 

the Fuoss-Kirkwood and Cole-Davidson formulas, 

represent the spectrum of widely distributed re­

laxation times by essentially substituting the ( w-r) 

term with the (w-r)" term. We can follow a similar 

procedure in modifying the stress-strain equation 

for the single relaxation time in eq 2 by replacing the 

(li-r) term by (li-r)" term to obtain: 

o-(c)=£0 (£-r)"{l-exp [ -c/(i-r)"]} (6) 

The plot of this equation would have the same 

appearance as in Figure I, but the "size" of the 

curves is proportional to li" instead of li. Thus, this is 

equivalent of a power law represention for the linear 

viscoelastic stress-strain curves with a distribution 

of relaxation time. The stress strain curves for 

poly(vinyl chloride) shown in Figure 2, though dif­

ferent in shape from these curves by the presence of 

the stress maximum, also can be scaled up or down 

by the factor (li-r)" in the same way as with eq 6, with 

the value of n::::::0.04. This value of nisin general 

nearly equal to the value of n in the power law of 

eq 3, or the negative slope of the log E(t) vs. log t 

plot. 

While the power law is a fairly good approxi­

mation for many polymeric glasses at temperatures 

well below Tg, where the values of n typically range 

from 0.02 to 0.04, such as shown for polycarbonate 

at 23°C in figure 4a, it is not a good approximation 

at elevated temperatures, such as those shown in 

Figure 4b for polystyrene at 58 and 90°C. Another 

type of formula that will approximate curves which 

bend downward with the progress of time is clearly 

needed. An empirical form which can describe 

such a form has been introduced by Williams and 

Watts15 and known by their names: 

(7) 

It is a two parameter equation which in fact ap­

proaches the power law when -r t, or when f3 is very 

small. 

The slope of the logarithmic relaxation modulus 

vs. log time curve can be shown to be 

d log E(t)/d log t=- {3( + Y (8) 

and it is equal to f3 when t=-r, as when T:::::: Tg, and 

when t/-r is very small, it becomes more nearly 
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Figure 4a. Experimental relaxation modulus for poly­

carbonate at room temperature fitted with Williams­

Watts formula, eq 7 with {3=0.03. 
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Figure 4b. Relaxation modulus of polystyrene at 58 and 

90°C; both experiments were started after waiting for 

15 h at respective temperatures. 

constant over a greater time range. 

Thus, the Williams-Watts formula is clearly pref­

erable to the power law particularly for the creep13 

and relaxation of glassy polymers near the Tg where 

the effect of physical aging is often studied. If we 

redefine the parameter, - n, as the slope of the logE 

vs. lot t plot: 

(9) 

the power law may be considered as a speical case of 

the Williams-Watts formula where n is constant. 

At a first glance, then, the Williams-Watts for­

mula might seem to work well not only in approx-
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Figure 5. Relaxation modulus with Williams-Watts 

formula, eq 7, with fJ = 0.4. 

imating the widely differing shapes of the curves 

over the temperature range, but also in approximat­

ing the effect of temperature on the shape of the 

relaxation curves through the variation only in the 

parameter r without changing {3. If this were in fact 

possible, the Williams-Watts formula would indeed 

have been considered as a simple but valuable 

bridge between structure and properties of glassy 

polymers. Unfortunately, we find that both rand fJ 
must be changed with temperature in order to fit the 

data. In Figure 5 the curves are plotted using the 

Wiliams-Watts formula with fJ = 0.4 for various 

values of the parameter r. This value of0.4 for fJ has 

been frequently quoted for dielectric and mechani­

cal relaxations near Tg (both above and below Tg), 

including our data for polystyrene at 90°C shown in 

Figure 4. The value of r = 60 minutes seems reason­

able with the "average" relaxation times near but 

below Tg, although much discussion would have to 

be involved on what significance this value of r 

might have. The main point here on these curves are 

not on the physical significance of the numerical 

values of r but on the fact that the variation of r 

alone in the Williams-Watts equation cannot pro­

duce a good fit to the relaxation data obtained at a 

much lower temperature such as the curve shown in 

Figure 3 for polycarbonate at 23°C. Rather, both r 

and fJ must be changed with the temperature. The 

values of r for many glassy polymers have been 

found to follow the Arrhenius type dependence 

with the activation enthalpy of 30 to 50 kcal. The 

value of fJ typically is reduced by one order of 
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Figure 6. Stress-strain curves calculated with the non­

linear equation mentioned in the text. 

magnitude from T';::; Tg to T';::; Tg -lOOcc. The 

temperature dependence of both fJ and n sug­

gests that the distribution of relaxation times be­

comes broader as the glassy state is removed fur­

ther from the equilibrium state. The temperature 

dependence of the quantity n will be discussed fur­

ther in the subsequent section. 

