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It is important to correctly and e�ciently predict the interaction of substrate-enzyme and to predict their product in metabolic
pathway. In this work, a novel approach was introduced to encode substrate/product and enzyme molecules with molecular
descriptors and physicochemical properties, respectively. Based on this encodingmethod, KNNwas adopted to build the substrate-
enzyme-product interaction network. Aer selecting the optimal features that are able to represent the main factors of substrate-
enzyme-product interaction in our prediction, totally 160 features out of 290 features were attained which can be clustered into
ten categories: elemental analysis, geometry, chemistry, amino acid composition, predicted secondary structure, hydrophobicity,
polarizability, solvent accessibility, normalized van der Waals volume, and polarity. As a result, our predicting model achieved an
MCC of 0.423 and an overall prediction accuracy of 89.1% for 10-fold cross-validation test.

1. Introduction

With the completion of gene sequencing projects, scienti�c
focus is shiing from the investigation of the proteomics
to metabonomics which is of chemical processes involv-
ing metabolites. Metabolism consists of almost all of the
chemical-chemical reactions or chemical-macromolecules
reactions that generally take place within metabolic pathway
[1]. Above linked individual interactions form the whole
metabolic pathway and interaction network which produce
more new complex and higher order structure [2]. Metabolic
pathways are sequences of metabolic steps forming highly
regulated networks of interacting enzymes and substrates.
In metabolic pathways, the substrate is transformed through
a series of steps into another chemical, by a sequence of
enzymes. Given a substrate and an enzyme, people may

wonder whether they can interact with each other or what
is the product. Herein, network of interaction of substrate-
enzyme-product can provide assistance in R&D of drug. For
example, based on interaction of substrate-enzyme-product,
maybe people can discover some candidate drug from nature
product, and can even predict its potential side e�ect [3].
Besides this, network of interaction of substrate-enzyme-
product can also be applied in evaluating the safety of
research of Genetically Modi�ed Food (GMF). By using the
network of substrate-enzyme-product, the potential toxicity
of product derived fromGMF could be predicted. Hence, the
interaction network of substrate-enzyme-product will pro-
vide us further knowledge and information beyondmetabolic
pathway.

Due to the complexity of metabolic pathways, it is both
time-consuming and costly to determine the interaction of
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substrate-enzyme-product by experiments. It is in urgent to
develop a quick, reliable, and e�ective approach to predict the
interactions among substrate, enzyme, and product.

In this study, we reported a computational approach for
predicting the network of substrate-enzyme-product triads
based on K-nearest neighbor (KNN) [4–6] algorithm com-
bined with mRMR-IFS feature selection method.

2. Methods and Materials

2.1. Methods

2.1.1. mRMR. Minimum Redundancy Maximum Relevance
(mRMR), proposed by Peng et al., is an e�ective feature-
selection method for evaluating the worth of an attribute
by considering the minimum redundancy between attributes
and the maximum relevance between attributes and targets
[7]. More information of mRMR selection algorithm can be
found in [7] and related studies [8–19].

2.1.2. KNN. K-nearest neighbors (KNN) is the most basic
instance-based machine learning technique classifying
objects based on cluster theory [4–6]. KNN recognizes
a sample’s class according to the label on the K-nearest
neighbors. �e nearest neighbors of an instance are de�ned
by the Euclidean distance [4]. KNN has been widely applied
in the �eld of biological sciences [20–24]. More details about
KNN can be referred to in [25, 26].

2.1.3. Incremental Feature Selection (IFS). First, construct
� feature subset by incrementally adding features to � as
follows:

�0 = {�0} ,

�1 = {�0, ��1} ,

...

�� = {�0, �1 . . . , ��} ,

...

��−1 = {�0, �1, . . . , ��−1}

(1)

(�� is the �th feature added into feature subset�).
Second, use KNN method to build the prediction model

based on subset �� and evaluate the model by cross-
validation. �en, a classi�cation accuracy curve called IFS
curve is attained.

2.2. Materials

2.2.1. Data Preparation. In this study, 14,229 compounds
derived from database KEGG (http://www.genome.jp/kegg/)
(release 42 in 2006) [27] were collected. Aer removing
the compounds which do not participate in any metabolic
reactions which have been supported by experiments, 1326
compounds and 939 enzyme molecules of the human

genome participating metabolic reaction were obtained
(please refer to Supplemental Material available online at
http://dx.doi.org/10.1155/2013/674215).

