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Indentation creep tests and finite element simulations were performed on a model material to show that the constitutive equation for

conventional uniaxial creep can be derived using the instrumented indentation testing technique. When the indentation pressure and the

indentation creep rate are maintained at constant values of ps and _¾inðsÞ, respectively, the contours of the equivalent stress and the equivalent

plastic strain rate in the region beneath the conical indenter expand according to the increase in the displacement of the indenter while

maintaining geometrical self-similarity. These findings indicate that a pseudo-steady deformation state takes place around the indenter tip. The

representative point exhibiting the creep behavior within the limited region, which actually determines the indenter velocity, is defined as the

location where the equivalent stress �· r equals ps=3. The equivalent plastic strain rate _�¾r at this point is found to be _¾inðsÞ=3:6 in the case when the

stress exponent for creep is 3. The stress exponent and the activation energy for creep extracted from the results of Al5.3mol%Mg solid-

solution alloy indentation tests are in close agreement with those of tensile creep tests reported in the literature. In addition, the values for �· r and
_�¾r agree well with the values for the applied stress and the corresponding creep rate in tensile creep tests at the same temperature. The above

results show that the creep characteristics of advanced materials, which are often available in minute quantities or as small-volume specimens,

can be obtained from carefully designed indentation creep tests, and furthermore the constitutive equation for tensile creep can be predicted with

sufficient accuracy through indentation creep test results. [doi:10.2320/matertrans.M2013370]
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1. Introduction

The indentation hardness test is a mechanical testing

method that has been used for more than a hundred years to

evaluate material strength by the size of an impression

formed when a rigid indenter is pressed at a constant load

into a sample surface.1,2) Following recent progress in nano-

and micro-scale mechanical properties research and associ-

ated technologies, there is interest in the instrumented

indentation testing technique, which was developed from

conventional hardness testing methods.35) In this testing

technique, changes in load and indenter displacement over

time are measured when an indenter tip is pressed into a

sample in various loading modes, and elastic characteristics

such as Young’s modulus and creep characteristics such as

the stress exponent are evaluated. This method is classified as

either nanoindentation (NanoIn) testing4) or microindentation

(MicroIn) testing5) depending on the degree of indentation

depth. The former is usually used to examine room-

temperature mechanical characteristics of thin film materials,

nanostructures, and so forth, while the latter is often used

for studying high-temperature mechanical characteristics of

small-volume specimens and functionally graded materials.

For high-temperature structural materials, it is important

to determine the constitutive equation for creep with regard

to creep rate, stress, temperature, and material structure. A

certain sample size is required to obtain this equation because

tensile creep tests must be performed under a minimum

of three stress conditions per temperature. However, for

structural members that are in use or heat-resistant materials

under development, oftentimes only a tiny sample can be

obtained for testing and ordinary tensile creep tests cannot

be conducted enough times if not impossible. Thus, it is

extremely advantageous if the constitutive equation for creep

can be obtained by MicroIn testing under these circumstances.

We will first look at trends in research on MicroIn creep

testing and assess the relationship between the present work

and the existing literatures in the followings.

1.1 Extraction of creep characteristics

Mulhearn and Tabor6) determined indentation creep rate

from the change in impression size with respect to loading

time (� _d=d, where d is the impression diameter of the

spherical indenter, and _d is the time rate of change of the

impression diameter). They determined the creep character-

istic values of low-melting-point metals under the assumption

that a power law relation holds true between indentation

creep rate and hardness. Chu and Li7) used an indentation

tester that could continuously measure indentation depth of

a cylindrical indenter under constant load to determine the

creep characteristic values of ¢-tin single crystals under the

assumption that a power law relation holds true between

the indenter velocity and the indentation pressure. In these

papers, a power law relation for tensile creep, known to hold

true under steady-state deformation, was taken as a presumed

condition for creep analysis without taking into consideration

the strain gradient under the indenter. To resolve this issue,

Sargent and Ashby8) studied the case in which the strain

contour line pattern under the indenter maintains geometrical

self-similarity. They derived a constitutive equation for
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indentation creep under the assumption that the indentation

creep rate (� _u=
ffiffiffiffi

A
p

, where _u is the indenter velocity, and

A is the horizontal projected area of Vickers impression)