The value of n can be determined empirically by 

comparing the stress-strain curves obtained at two 

different strain rates. It can be assumed to be nearly 

independent of ll, but more precise value of n can be 

obtained by multiplying n by (ll/80)". 

While a linear viscoelastic formula such as 

eq 6 has been shown to enable one to predict the 

strain rate dependence of the stress-strain rela­

tionship for glassy polymers, such an equation 

cannot describe curves which undergo the stress 

maximum. In fact, the linear viscoelastic behavior 

precludes the existence of a maximum in stress 

because the tangential modulus, da"jds, for the 

stress-strain curve, is equal to the relaxation mod­

ulus, E(t), which cannot be a negative value. It is 

not intended to elaborate on the derivation of a 

stress-strain equation based on nonlinear viscoelas­

ticity here. However, such an equation can be 

derived easily in the case where fJ is small, as with 

glassy polymers near the room temperature. 

The calculated stress-strain curves are shown in 

Figure 6. The experimental curves will not continue 

to decrease as are shown by these calculated curves, 

because the "drawing" phenomenon intervenes 

where a steady state constant stress is maintained as 

the "drawn" portion is propagated throughout the 
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sample. The scaling law for the strain rates, (f,jf.0)", 

apparently still applies to the stresses while the 

sample is in the drawing mode. Thus the entire 

stress-strain curve including the drawing portion 

can be scaled from one strain rate, !!or, to another 

strain rate, 8r, by the scaling factor, (8/80 )". A 

question arises then whether f3 or n would remain 

small as the strain is increased and the relaxation 

times is reduced. If in fact f3 or n did depend on the 

strain, and if in fact the distribution of relaxation 

times did revert back to that of near Tg, i.e., {3;:::;0.4, 

then the stress-strain curves would not have obeyed 

the congruency rule and in fact the simple scaling 

rule being introduced here would have failed. 

The experimental relaxation and creep data show 

that the value of n remains constant nearly up to the 

yield strain, but unfortunately no data exist at the 

levels immediately beyond the yield. However, at 

the room temperature, the stress-strain data beyond 

the yield in the steady state elongation regime, 

where the necking is taking place, show that n is the 

same low value as were before the yield, and not a 

large value such as 0.4. Thus the flat shape of the 

relaxation spectrum is most likely maintained inde­

pendently of the stress or strain levels at a given 

temperature. This steady-flow stress, such as ob­

served in PVC in Figures 2 and 3 can also be scaled 

by the same scaling factor, which will be shown be­

low. Thus, one parameter scaling scheme can be ap­

plied to the entire stress-strain curve including the 

regime of elongation-by-necking. We have used the 

engineering stress, i.e., the force divided by the 

initial zero-strain cross sectional area for all tensile 

data. The scaling factor, being empirical in origin, 

can include the change in the cross-sectional area 

with the change in the strain or the temperature. 

The effects from the nonuniformity in strain 

throughout a tensile test specimen is also built 

into the scaling factor and, as long as the pattern 

of the distribution of the strain remains unchanged, 

this scaling scheme will automatically include such 

an effect and will predict a realistic stress-strain 

relationship under widely varying conditions. 

Scaling Rude No. 1 Strain Rate Effect for Glassy 

Polymer 

To obtain a stress-strain curve at a strain rate 8 

from the stress-strain data obtained at 80 , multiply 

each stress and strain by R 1 = (8/80 )", where n is 

either experimentally determined or calculated from 
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Table I. Parameters for scaling of stress-

strain curves. The notations are 

given in the text 

T, H 
Crystalline C 

Polymer no 

"C kcal 
or glassy G 

ABS 170 0.0287 41.5 G 

Polystyrene 176 0.0250 45.8 G 

Polycarbonate 217 0.027 33.4 G 

Polyethylene 
145 0.080 25.4 c 

(high density) 

Polyethylene 
120 0.050 48.0 C (G, T < - 35°C) 

(low density) 

Polypropylene 170 0.060 29.7 c (G, T<0°C) 

NORYL 160 0.032 40.0 G 

PVC 100 0.037 45.5 G 

Nylon 190 0.076 21.6 C (G, T<20°C) 

Polysulfone 295 0.025 23.8 G 

PBT 110 0.048 42.0 G (C, T> 85°C) 

n0 , tabulated for many polymers in Table I. 