In metabolic pathway, each substrate binds to one or
more enzymes, but the production may not be di�erent.
�erefore, substrates and enzymes are subject to be involved
in a network of interactions. In this study, substrate, enzyme,
and product in each interaction are de�ned as a positive
sample; and those that cannot interact with each other
or those interactions that cannot attain the product are
de�ned as negative samples. Triads in the positive set are
termed as networking triads, and those in the negative set as
nonnetworking triads.�ese networking triads are supported
by solid experiments with 100% credibility by KEGG. As a
result, 14,592 networking triads were obtained. To generate
the negative datasets, �rstly, we built a dataset by randomly
combining two small molecules and an enzyme together;
then, we removed the 14,592 networking triads. It should be
mentioned that although some nonnetworking triads may
not be true nonnetworking triads by chance in negative
database set, the chance is small. �erefore, the credibility
of the negative dataset is also very high. To re�ect that the
number of networking triads is much less than that of the
nonnetworking triads, the negative samples of training set
were generated 50 times as many as the positive ones. As a
result, the �nal training dataset contains 14,592 networking
triads and 729,600 nonnetworking triads (please refer to
supplemental material II and III for the data).

2.2.2. Representation of Compounds. In developing a method
for predicting drug-protein interaction, the �rst problem is
how to describe this networking triad correctly as input for
the prediction program. It is obvious that the performances
of prediction model depend mostly on the features used to
describe the molecular structures. In this study, molecular
descriptors were applied to re�ect the physicochemical and
geometric properties of substrates and products which have
been applied in our previous studies [28–30]. �e values
of these molecular descriptors were calculated by program
ChemAxon which is available for computing the molecular
descriptors [31, 32] (see supplemental material IV). As some
molecular descriptors cannot be calculated for some com-
pounds, �nally totally 79 molecular descriptors are used in
building the model. Before calculating molecule descriptors,
the compounds’ three-dimensional structures were opti-
mized by using MM+ force �eld with the Polak-Ribiere
algorithm until the root-mean-square gradient became less
than 0.1 Kcal/mol. �en, the descriptors were calculated
under stable conformation of each molecule based on AM1
semiempirical molecular orbital method at the restricted
Hartree-Fock level with no con�guration interaction.

2.2.3. Representation of Enzymes. As each protein has its own
physicochemical properties, like hydrophobicity, polarizabil-
ity, and so vent accessibility, it is a good method to describe
a protein sequence, and it has been employed for predicting
various protein attributes. In this paper, the enzymes are
encoded by 132 physicochemical descriptors (amino acid
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composition, predicted secondary structure, hydrophobicity,
polarizability, solvent accessibility, normalized van derWaals
volume, and polarity) [33–38] (see supplemental material V)
due to its e�ective and selective ability in the prediction of
protein characteristics. More details can be seen in reference
[33–38] or our previous study [39].

2.3. Accuracy Measure. Generally speaking, the prediction
performance of di�erent discriminative methods is com-
monly evaluated by the function of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).
In this study, we employed sensitivity (SN = TP/[TP + FN]),
speci�city (SP = TN/[TN + FP]), overall accuracy (ACC =
[TP+TN]/[TP+TN+ FP+ FN]), and Matthew’s correlation
coe�cient (MCC) to measure the prediction. �e MCC can
be represented as

MCC

= TP × TN − FP × FN
√(TN + FN) × (TN + FP) × (TP + FN) × (TP + FP)

.

(2)

3. Results

In the recent years, many e�orts have been made in feature
selection [40–46]. In this study, mRMR method was applied
to search for a subset with optimal features. Aer mRMR cal-
culation, two tables are attained (see supplemental material
VI). One is calledMaxRel feature table that ranks the features
based on their relevance to the class of samples and the other
is called mRMR feature table that lists the ranked features
by the maximum relevance andminimum redundancy to the
class of samples.

�en, IFS method is applied based on mRMR feature
table. From Figure 1, it can be found that while adding new
feature continually, the value of MCC increased, although
during this process, the value of MCC decreased at some
point. While the number of features reaches 160, the value
of MCC is 0.423, the highest point. �en, the value of MCC
begins to decrease. Hence, the subset containing these 160
features is considered as an optimal subset which is derived
from original data set containing 290 features. �ese features
selected are irrelevant to each other but relevant to the target.

Based on the 160 features, predictingmodel of network of
substrate-enzyme-production interaction could be built.

Ten folds cross-validation test, which is applied in many
other applications [36, 47–52], is adopted in this study to
validate the model’s prediction accuracy. During 10-fold
cross-validation test, the datasets are divided into 10-folds, a
model is built with N-1 fold samples and the 10th fold data
are treated as unseen data, which is used for the prediction as
the testing data. Each fold is le out from building the model
and predicted in turn. �e predictive ability is evaluated by
averaging the correct prediction rates of the 10-fold data.
Table 1 lists the prediction results while using KNNmethod.