is proportional to the equivalent plastic strain rate _�¾ under

the indenter, and the hardness value is proportional to the

equivalent stress �· under the indenter. However, it was

ambiguous what values under the indenter are indicated by _�¾

and �·. An indentation creep tester that can be used at up to

about 1000K was developed at the authors’ laboratory,9) and

constant-load indentation tests and load-jump tests were

conducted using a conical indenter on pure metals, eutectic

alloys, solid-solution alloys, and precipitation-strengthened

alloys.1013) In addition, they simulated the process of

pressing a conical indenter into a power-law material using

the finite element (FE) method, and confirmed that when the

indentation pressure p and indentation creep rate _¾in became

constant, the contour line pattern of _�¾ under the indenter

expanded while maintaining self-similarity.14)

1.2 Indentation loading method

Lucas and Oliver15) demonstrated that when the load is

increased exponentially, indentation pressure asymptotically

approaches a constant value as time elapses. Further, Cheng

and Cheng16) carried out a dimensional analysis in which a

sharp indenter was pressed into a power-law material and

obtained results similar to those of Lucas et al.

1.3 Methods of predicting the constitutive equation for

tensile creep from MicroIn tests

Hyde et al.17) performed FE simulation of pressing a

cylindrical indenter under constant load into a power-law

material and numerically evaluated the proportionality

constants, C1 and C2, in �· ¼ C1p and _�¾ ¼ C2_¾in (where C1

and C2 conform to the symbolic convention of the present

paper) under the hypothesis that they are not dependent on

the stress exponent for creep. Bower et al.18) performed

theoretical analysis and FE simulations of the same problem

and determined the values of C1 and C2 under the hypothesis

that the equivalent plastic strain rate is expressed by _�¾ ¼ _u=a

(where a is the true contact radius of the indenter). They

showed that the obtained values were all dependent on the

stress exponent. Thus, the results of the two research groups

were distinctively different, and a method for deriving these

proportionality constants has not yet been established.

We have not yet reached the point where the constitutive

equation for tensile creep (including all the creep parameter)

can be accurately predicted by an indentation creep test.

The objective of this study is to demonstrate that the

constitutive equation for conventional tensile creep or

uniaxial creep can be predicted with sufficient accuracy from

constant-pressure indentation creep test results. To achieve

this objective, we theoretically derived the constitutive

equation of indentation creep for the pseudo-steady defor-

mation state and performed MicroIn testing and FE

simulation. We then performed the following six research

tasks.

(1) Using FE simulation, we clarified that a pseudo-steady

deformation state occurs exactly under the indenter

when a conical indenter is pressed at a constant

pressure.

(2) We estimated a region in which the indenter velocity

had been substantially determined (control volume,

CV), and studied the factors that influenced the

magnitude thereof.

(3) We defined a point within the CV that represented

deformation behavior, determined the equivalent stress

and equivalent plastic strain rate at this CV representa-

tive point, and examined the relationship between

indentation pressure and indentation creep rate.

(4) We derived the constitutive equation for the indentation

creep of a power-law material and examined methods

for extracting creep characteristics for a region of

material near the CV representative point through

MicroIn testing.

(5) We selected an AlMg solid-solution alloy as a model

material, and performed MicroIn testing on it. We com-

pared the obtained creep characteristic values with the

tensile creep test results reported by other researchers.

(6) From the results of MicroIn testing and FE simulation,

we derived the constitutive equation for conventional

tensile creep or uniaxial creep. We compared this

constitutive equation with those for tensile creep

derived by other researchers.

2. Computational and Experimental Methods

2.1 Elasto-plastic finite element simulation

FE simulations of indentation creep were performed using

the general-purpose non-linear FE program ABAQUS

Standard (SIMULIA) into which our own subroutines were

incorporated. A cylindrical model of a perfectly elastic plastic

body was created using four-noded bilinear axisymmetric

quadrilateral elements, and a rigid indenter (apex angle: 136°)

was vertically pressed into the center of the top surface

thereof. The cylindrical model was 3mm in diameter and

3mm high, and the maximum indenter displacement was

0.15mm. We assumed no friction between the indenter and

the sample surface and that elastic deformation and power-

law creep (_�¾ ¼ B �·n, where _�¾ is the equivalent plastic strain

rate, B is the creep constant, �· is the equivalent stress, and

n is the stress exponent for creep) occurring in the finite

elements. The elastic characteristics used were Young’s

modulus E ¼ 37:8GPa19) and Poisson’s ratio ¯ ¼ 0:345,20)

and the creep characteristic values B ¼ 1:0� 10�6

MPa¹3 s¹1, and n ¼ 3:012) were used. The details of the FE

model have been reported elsewhere.12)