TEMPERATURE DEPENDENCE OF 

STRESS-STRAIN CURVES 

The congruency of the stress-strain curves for 

PVC in Figure 3 with the temperature as the 

parameter turns out to be a typical feature for many 

glassy polymers. The congruency means that the 

stress and strain will increase or decrease by one 

scaling factor. The temperature dependence of the 

relaxation process in glassy polymers is complicated 

because of the temperature dependence of the distri­

bution of relaxation times, and also because of the 

effects of the thermal history. There is no doubt, 

however, that the relaxation processes in glassy 

polymers are temperature dependent even if the free 

volume (or the fictive temperature) is deliberately 

kept constant through the controlled manipulation 

of their thermal history. We have found 

(Matsuoka7) that the temperature dependence of 

the againg rate for the iso-free volume non­

equilibrium polymeric glasses is of the Arrhenius 

type with a constant activation enthalpy of ca. 

35 kcal. Superimposition of this Arrhenius process 

over the Williams-Landel-Ferry equation for the 

free volume3 has been successfully applied to the 

analysis of the aging process and the shift in 

mechanical and dielectric relaxation spectrum for 

several polymeric glasses. It is a curious fact that the 
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Arrhenius term disappears above Tg in the equilib­

rium state, whereas below Tg the free volume form 

of the Williams-Landel-Ferry (WLF) equation 

without altering the coeffcients must be applied to­

gether with the Arrhenius term to fit the data. Thus 

it must be concluded that the Arrhenius term arises 

only when the rate of rearranging the conforma­

tions is severely impaired. Empirically, the emer­

gence of the Arrhenius term and the temperature 

dependence of the distribution of relaxation times 

are coincidental at Tg, and continued to persist at 

lower temperatures. This is probably related to the 

nature of the f3 process in glass. Taking all of these 

bits of information about the glassy polymer, we 

can assume that the dependence of the relaxation 

process in a polymeric glass can be separated into 

the history dependence and the temperature de­

pendence. The history dependence is expressed by 

the free volume, the excess entropy, or the fictive 

temperature. This aspect will be discussed in detail 

in the later section. At present, we will be concerned 

with the glassy polymer with the exactly equivalent 

thermo-mechanical history. The temperature de­

pendence of the relaxation process in such a poly­

mer is described by the Arrhenius equation: 

H(!_ _ _l_) 
'o R T T0 

(10) 

where R is the universal gas constant, ' and 'o are 

the relaxation times at temperatures T and T0 K, 

and His the enthalpy of activation. 

The contribution from the temperature variation 

towards the stress-strain curve, then, is described by 

the equation for the scaling factor R0 : 

R 0 exp n (11) Leo R T T0 

where£ in this case is the equivalent strain rate at T0 , 

when in fact the strain rate of £0 was employed at T. 

Thus the logarithm of the scaling factor is pro­

portional to n and 1/T, or 

lnR 0 =lnl (12) 
Lao RLT To 

It is evident from eq 12 that the only way that n 

can remain independent of temperature is for the 

equivalent stress between the two curves, such as the 

corresponding yield stresses, to depend on the tem­

perature in the Arrhenius manner. Experimental 

data point out that such is not the case, but far from 
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Figure 7. Yield stress at 5%/min vs. T for glassy 

polymers. 

it. From the experimental curves of Figure 3, and 

many more to follow, the maximum or the yield 

stress is found to decrease in proportion to the 

negative of the temperature, following the equation: 

I a(T)J 
Ro=La(To) 

(13) 

where Tc is an empirically derived temperature at 

which the yield stress at strain rate of£ is extrapo­

lated to reduce to zero. This is shown in Figure 7 for 

four glassy polymers. 

Equation 13 above can be derived if the stress is 

to reduce the free energy of activation for the 

relaxation process, following the concept of the rate 

process, or 

H-T0 S=H-Ca-TS (14) 

where C is an empirical constant. The above for­

mula implies that at temperature T, the addition of 

the stress a will cause the material to flow in the 

manner possible with an infinitesimally small stress 

at temperature Tc. The straight line relationship as 

dictated by eq 13 is supported by the plot for several 

glassy polymers shown in Figure 7. Tc is higher than 

Tg by about 30°C. When Tc and n at T0 are 

empirically determined, the activation enthalpy can 

be evaluated from the formula: 

. l 1 )] H= hm In------
r-ro R T T0 

and 

RI? 1 
H=--o __ 

I;,- To no 
(15) 
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Figure 8. Temperature dependence of parameter n for 

polycarbonate obtained from creep data. 

as obtained by combining eq 12 and 13 and utilizing 

!'Hospital's rule, where n0 is n at T0 , and the 

temperature must be in Kelvin degrees. The tem­

perature dependence of n can now be determined 

from the formula: 

n=---- (16) 

by the similar method. The temperature dependence 

of n has been obtained from creep data for polycar­

bonate and shown in Figure 8 for polycarbonate. 