To evaluate our feature selection method, we compared
the prediction results generated by �nal optimal subset and
the original data set with 10-folds cross validation test (see
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Figure 1: �e curve of the 290 prediction models using IFS.

Table 1: Prediction accuracies of di�erent dataset with KNN.

Dataset
10-folds cross-
validation test

SN (%) SP (%) ACC (%) MCC

Original dataset 53.71 92.4 88.9 0.412

Optimal dataset 55.2 92.4 89.1 0.423

Table 1). Table 1 shows that the prediction results of the 10-
folds cross-validation test improved aer applying feature
selection. �is demonstrates that maybe some features are
redundant and interfering to each other in the original
dataset; hence, it is better to remove some of them. Further-
more, the number of features in the �nal subsets is 55% of the
original feature set. �is result suggests that mRMR feature
selection approach could make a good optimization and
improve the accuracy of prediction for substrate-enzyme-
product interaction.

4. Discussion

�e selected 160 features in the �nal subset can be clus-
tered into the following ten categories: elemental analysis,
geometry, chemistry, amino acid composition, predicted
secondary structure, hydrophobicity, polarizability, solvent
accessibility, normalized van der Waals volume, and polarity
(see Figure 2). �e former three kind features are molecular
descriptors which are of substrate and product, and the le
seven kind features are of enzyme.

According to the distribution of features of compounds
(substrate and product) and enzymes, it shows that enzymes
contribute more to the interaction process. Further calculat-
ing the proposition of the selected features to the original
features, it is found that the proposition of enzyme feature
(92/132 = 0.70) is higher than the proposition of compound
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Table 2: Top 80 features rank according to their correlation to target.

No. Name Categories No. Name Categories

1 Polarity Polarity 41
Amino Acids Composition
Cys

Amino acids composition

2
Substrate
Polarizability

Chemical 42 Polarizability Polarizability

3 Solvent accessibility Solvent accessibility 43 Polarizability Polarizability

4 Solvent accessibility Solvent accessibility 44
Amino Acids Composition
Ile

Amino acids composition

5 Secondary structure Secondary structure 45 Hydrophobicity Hydrophobicity

6
Normalized Van Der Waals
volume

Normalized Van Der Waals
volume

46 Secondary structure Secondary structure

7
Normalized Van Der Waals
volume

Normalized Van Der Waals
volume

47
Substrate Stereo
DoubleBondCount

Geometry

8 Secondary structure Secondary structure 48
Normalized Van Der Waals
volume

Normalized Van Der Waals
volume

9 Secondary structure Secondary structure 49
Substrate Smallest
RingSystemSize

Geometry

10
Substrate
Log	 Chemical 50

Substrate Smallest
RingSize

Geometry

11
Substrate
CComposition

Elemental analysis 51
Substrate Rotatable
BondCount

Geometry

12
Amino Acids Composition
Asn

Amino acids composition 52
Substrate H
Composition

Elemental analysis

13 Polarity Polarity 53
Amino Acids Composition
�r

Amino acids composition

14 Hydrophobicity Hydrophobicity 54 Polarizability Polarizability

15 Substrate MinZ Geometry 55
Amino Acids Composition
Leu

Amino acids composition

16 Solvent accessibility Solvent accessibility 56
Amino Acids Composition
His

Amino acids composition

17 Polarity Polarity 57
Substrate CarboAliphatic
RingCount

Geometry

18 Hydrophobicity Hydrophobicity 58 Product HComposition Elemental analysis

19
Substrate VanDerWaals
SurfaceArea

Chemical 59 Polarizability Polarizability

20
Amino Acids Composition
Asp

Amino acids composition 60
Normalized Van Der Waals
volume

Normalized Van Der Waals
volume

21 Hydrophobicity Chemical 61
Amino Acids Composition
Gln

Amino acids composition

22
Substrate
OComposition

Elemental analysis 62
Normalized Van Der Waals
volume

Normalized Van Der Waals
volume

23 Solvent accessibility Solvent accessibility 63 Polarizability Polarizability

24 Secondary structure Secondary structure 64
Amino Acids Composition
Lys

Amino acids Composition

25
Amino Acids Composition
Ser

Amino acids composition 65 Polarizability Polarizability

26
Substrate Water
AccessibleSurface
Area Negative

Chemical 66
Amino Acids Composition
Tyr

Amino acids composition

27 Secondary structure Secondary structure 67
Amino Acids Composition
Arg

Amino acids composition

28 Hydrophobicity Hydrophobicity 68 Secondary structure Secondary structure

29 Substrate FusedRingCount Geometry 69 Polarizability Polarizability

30
Substrate Carbo
RingCount

Geometry 70
Normalized Van Der Waals
volume

Normalized Van Der Waals
volume
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Table 2: Continued.

