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� Seasonal prediction skill of the Arctic Oscillation in boreal winter 34 

� Prediction skill change depending on period 35 
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Abstract 38 

This study assesses the prediction skill of the boreal winter Arctic Oscillation (AO) in the 39 

state-of-the-art dynamical ensemble prediction systems (EPSs): the UKMO GloSea4, the 40 

NCEP CFSv2, and the NASA GEOS-5. Long-term reforecasts made with the EPSs are used 41 

to evaluate representations of the AO, and to examine skill scores for the deterministic and 42 

probabilistic forecast of the AO index. The reforecasts reproduce the observed changes in the 43 

large-scale patterns of the Northern Hemispheric surface temperature, upper-level wind, and 44 

precipitation according to the AO phase. Results demonstrate that all EPSs have better 45 

prediction skill than the persistence prediction for lead times up to 3-month, suggesting a 46 

great potential for skillful prediction of the AO and the associated climate anomalies in 47 

seasonal time scale. It is also found that the deterministic and probabilistic forecast skill of 48 

the AO in the recent period (1997-2010) is higher than that in the earlier period (1983-1996). 49 
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1. Introduction 56 

The Arctic Oscillation (AO, Thompson and Wallace [1998]), which is characterized by a 57 

periodic exchange of the atmospheric mass field between the Arctic and the rest of high 58 

latitudes, is an important mode of climate variability in the Northern Hemisphere. When the 59 

Arctic region has anomalously higher atmospheric mass – the negative phase of the AO, the 60 

circumpolar jet stream weakens and shifts southward, causing abnormally severe winters in 61 

the mid-latitude [Thompson and Wallace, 2000; Higgins et al., 2002; Wettstein and Mearns, 62 

2002]. Regarding its profound impacts on winter climate over the Northern Hemispheric mid- 63 

and high-latitude areas, the accuracy of the seasonal prediction over these regions seems to be 64 

tied strongly with our ability to predict the AO. This calls for a systematic assessment of 65 

prediction skill of the AO using forecasts made with operational forecast systems. 66 

While the nature of the AO and the physical mechanisms under the phenomenon have 67 

been extensively studied [Limpasuvan and Hartmann, 2000; Lorenz and Hartmann, 2003; 68 

Polvani and Waugh, 2004; Cohen et al., 2010; Kim and Ahn, 2012, among many others], 69 

studies focusing on the seasonal predictability or the prediction skill of the AO are 70 

surprisingly rare in the literature. To our knowledge, only one study examined prediction skill 71 

of the AO exclusively [Riddle et al., 2013], although Arribas et al. [2011] and Kim et al. 72 

[2012] assessed forecast skill of the North Atlantic Oscillation (NAO) as one of climate 73 

variability investigated. In Riddle et al. [2013], it is found that the National Centers for 74 

Environmental Prediction (NCEP) coupled forecast system model version 2 (CFSv2, [Saha et 75 

al. 2013]) is capable to forecast the wintertime AO up to forecast lead time more than 2 76 

months. They suggested the hardly resolved process in the model associated with the 77 

stratospheric pathway of atmosphere related to the propagation linked to October Eurasian 78 

snow cover. 79 



Motivated from the above, this study evaluates the AO prediction performance for three 80 

state-of-the-art seasonal forecasting systems, the UK Met Office Global Seasonal forecasting 81 

system version 4 (GloSea4) [Arribas et al., 2011], the NCEP CFSv2, and the National 82 

Aeronautics and Space Administration (NASA) Goddard Earth Observing System Model, 83 

Version 5 (GEOS-5) AOGCM [Rienecker et al. 2011]. These systems have been developed 84 

independently with quite different model formulations and initialization processes. By 85 

carefully examining multi-decadal reforecasts produced with these forecasting systems, we 86 

aim at quantifying the current level of AO prediction skill in modern seasonal forecast 87 

systems, and at identifying the differences in skill that are presumably due to the differences 88 

in model formulation and the initialization processes.  89 

Section 2 describes data and methodology used in this study. Prediction skill of the AO 90 

in the three reforecast datasets will be presented in Section 3. Summary and conclusions are 91 

given in Section 4. 92 

 93 

2. Data and Methodology 94 

The following data were used in this research: the reforecasts from GloSea4 (1996–95 