The dotted line represents eq 16, and agrees well 

with the data. These parameters for many polymers 

are shown in Table I. Crystalline polymers have 

been included in the table. It turns out that the 

stress-strain curves of crystalline polymers are 

sharply different from those of glassy polymers, as 

neither the congruency of the stress-strain curves 

nor the temperature dependence of eq 13 is observ­

ed. However, many basic features of the scaling 

technique described here-to-fore on glassy polymers 

are applicable to crystalline polymers and, as it will 

be shown subsequently, the scaling of the nonlinear 

viscoelastic stress-strain curves for crystalline poly­

mers is also possible. One very interesting aspect 

of data shown in Figure 8 is that each value of n at a 

given T can be obtained from n0 at adjacent T0 by 

the formula, n=n0 exp(n0H(l/T0 -l/T)/R). This is 

another evidence that f3 for the Williams-Watts 

formula must change with the temperature. 

Polymer J., Vol. 17, No.1, 1985 

The value of n can be refined by multiplying itself 

by the quantity, (l')f.0)-", or 

n RT2 (8 )" 
T) 8 

(16') 

which is equivalent to the Williams-Watts formula 

instead of the power law. 

Scaling Rule No. 2 Temperature Effects on Glassy 

Polymer 

To obtain a stress-strain curve at temperature T 

from the curve obtained at T0 , multiply each stress 

and strain by R0 =(Tc-T)j(Tc-T0 ) where Tc is 

tabulated for several polymers in Table I. The 

parameter n is calcu1ated from eq 16: n = 

RT2 / H(Tc- T). The values of H, the activation 

enthalpy, for glassy polymers are similar, ca. 30 to 

45 kcal. This is approximately the value involved in 

the physical aging process as measured by the 

decrease of volume or enthalpy as well as in the 

dielectric relaxation process in glassy polymers with 

equivalent thermal histories. 

As the reader probably has recognized, the 

scaling technique is recommended to be centered 

around the room temperature. The reason for this is 

a practical one; the region where the most accurate 

prediction is needed is around the room tempera­

ture. However, because the emphasis has been 

placed on the room temperature behavior, the 

accuracy in the extrapolation to a temperature near 

Tg is sacrificed. If such a requirement should arise, 

the stress-strain data must be obtained at different 

strain rates at or near that temperature, and the 

values of Table I will be altered, in some cases 

substantially. 

If Tg is taken as the reference temperature, then 

In (2_) = H _!...) 
Tg R T 

(17) 

and by combining with eq II, sufficiently accurate 

stress-strain curves may be obtained in this tem­

perature range. However, it must be cautioned that 

in this temperature range, the relaxation process is 

markedly influenced by the thermal aging, and a 

proper account must be taken following the pro­

cedure which will be explained in a subsequent 

section. 

The stress-strain curves for polysulfone are 

shown in Figure 9. The lines are calculated utilizing 

the appropriate scaling procedure. This glassy poly-
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Figure 9. Stress-strain curves for polysulfone calcu­

lated by the scaling rule. Experimental points at only two 

extreme temperatures are shown, but all data in the 

intermediate temperatures agree with the curves. 

16r-------------------------------------, 
PPO-POLYSTYRENE 

52%/MINUTE 
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-40t 

Figure 10. Similar plots for poly(phenylene oxide)­

polystyrene mixture as Figure 9. 

mer exhibits the viscoelastic behavior qualitatively 

very similar to polycarbonate, but it is less tempera­

ture dependent and the yield strain at the room 

temperarure is about the same as that of polycar­

bonate in spite of the fact that its Tg and Tc are both 

substantially higher. The stress-strain curves for the 

solid solution of poly(phenyk:ne oxide) and poly­

styrene are shown in Figure 10. Similar curves for 

polystyrene are shown in Figure 11. These curves do 

not undergo a maximum in the stress, but they 

appear more like the linear viscoelasticity with eq 6, 

and go into the steady plastic flow process at yield. 

The essential features for the scaling rule are all 
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Figure 12. Stress-strain curves for ABS terpolymer 

with polybutadiene as the rubbery phase spheres dis­

persed in the glassy matrix. They behaves more like a 

glassy polymer than the two components typified by 

the crystalline polymer. 

present, and the curves at various temperatures can 

be quite accurately reproduced from the 22oC curve 

by scaling with the parameters included in Table I. 