2.2 Indentation creep test

An ingot of Al5.3mol%Mg alloy was homogenized in an

argon atmosphere for 86.4 ks at 773K (0.85 Tm, where Tm is

the absolute melting point). The ingot was then cut into

5mm © 10mm © 5mm cuboids, which were adjusted by

emery polishing to ensure that the 5mm © 10mm test

surface and the bottom surface were parallel. Then, they

were annealed for 3.6 ks at 773K. Immediately before

indentation creep test, approximately 40 µm of the sample

surface layer was removed by electropolishing. Details of

sample preparation have been reported elsewhere.13)

Indentation creep tests were performed in an argon

atmosphere using a microindenter (ULVAC-RIKO, Inc.,
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Japan). The apex angle of the diamond conical indenter used

was 136°. The test temperature was 636773K (0.700.85

Tm), and the temperature fluctuation during the indentation

creep tests was «1K or less. The indentation load was

applied by an electromagnetic force, and indenter displace-

ment was measured by a linear variable-differential trans-

former. Here, the measurement precision of load and

displacement were 10¹2N and 10¹7m, respectively. The

measurement data were recorded by a personal computer at a

sampling rate of 10 s¹1.

3. Constitutive Equation for Indentation Creep

3.1 Constraint factor

When a conical indenter is pressed vertically into a sample

surface with load F, if piling-up and sinking-in of the surface

and the effect of friction are ignored, the indentation pressure

p can be expressed as:

p ¼
F

³u2 tan2 ª
: ð1Þ

Here, u is indenter displacement, which expresses the

indentation depth from the original surface, and ª is the

half-apex angle. When F is kept constant under static or

quasi-static conditions, the indenter is at the location where

the indentation load and deformation resistance force are in

equilibrium.

Hill et al.21) analyzed using the slip-line field method the

case in which a triangular indenter was pressed into a two-

dimensional semi-infinite block of a perfectly rigid plastic

body. They demonstrated that the yield stress Y is proportional

to p, and when ª = 68°, C1 ¼ 1=2:4. Cheng and Cheng22)

performed dimensional analysis assuming that C1 is depend-

ent on Young’s modulus, yield stress, and work-hardening

rate, and they demonstrated that in a perfectly rigid plastic

body, C1 ¼� 1=2:8. Kudo23) showed that when the static

friction coefficient between the indenter and sample is 0.1 to

0.2, C1 ¥ 1/2.9 to 1/2.8. Tabor et al.2) discovered that the

relationship Y ¼� H=3 holds true between Vickers hardness H

and flow stress Y corresponding to tensile strain ¾ ¼ ¾0 þ 0:08

(where ¾0 is the initial strain). Nakamura et al.24) demon-

strated that the relationship Y ¼� H=2:8 holds true for flow

stress corresponding to compression strain ¾ ¼ 0:08, and

asserted that this Yvalue corresponds to the average combined

stress that occurs under the indenter. As described above, the

theoretical and experimental results for indentation deforma-

tion show that the hardness value (indentation pressure) is

proportional to the flow stress. In the present paper as well,

the relationship �· r ¼ C1p holds true between the indentation

pressure p and the representative equivalent stress �·r under

the indenter. Hereinafter, we shall refer to C1 as the constraint

factor, which will be assumed to be 1/3.

3.2 Control volume

The control volume (CV) means the region in which the

indenter velocity has been substantially determined. Here,

the location that represents the creep behavior of that region

will be called the CV representative point, at which the

equivalent stress is equal to p=3, and this stress value shall be

referred to as the representative stress, �· r:

�· r ¼ p=3: ð2Þ

The equivalent plastic strain rate at this point shall be referred

to as the representative strain rate _�¾r.