2009), from CFSv2 (1982–2010) and from GEOS-5 (1981–2012). The detailed descriptions 96 

of each reforecasts are given in Table 1. Three ensemble members of GloSea4, perturbed by 97 

stochastic physics, are initiated at fixed calendar dates of each month, and integrated for 7 98 

months. The reforecasts of CFSv2 are initialized every 5 days (from all 4 cycles of the day) 99 

beginning with Jan 1st of each year by using 9-hour coupled guess field. The GEOS-5 100 

seasonal forecasts consist of a single ensemble member initialized every 5 days and 101 

additional ensemble members, generated through coupled model breeding and independent 102 



perturbations in the atmosphere and ocean, produced in day closest to the beginning of the 103 

month.  104 

For this study, only ensemble members that were initialized in November and first 105 

available day in December were used to evaluate the prediction skill of the boreal winter AO. 106 

Note that the number of ensemble members is different for the different systems (Table 1). 107 

The used ensemble members are 15 for GloSea4, 28 for CFSv2, and 19 for GEOS-5.  108 

For verification, we used the Modern Era Retrospective-Analysis for Research and 109 

Applications (MERRA, [Rienecker et al. 2011]) atmospheric reanalysis. MERRA has a 110 

spatial resolution of 1/2��latitude) × 2/3��longitude), with 72 vertical levels. We note that 111 

our results are not dependent on the choice of reanalysis. Almost identical results for the AO 112 

index derived from an empirical orthogonal function (EOF) analysis using sea level pressure 113 

(SLP) are obtained using ERA-Interim (the correlation coefficient of DJF AO index between 114 

ERA-Interim and MERRA is larger than 0.99). Additionally, data from Global Precipitation 115 

Climatology Project (GPCP, [Adler et al., 2003]) are used to validate precipitation from the 116 

models.  117 

To obtain characteristic pattern and time variation of the observed AO, the EOF analysis 118 

was performed with seasonal-mean (DJF), Northern hemispheric (north of 20oN) sea level 119 

pressure data from MERRA. The resulting first EOF represents the AO mode and the PC 120 

time series associated with the first EOF exhibit interannual variation of the AO mode. The 121 

three reforecast datasets are evaluated with respect to i) the fidelity to reproduce the observed 122 

pattern of the AO, and ii) the capability to forecast the observed interannual variation of the 123 

AO. 124 

In order to evaluate the AO patterns reproduced by the prediction systems, the same EOF 125 



analysis was applied to each ensemble member1. After obtaining the AO mode (i.e. 1st or 2nd 126 

EOF) from each ensemble member, we took an ensemble average of the AO patterns, after 127 

multiplying standard deviations of their PCs. When we compared these AO pattern from the 128 

reforecast datasets, we multiplied standard deviation of first PC to the observed AO pattern.  129 

Anomalous pattern of other variables associated with the AO were obtained by regressing the 130 

variables onto the PC time series of the AO mode for each ensemble member, and then 131 

averaging the regressed patterns over the ensemble. 132 

To assess the prediction skill of the AO using the reforecast dataset, either seasonal or 133 

monthly averaged forecasted SLP anomaly was projected onto the observed AO pattern. The 134 

resulting time series, after normalized by its own standard deviation, is then used for the 135 

forecast skill assessment. Temporal correlation coefficient between the observed and 136 

forecasted AO indices represents the prediction skill in this study. The forecasted AO indices 137 

were obtained by averaging the normalized time series from each ensemble member, and we 138 

tried two ways of ensemble averaging. The first one is a simple averaging, in which all 139 

ensemble members have equal weighting. The second way bases on an argument that 140 

ensemble members whose initialization time is closer to target season should have bigger 141 

weightings. In this method, we set an arbitrary weighting (100) to the ensemble member 142 

whose initialization time is closest to the target season (Dec. 2nd), and reduced the weighting 143 

as the initialization time becomes earlier (2 per day). Because the results from both methods 144 

showed similar forecast skill (not shown), we here present only the results obtained with the 145 

second averaging method. The persistent forecast provides a baseline forecast, and we 146 

consider a prediction skill useful only when it exceeds that of the persistent forecast. 147 