We have not touched upon the subject of brittle 

failure. The brittle failure is less favored when the 

molecular weight of the polymer is higher, and 

whether brittle or ductile failure will ensure at a 

given strain rate at a given temperature can be 

established by another scaling rule incorporating 

the molecular weight and the critical stress. At a 

higher strain rate and/or for a lower molecular 

weight, the brittle failure will occur at a higher 

temperature. This will be discussed in the appro-
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priate chapter of this volume dealing with the 

time-history and temperature-dependent failure 

processes. 

The stress-strain curves for an acrylonitrile­

butadiene-styrene system known as ABS are shown 

in Figure 12. The st.ructure of this polymer com­

posite is well known, that the rubbery polybu­

tadiene spheres with acrylonitrile grafted skin are 

dispersed in the matrix of glassy acrylonitrile­

styrene copolymer. The features of the stress-strain 

curves are basically those of a homogeneous glassy 

polymer, and as it will be shown, very different from 

a composite of hard and soft components exem­

plified by the semicrystalline polymers with a rub­

bery amorphous phase. However, the threshold of 

the brittle failure behavior is substantially extended 

toward the lower temperature as compared to un­

modified styrene-acrylonitrile copolymer of com­

parable molecular weight. 

STRESS-STRAIN BEHAVIOR IN SHEAR 

The microscopic shear deformation can be 

thought of as a combination of microscopic tensile 

and compressive components. The tensile com­

ponent tends to shorten the relaxation time rapidly 

and accelerates the process further. The compres­

sive component cannot easily lengthen the re­

laxation time when the latter is already too great for 

the given strain rate, and only responds reversibly 

and elastically. Thus the overall relaxation time 

under shear is predominantly determined by the 

rapidly shifting tensile component. The shift of the 

relaxation time in shear, as it will be shown, can be 

calculated if the shift due to the tensile deformation 

is known. Actually Robertson's model9 for the 

strain-induced shift in the relaxation time can be 

identified with this concept on the molecular level. 

The nonlinear viscoelastic stress-strain behavior 

at constant strain rates can be conveniently thought 

of as a nonlinear elastic behavior dealing with strain 

as the sole variable, for the conservative part of the 

viscoelastic deformation energy. For a conservative 

system, there is the elastic constitutive relationship: 

(18) 

15,-------------------------------, 
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V> 
w 
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... 5 
V> 

5 10 
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5%/min AT 23°C 

0 0 0 0 

Figure 13. Shear stress-strain curve is generated from 

the tensile data following the scaling rule for shear. 

Though slightly, the shear data also undergoes a 

maximum. 

where "bold letters" denote a tensor notation, J1 is 

the generalized secant modulus which depends on 

the strain and A, is the Lamme constant.* Rosenberg 

and Matsuoka10 have shown that the introduction 

of the second invariant of the deviatoric strain 

into the strain terms in eq 17 S(ltisfies the energy 

requirements for the conservative component and 

because the following is true: 

1/Z_l+v 
II, - J3 le11l tension (19) 

II; 12 =I e12l = y/2 shear (20) 

using the above pair of formulas, we can scale a 

tensile stress-strain curve to obtain a corresponding 

shear stress-strain curve by the following procedure: 

(1) Multiply the tensile strain by the scaling 

factor, Rsx: Rsx=2(1 +v)/)3 

(2) Multiply the tensile stress by the scaling 

factor, Rsy: Rsy= 1/)3 
(3) Optionally, if the engineering stress-strain is 

used for tensile data, i.e., the force divided by 

the initial area, then the tensile stress in (2) 

may be further divided by (l-2v) (tensile 

strain). 

The equivalence in the rates of strain in tension and 

* Note: A. is not a constant since we are dealing with a nonlinear case. However, the hydrostatic term is less 

important mechanically than the pressure effect entering as the thermodynamic intensive quantity and can be neglected in 

this case. 
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shear are established by the factor 2(1 +v)/.j3 to 

correct the constant C, but this results in an error of 

order of I% for the stress, hence it can be generally 

ignored. Figure 13 demonstrates how well the scal­

ing scheme works for polycarbonate. 

Scaling Rule No. 3 from Tension to Shear 

Multiply the stress by Rsy and the strain by R,, for 

all polymers. 