No. Name Categories No. Name Categories

31
Amino Acids Composition
Glu

Amino acids composition 71 Polarity Polarity

32 Hydrophobicity Hydrophobicity 72
Normalized Van Der Waals
volume

Normalized Van Der Waals
volume

33 Polarizability Polarizability 73 Product NComposition Elemental analysis

34 Polarity Polarity 74 Solvent accessibility Solvent accessibility

35
Normalized Van Der Waals
volume

Normalized Van Der Waals
volume

75
Product Hetero
AliphaticRingCount

Geometry

36
Substrate Fused
Aliphatic
RingCount

Geometry 76
Substrate CarboAromatic
RingCount

Geometry

37 Polarizability Polarizability 77 Substrate PComposition Elemental analysis

38 Secondary structure Secondary structure 78 Hydrophobicity Hydrophobicity

39 Substrate RingCount Geometry 79 Product CComposition Elemental analysis

40
Amino Acids Composition
Pro

Amino acids composition 80
Normalized Van Der Waals
volume

Normalized Van Der Waals
volume
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Figure 2: Feature distribution.

feature (70/158 = 0.44). Table 2 also shows that several
enzyme features are in the top ten and top twenty fea-
tures. �is result suggests that enzyme-centric features make
more contributions to our proposed interactions network of
substrate-enzyme-product.

From Table 2, it can be further found that for compound
features, there are much less features of product than features

of substrate and enzyme in the top �y features. �is is
because during the interaction of substrate-enzyme-product,
substrate and enzyme determine the products, and changing
substrate or enzyme could result in a di�erent product.

According to the distribution of features in Figure 2,
it can be found that the number of geometry features is
more than that of the other kind features. In this regard,
geometry features have great e�ect and contribute to the
substrate-enzyme-product interaction not only in substrate
features but also in product features. However, from MaxRel
feature table, it can be found that there are not many geom-
etry features appearing in the top ten features. �erefore,
we feel interesting of this problem. Actually, the order of
geometry features is not incompatible with its distribution.
Geometry features contain information of the structure of
a molecule like the volume, size, and shape which leads to
steric hindrance and steric resistance. �ese factors are of
great importance in substrate-enzyme-product interaction.
Only correctly three-dimensional size and shape molecule
can interact with enzyme according to the Lock and Key
�eory. Meanwhile, steric hindrance or steric resistance
a�ect the substrate-enzyme-products’ interaction as some
big functional groups like aromatic ring prevent interaction.
On the other hand, these functional groups also provide
key interactive force to enzyme like heteroaromatics ring’s

-
 stacking interaction to enzyme’s functional site. �e
substrates and products are varied and diverse greatly in
structure. And it is di�cult to describe their structure with
only one or two descriptors. Hence, more geometry features
could better extract the information of compounds’ structure.
�is is why though single geometry feature has no strong
relevance to the interaction, the overall contribution of the
forty-four geometry feature can oen be crucial to the
interaction.

Figure 2 also shows that amino acid compositions and
second structure occupied important propositions among the
ten types’ features. Amino acid composition in the binding
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site contributes a lot in substrate-enzyme-product interaction
because it could a�ect the state energy. Some experiments
have veri�ed the importance for amino acid compositions
in protein related interaction [53–55]. For example, Tyr265
plays a central role in enzyme alanine racemase’s binding to L-
alanine and pyridoxal 5-phosphate [54]. Hence, for a unique
structure, the amino acid composition plays the essential role
in the interactions. Secondary structure is considered as an
important property in many protein related problems, since
the shape and biological function of a protein are mainly
determined by its secondary structures. Secondary structure
features re�ect the steric structure of protein. According to
the Lock and Key �eory, the size and shape of substrate
were rigid and restricted by enzyme. Accordingly, secondary
structure has relatively more impact on the determination of
substrate and product.

5. Conclusion

In this paper, a feature selection method called mRMR
combined with IFS was applied to dataset of substrate-
enzyme-product interaction which is encoded with molec-
ular descriptors of substrate/product and 132 physicochem-
ical protein descriptors. As a result, we �nd that enzymes
are essential in substrate-enzyme-product interaction; 160
important features were abstracted from 290 features. Based
on the above �ndings, we also used KNN method to build
a prediction model of substrate-enzyme product interaction.
Based on the prediction results, it is expected that molecular
descriptors and 132 physicochemical protein descriptors can
be served as an e�cient coding method for network of
substrate-enzyme-product interaction.
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