                                                                            
1 In most cases, an AO-like pattern emerged as the first EOF. In some cases the second mode 
was used. This was done if the pattern correlation between the second EOF and the AO 
pattern from MERRA is higher than that of the leading EOF (this never occurred for GloSea4, 
it occurred once for GEOS-5, and it occurred six times for CFSv2) 



The Relative Operating Characteristic score (ROC, [Mason, 1982]) is used as a skill 148 

metric for probabilistic forecast of the AO index. The ROC scores for the upper tercile (i.e. 149 

positive AO) and lower tercile (i.e. negative) were evaluated with probability thresholds 150 

ranging from 0% to 100% with a 20% interval. In general, the ROC score above 0.5 indicates 151 

skill better than climatology. As far as we are aware, this is the first assessment of 152 

probabilistic forecast skill of the AO using the coupled seasonal forecast. On the other hand, 153 

the probabilistic forecast skill of the NAO was studied using the ECMWF system 2 [Müller 154 

et al., 2005]. 155 

 156 

3. AO Prediction 157 

Figure 1 compares the AO SLP patterns represented in the three prediction systems to 158 

that obtained from MERRA. MERRA shows a zonally symmetric pattern with clear opposite 159 

signed anomalies between the Arctic and the mid-latitude oceans (North Pacific Ocean and 160 

North Atlantic Ocean). All prediction systems are able to reproduce this pattern fairly well, 161 

exhibiting action centers close to that of MERRA. The pattern correlations between MERRA 162 

and each forecast have comparable values ranging between 0.86 and 0.90. The prediction 163 

systems, however, commonly underestimate amplitude of the peaks, especially over the 164 

North Atlantic and the Kara Sea. Compared to other prediction systems, GEOS-5 exhibits 165 

more realistic SLP anomaly pattern over the Kara Sea and the northern Siberia. The AO 166 

mode explains about 37 and 39% of total interannual variability in GEOS-5 and GloSea4, 167 

respectively, which is close to the observed value (41%). The percentage variance explained 168 

by the AO mode from CFSv2 is somewhat lower than that of others; this might be due to the 169 

greater frequency of mixing the AO signal with the 2nd EOF mode. 170 



Spatial patterns of surface temperature, 200 hPa zonal wind and precipitation anomalies 171 

associated with the AO mode from each reforecast are shown in Figure 2. The north-south 172 

oriented patterns of anomalous surface temperature are represented over Eurasia and North 173 

America in MERRA (Figure 2a). This surface temperature anomaly pattern is reasonably 174 

reproduced in the reforecasts over land (Figures 2b-d), although its amplitude is 175 

underestimated. The amplitude of the temperature variability over Siberia is more realistic in 176 

GEOS-5 than those of the other systems, and this might be linked to the more realistic 177 

pressure pattern over Siberia and the Kara Sea (Figure 1d). The upper level zonal wind 178 

pattern from the forecast systems is consistent with that of MERRA with high statistical 179 

significance, describing a realistic modulation the jet stream corresponding to the phase of the 180 

AO (Figs. 2e-h). Nevertheless, there are system-dependent biases such as shifts in the centers 181 

of variability that correspond to biases in the SLP variability. For example, variability center 182 

of GloSea4 and GEOS-5 shifted to westward in the North Pacific Ocean. Consistent to the jet 183 

stream shift, the precipitation is enhanced in high-latitudes positive phase of the AO, but the 184 

amplitudes of the forecasts are lower than observation. The forecast systems commonly fail 185 

to capture the precipitation anomaly in the East Asia (Figs. 2i-l). 186 

Above results demonstrate that the prediction systems are able to reproduce the observed 187 