CRYSTALLINE POLYMERS 

Experimentally it is found that the stress-strain 

curves for crystalline polymers obtained at different 

strain rates and temperatures are not congruent. 14 

This fact alone may seem to dash off any hope of 

generating a new and simple scaling rule compara­

ble to that for glassy polymers. As it turns out, a 

scaling rule utilizing a different procedure works 

well with crystalline polymers. Although the con­

gruency rule does not apply to the stress-strain 

curves for crystalline polymers at various strain 

rates and temperatures, the following features are 

applicable: (l) the stress levels increase with the 

power of strain rates, s", as were true for glassy 

polymers, (2) at the same time, the strains decrease 

with the negative power of strain rates, C", un­

like for glassy polymers, (3) the stress levels 

decrease linearly with T( Tc- T) instead of Tc- T, 

as for glassy polymers, and (4) the values of n 

and H are about the same orders of magnitude as 

for the glassy polymers and are determined from 

experimental data in the similar manner as used 

for glassy polymers. Thus, the scaling of stress­

strain data in crystalline polymers can be accom­

modated by multiplying the stress by R 1 and di­

viding the strain by R 1 • In Figures 14 and 15 are 

shown examples of high and low density poly­

ethylenes, one at one strain rate but at different 

temperatures, and the other at different strain rates 

but at the same temperature. In both cases, the lines 

drawn were actually calculated by scaling the 

stresses up by multiplying by R 1 but at the same 

time scaling the strains down by dividing by R 1 • 

The stress-strain equation for glassy polymers 

where the congruency rule was observed to hold is 

not applicable to the crystalline polymers. 

Although the effect of the temperature on the 

yield stress seems to be almost the same for crystal­

line polymers as for glassy polymers, a close exam-
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Figure 14. Stress-strain curves for high density poly­

ethylene at various strain rates, fitted by the curves 

generated by the scaling rule for crystalline polymers. 
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Figure 15. Stress-strain curves for low density poly­

ethylene at various temperatures, fit curves generated 

by the scaling rule for crystalline polymers. 

ination reveals that such is not the case. The yield 

stress for three kinds of crystalline polymers are 

plotted against the temperature in Figure 16. While 

such a plot was a straight line for the glassy 

polymer, these curves are definitely curved. When 

the data are plotted in a slightly different form, i.e., 

aTjT0 vs. T, where T, T0 are in degrees Kelvin,. 

they become straight lines approaching the respec­

tive melting tempeature, Tm, as shown in Figure 

17. Thus for crystalline polymers, the scaling fac­

tor Ro is slightly different from eq 13, i.e., 

[ a(T)J 
Ro = a(To) io 

T0(T,- T) 

T(T,- T0 ) 

(21) 
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10 

100 

TEMPERATURE °C 

Figure 16. Temperature dependence of yield stress for 

crystalline polymers taken at 5%/min. 

10 

TEMPERATURE °C 

Figure 17. Replot of Figure 16 by multiplying the 

stress by T/ T0 . 

This formula can be derived if the stress will 

increase the activation entropy, i.e., 

H- TcS=H- T(C,O'+S) (22) 

where C, is an empirical constant. 

Similarly, from the empirically determined value 

of n0 at T0 , the activation enthalpy His determined 

by the formula: 

H 
RT0 I;, 

n0(I;,- T0 ) 

(23) 

and the temperature dependence of n is determined 

from the formula 

R TI;, 
n=----

H 7;,- T 
(24) 
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Figure 18. Stress-strain data for polypropylene at 

various temperatures fitted (I) with the scaling rule 

for crystalline polymers above ooc but (2) with the 

scaling rule for glassy polymers below - 20°C. 

Tc can be taken to be Tm, but our empirically 

determined values are shown in Table I. 

The scaling factor R0 =T0 (T0 -D/T(Tc-To) is 

used to multiply the stress and to divide the strain to 

scale from the data obtained at T0 to the stress­

strain curve at T. The temperature dependence of n 

is obtained from eq 24. Among all crystalline poly­

mers we have studied in which the amorphous 

regions are in the rubbery state, T> Tg, this scaling 

rule has been found to apply. In the temperature 

and the strain rate range where the amorphous 

regions become glassy, the behavior reverts back to 

the model of congruency for glassy polymers, i.e., 

the congruent stress-strain curves. Tg of polypro­

pylene is observed at about ooc by the specific heat 

measurement of I ooc min - 1 . This transition is 

clearly observable in Figure 18 where the scaling 

formula for crystalline polymer was used above ooc 
from data taken at 23°C, and the formula for glassy 

polymers was used for -20, -40, and -60°C 

curves based on the - 40°C curve. When comparing 

various data obtained with different strain rates at 

23°C, however, polypropylene behaves in a similar 

manner to the high and the low density poly­

ethylenes, indicating the behavior typical of the 

crystalline rubber composites. 