Let us consider the case in which the contour lines of the

equivalent plastic strain rate expand exactly under the

indenter while maintaining self-similarity. This means that

when indenter displacement is doubled, the magnitude of

the expansion of these contour lines doubles as well, while

contour line shapes remain unchanged. According to this

scaling rule, the indentation creep rate that provides a

measure of the rate of CV expansion is defined as:22,25)

_¾in ¼ _u=u: ð3Þ

Here, u is the indenter displacement, and _u is the indenter

velocity. For compatibility, the following relationship should

hold true between _¾in and the representative strain rate _�¾r:

_�¾r ¼ C2_¾in; ð4Þ

where C2 is the conversion coefficient for determining _�¾r.

3.3 Pseudo-steady deformation state and creep charac-

teristic values

In steady-state deformation of crystalline materials, it is

known that the following power law (Norton’s law) holds

true between the equivalent stress �· and the equivalent plastic

strain rate (creep rate) _�¾:

_�¾ ¼ A1

�·

E

� �n

: ð5Þ

Here, A1 ¼ A0 expð�Q=RT Þ, A0 is the creep constant, Q is

the activation energy for creep, R is the gas constant, T is the

test temperature, E is Young’s modulus at each temperature,

and n is the stress exponent for creep. Therefore, the

constitutive equation for indentation creep is written as:

_¾in ¼ A2

p

E

� �n

¼ A3

F

Eu2

� �n

: ð6Þ

Here, A2 ¼ A1C
n
1=C2, and A3 ¼ A2=ð³ tan2 ªÞn.

When the strain hardening rate and recovery rate are in

equilibrium in the CV during indentation creep, deformation

proceeds under the conditions where p and _¾in are constant.

In this case, F / u2, and _¾in ¼ d ln u=dt ¼ ¡ (constant). In

order for both to hold true, the indentation load F must be

given by:

F ¼ F0 expð2¡tÞ: ð7Þ

Here, F0 is the initial load, ¡ is the load increment parameter,

and t is the loading time. From eqs. (6) and (7), the change

over time of the indenter displacement u® that is, the

indentation creep curve® is expressed by the following:

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F0

E

A3

¡
fexpð2¡ntÞ � 1g

� �1=n
s

: ð8Þ

The above equation shows that indenter displacement

increases as temperature increases via A3. The indentation

creep rate _¾in is expressed by:

_¾in ¼
¡

1� expð�2¡ntÞ
: ð9Þ
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The above equation shows that indentation creep rate is not

temperature-dependent. Furthermore, the indentation pres-

sure p is expressed by the following:

p ¼ E
¡

A2f1� expð�2¡ntÞg

� �1=n

: ð10Þ

The above equation shows that indentation pressure

decreases as temperature increases via A2. From eqs. (9)

and (10), it is seen that _¾in and p asymptotically approach

constant values as time elapses, and the larger the value of n,

the shorter the time to reach a constant value. When the

individual constants are expressed as _¾inðsÞ and ps, they may

be written as:

_¾inðsÞ ¼� ¡; ð11Þ
ps=E ¼� ð¡=A2Þ1=n: ð12Þ

_¾inðsÞ is not temperature-dependent; however, ps/E decreases

as temperature increases.

When the indenter is pressed with an indentation pressure

of ps and indentation creep rate of _¾inðsÞ, the pseudo-steady

deformation state is realized, as will be described later. From

eqs. (2) and (4), the representative stress �·r and representa-

tive strain rate _�¾r at this time are given by �· r ¼ C1ps and
_�¾r ¼ C2_¾inðsÞ. From eq. (5), the stress exponent for creep, n,

of a material small block near the CV representative point is:

n ¼
@ ln _¾inðsÞ

@ lnðps=EÞ

	

	

	

	

T

: ð13Þ

The activation energy for creep Q is given by:

Q ¼ �R
@ ln _¾inðsÞðE=psÞn

@ð1=T Þ
: ð14Þ

4. Results and Discussion

4.1 FE Simulation of indentation creep

By FE simulation, we examined the state of deformation

when a conical indenter is pressed into a power-law creep

material. The indentation load is given by F ¼ F0 expð2¡tÞ,
where F0 = 0.29N and ¡ = 2.5 © 10¹4 ¹ 4.0 © 10¹3 s¹1.