AO pattern at least to some extent. From now on, we focus on the prediction skill. Note that, 188 

as described in Section 2, we use a single AO pattern obtained from MERRA, not each 189 

system’s own one, for this purpose. The time series of the recent AO index (1997-2010) from 190 

MERRA and reforecasts are shown in Figure 3a. The reforecasts show a reasonable 191 

prediction of the seasonal mean AO index. This includes the anomalously negative value in 192 

2010, although GloSea4 and GEOS-5 underestimate the intensity of negative anomaly. 193 

Ensembles of the three prediction systems commonly show a large spread, though they tend 194 



to show relatively small spread in several years. Table 2 shows the correlation coefficients 195 

between the AO index of MERRA and of each reforecast. Note that CFSv2 and GEOS-5 196 

show much higher correlations for recent period (1997-2010) compared to those for earlier 197 

period (1983-1996). Similar to the skill of the deterministic forecasts of the AO index, the 198 

skill of probabilistic forecast also show substantial score changes between the two periods 199 

(Figure 4). Each reforecast shows marginal prediction skill for both positive and negative 200 

phases of the AO for 1997–2010 (all of ROC scores exceed 0.6), while the ROC scores for 201 

1983–1996 (lower than 0.5 in case of upper tercile) are lower than those for the recent 14 202 

years. 203 

Figures 3b-d show month-to-month temporal correlation coefficients for December-204 

March along with corresponding results with the persistence forecast. Forecasts initialized in 205 

November show higher temporal correlation coefficients in winter than persistent for 1997-206 

2010, while the skill of dynamical predictions do not consistently exceed that of persistence 207 

forecast after February. The prediction skill for 1983-1996 is comparable to persistence after 208 

December consistent with lower seasonal mean prediction skills during early period (1983-209 

1996) indicated in Table 2. The reason for the lower prediction skill of GloSea4 in January 210 

and February is not clear, but it seems to be related to the model bias or influenced by 211 

relatively small number of ensemble member. The GloSea4 shows higher prediction skill in 212 

case of using forecast-driven EOF to derive AO index (r = 0.54 for DJF-mean compared to 213 

0.42 in Table 2), which implies model bias of the EOF pattern obscured the prediction skill of 214 

the AO. 215 

 216 

4. Conclusion 217 



This study examined the skill of AO predictions using reforecast datasets made with 218 

three state-of-the-art coupled ensemble prediction systems. The study in particularly focused 219 

on wintertime AO predictions using a set of reforecasts initialized around November over 220 

multiple years. The three prediction systems all include interactive land, ocean and sea ice 221 

components coupled with the atmosphere, although the details of the formulations and the 222 

initialization processes are substantially different among the systems. Our results show that 223 

the seasonal forecast systems exhibit significant skill at predicting the AO up to 3 months of 224 

forecast lead time for recent 14 years. This suggests that useful AO predictions could be 225 

issued in November for the following winter.  226 

Our results highlight two aspects of the AO prediction problem. First of all, seasonal 227 

prediction systems are able to reproduce the basic AO phenomenon itself, with high pattern 228 

correlations in SLP ranging from 0.86 to 0.90. The forecast systems also demonstrate realistic 229 

patterns of anomalous surface temperature, upper-level wind, and precipitation that are 230 

associated with the AO, implying that those systems are able to resolve the key physical and 231 

dynamical processes accompanied by the AO. Secondly, the seasonal prediction systems 232 

have capability to forecast year-to-year variations of the AO, including the recent extreme 233 

occurrences of the AO. The prediction skill does differ among the three systems, and this 234 

likely reflects differences in the parameterizations and initialization processes of each system. 235 

There is considerable spread among the ensemble members, suggesting the possibility of 236 

future improvements in AO predictions. 237 

The prediction skills for 1997–2010 were higher than the previous 14 years for both the 238 

deterministic and probabilistic predictions. Riddle et al. [2013], who found this change earlier 239 

from CFSv2 reforecasts, speculated that the difference was caused by systematic errors and 240 

bias associated with the initialization prior to 1998. However, we cannot exclude other 241 



possibilities (e.g., a mean state shift favoring greater predictability of the AO during the 242 

recent period). For example, Li et al. [2013] suggested a strengthening in the relationship 243 

between the AO and the El Niño-Southern Oscillation (ENSO) after the mid-1990s, with 244 

possible links to interannual variability of sea ice. The correlation coefficient between DJF-245 

mean AO index in this study and the Oceanic Niño Index of NOAA from the website 246 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml) was 247 