EFFECT OF PHYSICAL AGING ON 

VISCOELASTICITY 

Polymer glasses typically undergo the physical 
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aging process accompanied by the decrease of vol­

ume, entropy, and enthalpy, during which time the 

dielectric relaxation spectrum can be observed to 

shift to the longer relaxation time. Although the 

thermodynamic treatment of the aging process is 

complex and the quantitative prediction for all 

types of history is difficult, a simple physical model 

can be followed to enable a sufficiently accurate 

prediction of the shift in viscoelastic functions due 

to the thermal history. 6 Kovacs5 has shown that a 

free volume model such as is used in the WLF 

equation can be utilized in the formulation of the 

isothermal aging process following a sudden change 

in temperature from above to below Tg, i.e., 

0.010 

0.005 

0 

"' N 
0 
0 

PVC CREEP 

0 0 
0 ci 

Tl ME (seconds) 

Figure 19. Creep data for PVC after aging for different 

- df =kf 
dt 

(25) periods of time. The parametric numbers are the frac­

tional free volume at start of creep experiments, 

where f is the free volume fraction and k is the rate 

constant for the volume contraction. This rate 

constant is a rapidly diminishing function of the free 

volume fraction, and, in fact, it is within the magni­

tude of the reciprocal of the characteristic dielectric 

relaxation time, r, i.e., 

r = r0 exp (1/f-1/fo) (26) 

where the subscript 0 denotes some reference time 

during the steady state contraction process. As the 

volume continues to contract during aging, r con­

tinues to grow greater. Now, the rate of increase of r 

is given, from eq 25 and 26, by 

:t (27) 

Since f is in the order of 10- 2, eq 25, 26, and 27 are 

approximately satisfied if 

from which follows 

r 1 

t f 

dlogr 

dlogt 1-f 

(28) 

(29) 

The slope of log r vs. log t plot will eventually 

become nearly 1, provided that (l) the time t must 

become an oder of magnitude greater than the 

initial relaxation time, r0 , to satisfy the steady state 

condition and (2) that the tempeature must not be 

near Tg where the glassy system is near equilibrium. 

If either of the above two conditions is not met, the 

slope of the log r vs. log t plot will be less than I. 
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Figure 20. Stress-strain curves for PVC samples. Each 

aged one decade longer is superimposed when each test 

was conducted at one decade slower strain rate. 

The distribution of relaxation times, perhaps due to 

fluctuations, is a topic of interest to many polymer 

physicists but will not be discussed here. The distri­

bution itself would not change the relationship of eq 

29, but the extreme components of r will affect it. 

The typical result is obtained following eq 29, 

expressing the rule that a decade increase in the 

logarithmic time for aging will increase the charac­

teristic relaxation time by a decade. This is clearly 

denonstrated by the creep curves shown in Figure 

19. A series of creep experiments were conducted at 

60°C for poly(vinyl chloride), each following a 
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different time of aging, varied by about a decade, at 

the same temperature. It can be observed that an 

increase of logarithmic aging time by one decade 

will shift the creep curve by one decade, i.e., the shift 

factor, or the logarithmic ratio of relaxation times 

to the time spent for aging, is unity as described by 

eq29. 

The effect of physical aging on viscoelastic stress­

strain curves is illustrated in Figure 20 where the 

stress-strain curves of samples having undergone 

various thermal histories are compared. Curves 

were picked among the PVC stress-strain curves run 

at 23°C after having undergone the exposure to 

50°C for 1, 10, and 100 h, with the strain rates of 5, 

0.5, and 0.05%/min, respectively. They all super­

impose on top of each other. The curve for the "as­

molded" sample, run at 50%/min, also super­

imposed on top of the others. This graph clearly 

supports the rule described by eq 29 for the re­

laxation time and the aging time to be proportional 

to each other. As already pointed out, however, the 

aging will slow down and then cease to continue as 

the equilibrium (liquidus) state is approached when 

annealing is performed at a very high temperature 

near Ts. The aging will also not take place if the 

original sample has undergone a substantial aging 

already, i.e., if the relaxation time at the aging 

temperature is substantially greater than the time to 

be spent on aging. According to eq 28, time t must 

be at least within one or two orders of magnitude of 

r 10- 2 ) in order to observe an aging effect. 