Figure 1 shows the change in indenter displacement over

time (open circles) at ¡ = 5.0 © 10¹4 s¹1. For convenience,

only data measured every 100 s is plotted. Immediately after

loading, an instantaneous indenter displacement u0 occurred

due to elasto-plastic deformation in the region exactly under

the indenter. Subsequently, indenter displacement increased

in a sigmoidal shape as loading time elapsed. In the figure,

the indentation creep curve for a perfectly rigid plastic

body obtained from eq. (8) is shown as a thick line. The

values A1 = 5.40 © 107 s¹1, C1 ¼ 1=3, and C2 ¼ 1=3:6 (to

be described later) were used in the calculation. This curve

agrees well with the FE simulation results for a perfectly

elasto-plastic body (open circles). This finding demonstrates

that the influence of elastic deformation on the indentation

creep curve is negligibly small.

Figure 2 shows as open circles the changes over time in

the indentation creep rate and indentation pressure obtained

from the indentation creep curve (Fig. 1). Both decreased

rapidly for the first 500 s, but they asymptotically approached

the respective constant values _¾inðsÞ and ps at approximately

1000 s. In this case, _¾inðsÞ ¼� 5:0� 10�4 s¹1, and _¾inðsÞ ¼� ¡

of eq. (11) holds true. Furthermore, ps ¼� 15:6MPa, which

agrees well with ps ¼� Eð¡=A2Þ1=n ¼ 15:5MPa of eq. (12).

These results demonstrate that eqs. (11) and (12) are valid.

This suggests that by knowing the relationship between

_¾inðsÞ and ps, the stress exponent set in the FE model can be

accurately extracted from eq. (13). Actually, it has been

confirmed that the same value as the stress exponent

(n = 3.0) set in the FE model is evaluated from the slope

of the straight line obtained by double-logarithmically

plotting _¾inðsÞ and ps=E.
14) The above finding demonstrates

that the creep characteristic values of a material small block

at the CV representative point can be accurately extracted

using eqs. (13) and (14) from the experimental results of

constant-pressure indentation creep test.

4.2 Self-similarity of contour line pattern of equivalent

plastic strain

Figure 3(a) shows the contour line pattern (right) of

equivalent plastic strain �¾ occurring beneath the indenter at

1600 s in Fig. 1. The dash-dot line represents the center

line passing through the tip of the conical indenter, and the

diagonal lines represent the exterior shape of the conical
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indenter. A large strain of �¾ � 2:0� 10�1 occurs exactly

under the indenter during indentation creep, but at a distance

3 times the radius of the impression from its center, the

strain is �¾ � 5:0� 10�3. This shows that deformation due to

indentation is concentrated in a very limited region beneath

the indenter.

Figure 3(b) shows a tracing of the movement of the

contour line of �¾ ¼ 1:0� 10�1 in Fig. 3(a). As the loading

time elapses from t = 1200 to 2000 s, the contour lines

expand toward the interior of the sample like ripples on the

surface of water. On the contour line at 1600 s, the principal

direction of each point is represented by a short straight line

toward the direction where maximum compressive strain

occurs. Line RQPF is drawn by connecting point Q on this

contour line with point P at 1200 s and point R at 2000 s,

which have the same principal direction as point Q. In the

figure, the 4 lines obtained in this manner are shown as

dashed lines. The more gradual the slope of these lines, the

closer to the origin O they intersect with the center line.

In the pseudo-steady deformation state, there is regularity

in the expansion direction of the �¾ contour lines because

the intersection points of F and so forth are immobilized.

Now, let us examine the relationship between the expansion

direction and indenter displacement. The position of the

indenter tip is marked as S at 1200 s, T at 1600 s, and U at

2000 s. When the ratio ¢ ¼ SU=ST is determined, it is

¢ = 2.33. The ratio of movement distances of the corre-

sponding contour lines £ ¼ PR=PQ is determined. The

average value of £ of the 4 lines is £ ¼ 2:33� 0:05. This

result indicates that the relationship ¢ = £ holds true within

the range of error. This shows that during the pseudo-steady

deformation state, the �¾ contour line pattern expands

while maintaining geometrical self-similarity as the indenter

displacement increases. This result also supports the fact that

the indentation creep rate can be expressed by eq. (3).