0.02 for 1983-1996 and -0.59 for 1997-2010, suggesting a possible contribution of the 248 

changes in ENSO-AO coupling to the prediction skill change of AO index. It requires further 249 

study to identify the mechanism for the higher prediction skill of AO from the dynamical 250 

seasonal prediction in recent period. 251 

Arribas et al. [2011] did not show significant prediction skill for NAO (which is 252 

analogous to AO), while in this study we found a much higher prediction skill of the AO. 253 

Arribas et al. [2011] used a similar analysis period with this study but GloSea4 in this study 254 

used an improved version of the physical parameterizations, sea ice initialization and 255 

extended vertical resolution compared to the version used in Arribas et al. [2011]. This 256 

implies that sea ice initialization and a fully represented stratosphere may play an important 257 

role in the AO prediction skill. 258 

CFSv2 showed the highest AO prediction skill among the three sets of reforecasts. The 259 

better performance may be associated with the 9 hour coupled initialization in CFSR, which 260 

reduces the bias from each boundary, although further investigation is required to verify the 261 

benefit from the coupled initialization. The AO prediction skill from the multi-model 262 

ensemble (MME, r = 0.78 for 1997–2010) was comparable to the skill from CFSv2, which 263 

implies the MME was not adding much benefit in this case.  264 

The short time period over which the prediction skill was evaluated, makes it difficult to 265 



assess any modulation of the AO from long-term variability such as the Pacific Decadal 266 

Oscillation (PDO). For example, the higher prediction skill of the NAO in recent decades has 267 

also been shown in previous studies [Rodwell and Folland, 2002; Bierkens and Beek, 2009]. 268 

This change in skill was also found in the AO from CFSv2 [Riddle et al., 2013]. Therefore, it 269 

is not possible to affirm that the level of skill found in this study will be same in the future.  270 
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Table 1. Summary of the seasonal forecasting systems. Abbreviations and acronyms defined 345 

as follows: Met Office Unified Model (UM), Global Forecast System (GFS), Modular Ocean 346 

Model version 4 (MOM4), Nucleus for European Modeling of the Ocean (NEMO), Met 347 

Office Surface Exchange Scheme (MOSES), GEOS-integrated Ocean Data Assimilation 348 

System (GEOS-iODAS [Vernieres et al., 2012]), Climate Forecast System Reanalysis (CFSR 349 

[Saha et al., 2010]) 350 

 GloSea4 CFSv2 GEOS-5 

Reforecast period 1996-2009 1981-2010 1981-2012 

Model 

(atmosphere, 

ocean, land, and 

sea ice) 

UM version 7.6, 

NEMO 3.0, MOSES, 

and CICE 4.1 

GFS, MOM4, Noah 

land model, and 3-

layer sea ice model 

GEOS-5, MOM4, 

Catchment Land 

Surface Model [Koster 

et al. 2000], and CICE 

4.0 

Horizontal 

resolution 

N96L85 (145�196) T126L64 (181�360) 1��1.25� (181�288) 

Vertical levels 85 levels 64 levels 72 levels 

Initial condition 

ERA-Interim 

(atmosphere-land) 

and NEMO-CICE 

data assimilation 

(ocean-sea ice) 

CFSR (9h full-coupled 

initialization) 

MERRA (atmosphere-

land) and GEOS-

iODAS (ocean-sea ice) 



Number of 

ensemble 

members 

3-member on fixed 

calendar dates (the 

1st, 9th, 17th and 

25th) of each month 

4-member on every 5 

days beginning with 

Jan 1st of each year 

1-member on every 5 

days with additional 

members for the 

beginning of the 

month [Kirtman et al., 

2013; Ham et al., 

2013] 