The "as-molded" sample in Figure 20 was injection 

molded, and can be considered as having been 

rapidly cooled from the molten state, so its equiva­

lent relaxation time at 60°C happened to be equiva­

lent to 0.1 h. However, had this "as-molded" sample 

been cooled much more slowly, its relaxation time 

at 60°C would have been much greater. For ex­

ample, suppose that its history were comparable to 

10 h at 60°C. In such a case, annealing the sample 

for 1 or 10 h at 60°C would have made no difference 

on the stress-strain curves; they would have super­

posed on top of each other without changing the 

rate of strain, and the difference would have become 

observable only when the aging period exceeded 

10 h at 60°C. Thus it is of utmost importance to 

know the equivalent thermal history of a sample 

that is being tested before the prediction can be 

made on the effect of physical aging. To do this, first 

subject a sample to a prescribed thermal history, 
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Figure 21. The dependence of the maximum stress on 

the annealing time and the strain rate for polycarbonate. 

typically 100 h at a temperature, T., about 25°C 

below the value of Ts determined by the differential 

scanning calorimetry at ca. 1 oc per min, and obtain 

the stress-strain curve at 5%/min. Now ail other 

curves can be calibrated against this value, by using 

the scaling factor, R2 , for the thermal history: 

( t )" Rz= 
tao Ta,io (JO 

(30) 

where t. is the time for aging, as recalculated to the 

reference condition with the tempeature T. and the 

strain rate of 80 • The power n should be the value at 

the temperature of mechanical testing, and not at 

the temperature of aging; it should be the values in 

Table I if the test was run at 23°C. The equivalent 

annealing time can be converted to any temperature 

of annealing by the use of the formula: 

( t •. T ) H ( 1 1 ) 
ln ta, Tao =R T- T.o (31) 

where the same value of H as the one in Table I 

may be used. The equivalent annealing time is the 

minimum time spent on that specimen at that tem­

perature. Any subsequent annealing time must be 

added to this time after being converted to the 
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equivalent time at the temperature of aging being 

considered. Any additional aging, such as leaving 

on the shelf for an extended period of time or 

subjecting it to annealing at elevated temperatures 

must be accounted for by adding the equivalent 

additional time t at T., i.e., 

/*,I., IT. =critical, the fist, and the second 

strain invariants 

J, 1*, Joc, I'll, lo= 

shear compliance, J* is the dy­

namic compliance 

k =rate constant for the aging 

process 

(32) n, n0 =the power for scaling time, re-

where t can be calculated from eq 31. The inter­

changeability of the annealing time and the strain 

rate is shown also for polycarbonate in Figure 21. 

The value of n depends slightly on the aging also, 

because it depends on the relaxation time ' which 

becomes longer with annealing. Recalling eq 9: 

(9) 

and if'!' is to be increased by 4 decades from 103 to 

107 minutes, then for /3=0.03, n will decrease from 

0.024 to 0.018. In some of the creep studies on 

glassy polymers, we have found that such would be 

the case. 
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NOMENCLATURE 

C, C1 , C2 , etc. =empirical constants 

D(t), D(e, t) =linear and nonlinear creep 

E(t), E(e, t) 

J, 

G 

H 

334 

compliance at strain e and time 

t 

=linear and nonlinear stress re­

laxation modulus at strain e 

and timet 

=zero strain tensile modulus 

=zero strain moduli for filler and 

polymer 

=fractional free volume 

=shear modulus 

=activation enthalpy for aging 

and for relaxation process for 

solid state having undergone 

the same or equivalent thermo­

mechanical history 

p, Po• Pc 

R 

Greek Letters 

f3 

y 

laxation time, or strain rate for 

viscoelastic function; n is the 

slope of log relaxation time 

against log time at constant 

strain or stress 

=pressure in psi; Pc is a param­

eter for scaling the pressure 

effect on the stress 

=scaling factor for the temper­

ature 

=scaling factor for the strain rate 

=scaling factor for the physical 

aging 

=scaling factor for the filler con­

centration 

=scaling factor to convert tensile 

to shear stress-strain 

=the gas constant 

=time 

=annealing (physical aging) time 

=temperature in K, Tc is a pa-

rameter for scaling the tem­

perature effect on the stress 

=strain energy 

=specific volume; Vr and V P are 

volumes of filler and polymer 

=power for time in Williams­

Watts formula 

=shear strain 

e, e0 =tensile strain 

e * =strain corresponding to the 

equal rate of energy increase 

for constant strain rate process 

e, ekk• e11 , e12 =strains in tensor notation 

'1 =viscosity 

A- =Lamme constant 

v =Poisson ratio 

a, a0 , a1 , a2 , a:r=stress (usually tensile) 

a, a 11 , a 12 = streses in tensor notation 

=relaxation time, 'g is the extra-
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(J) 

polated value for Tg 

=circular frequency 
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