 351 
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Table 2. Correlation coefficients between DJF-mean AO index from MERRA and each 353 

forecast. Single and double asterisk indicates that the correlation coefficient is statistically 354 

significant at the 95% and 99% confidence level, respectively. 355 

 1983–1996 1997–2010 1983-2010 

GloSea4 n/a 0.42 n/a 

CFSv2 0.46 0.87** 0.66** 

GEOS-5 0.33 0.57* 0.43* 

Persistent -0.23 0.23 -0.25 

 356 

  357 



Figure 1. DJF mean sea level pressure anomaly regressed onto leading PC for 1997–2010 for 358 

(a) MERRA, (b) GloSea4, (c) CFSv2, and (d) GEOS-5 (unit is hPa). Contour lines refer 359 

absolute value equal to 3 hPa. Percentages indicate explained variance (averaged explained 360 

variance from each ensemble member) from the pattern.  361 

Figure 2. DJF mean surface temperature anomaly (1st row, unit is K), zonal wind at 200 hPa 362 

anomaly (2nd row, unit is m/s), and normalized precipitation (3rd row, unitless) regressed onto 363 

AO index of each forecast for 1997–2010. Precipitation anomalies are normalized by 364 

monthly mean precipitation of each grid point. The dotted grids indicate statistically 365 

significant more than 90% confidence levels. 366 

Figure 3. (a) DJF mean normalized AO index of MERRA (black solid line), GloSea4 (red 367 

bars), CFSv2 (blue bars), GEOS-5 (orange bars). The error bars refer ensemble spread of AO 368 

index between first quarter and third quarter. Correlation coefficient of AO index as a 369 

function of forecast lead month for (b) GloSea4, (c) CFSv2, and (d) GEOS-5. Black dashed 370 

line refers persistent forecast by MERRA November AO index for 1979–2012, and colored 371 

lines indicate prediction skill for each period. Thin horizontal dashed line refers 90% 372 

confidence level for 14 years.  373 

Figure 4. Sum of Relative Operating Characteristic (ROC) scores for ensemble AO index 374 

prediction for upper tercile (red) and lower tercile (blue). The checkered bars indicate ROC 375 

scores for 1983–1996, and the filled bars indicate ROC scores for 1997–2010. 376 
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Figure 1. DJF mean sea level pressure anomaly regressed onto leading PC for 1997–2010 for 379 

(a) MERRA, (b) GloSea4, (c) CFSv2, and (d) GEOS-5 (unit is hPa). Contour lines refer 380 

absolute value equal to 3 hPa. Percentages indicate explained variance (averaged explained 381 

variance from each ensemble member) from the pattern.  382 

383 
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 385 

Figure 2. DJF mean surface temperature anomaly (1st row, unit is K), zonal wind at 200 hPa 386 

anomaly (2nd row, unit is m/s), and normalized precipitation (3rd row, unitless) regressed onto 387 

AO index of each forecast for 1997–2010. Precipitation anomalies are normalized by 388 

monthly mean precipitation of each grid point. The dotted grids indicate statistically 389 

significant more than 90% confidence levels. 390 
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 392 

Figure 3. (a) DJF mean normalized AO index of MERRA (black solid line), GloSea4 (red 393 

bars), CFSv2 (blue bars), GEOS-5 (orange bars). The error bars refer ensemble spread of AO 394 

index between first quarter and third quarter. Correlation coefficient of AO index as a 395 

function of forecast lead month for (b) GloSea4, (c) CFSv2, and (d) GEOS-5. Black dashed 396 

line refers persistent forecast by MERRA November AO index for 1979–2012, and colored 397 

lines indicate prediction skill for each period. Thin horizontal dashed line refers 90% 398 

confidence level for 14 years.  399 
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 401 

Figure 4. Sum of Relative Operating Characteristic (ROC) scores for ensemble AO index 402 

prediction for upper tercile (red) and lower tercile (blue). The checkered bars indicate ROC 403 

scores for 1983–1996, and the filled bars indicate ROC scores for 1997–2010. 404 

 405 