4.3 Pseudo-steady deformation state

In Fig. 4, the top level (a) illustrates the contour line

pattern of equivalent stress at 1200, 1600 and 2000 s of

Fig. 1, and the bottom level (b) illustrates the contour line

pattern of equivalent plastic strain rate at the same points in

time. If we examine the relationship between the indenter

displacement and the expansion direction of each contour

line pattern, the ratio ¬ of the indenter displacement at each

point in time with respect to t = 1600 s is ¬ = 0.82 at 1200 s,

and ¬ = 1.2 at 2000 s. Next, if we shrink or enlarge the

contour line pattern at 1600 s by ¬ and overlay it on that

contour line pattern, we ascertain that they are in complete

agreement. When this scaling rule holds true, if we take the

indenter tip as the origin and normalize the coordinates with

respect to the indenter displacement, �· and _�¾ maintain the

same values at each coordinate during indentation creep test.

That is to say, in indentation creep testing, the pseudo-steady

deformation state is realized around the conical indenter

when the indentation pressure and indentation creep rate are

constant.

4.4 Control volume and representative points

Figure 5(a) shows only the contour lines for �· ¼ 5:0 to

5.4MPa among the equivalent stresses at 1600 s of Fig. 1.

From Fig. 2, the indentation pressure at this time is

ps = 15.6MPa. From eq. (2), the representative stress of

the CV is �· r ¼ 5:2MPa. In the figure, the places where

a �· r value occurs, namely the CV representative points, are

indicated by a thick continuous line. In three-dimensional

space, a shallow-bowl-shaped CV representative surface

exists in the region beneath the indenter. Figure 5(b) shows

only the contour lines of _�¾ ¼ 1:2� 10�4 to 1:6� 10�4 s¹1

among the equivalent plastic strain rates of the same region as

Fig. 5(a). As illustrated in the figure, the equivalent plastic

strain rate at the CV representative points® that is, the

representative strain rate® is _�¾r ¼ 1:4� 10�4 s¹1. Since the

indentation creep rate is _¾inðsÞ ¼� 5:0� 10�4 s¹1, conversion

coefficient C2 of eq. (4) is as follows:

C2 ¼ 1=3:6 ðwhen the stress exponent for creep n ¼ 3:0Þ:
ð15Þ

Here, C2 depends on stress exponent for creep but does not

depend on test conditions such as temperature. Details will be

described elsewhere.

(a) (b)

Fig. 3 (a) Contours of equivalent plastic strain �¾. Loading time is 1600 s. (b) Tracing of a contour line for �¾ ¼ 1:0� 10�1. The short

straight lines on the contour line for 1600 s indicate the direction of maximum compressive stress at the corresponding points.
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To evaluate the size of the CV, FE simulations were

performed under the following deformation conditions:

�· >

�

©_�¾r

A

�1=3:0

at _�¾ ¼ A �·3:0;

�· �
�

©_�¾r

A

�1=3:0

at _�¾ ¼ 0:

9

>

>

>

=

>

>

>

;

ð16Þ

In the above equation, creep occurs in the whole region

beneath the indenter at © = 0, and at © = 1, creep occurs only

inside the CV representative surface. The results of FE

simulation show that on the indentation creep curve of Fig. 1

(© = 0), u = 85 µm at 2000 s, but when © = 1, u = 68 µm is

obtained at 2000 s. Therefore, the relative error r of the

indenter displacement u when © = 1 is r = 20%. Further-

more, in the pseudo-steady deformation state (t ² 1000 s), r

has the same value regardless of loading time. Here, for

convenience, the size of the CV is estimated using © = 0.02,

resulting in a relative error of 2%® that is, 1/10 the r value

at © = 1. Thus, the CV is expressed as:

_�¾ � ¡=180: ð17Þ

The above equation indicates that CV decreases as the

indentation creep rate (_¾inðsÞ ¼� ¡) increases. Furthermore,

since the slope of _�¾ becomes steeper as the stress exponent

increases, CV gets smaller.

4.5 Average strain within the control volume

Figure 6 shows the contour line pattern of the equivalent

plastic strain rate _�¾ at ¡ ¼ 5:0� 10�4 s¹1, t = 1600 s. In the

figure, the 3 contour lines of _�¾ ¼ _�¾r© (where _�¾r ¼ 1:4�
10�4 s¹1, © = 0.02, 0.1 and 1) are drawn as solid lines. The

contour line at © = 1 corresponds to the location of the

CV representative points. Furthermore, the contour line at

© = 0.02 represents the outside edge of the CV, and the

interior of the CV is the area shown in gray. The diameter of

the projected contact area of the indenter at this time is

d0 ¼ 344µm, and the diameter of the CV on the sample

surface is d = 1389 µm. In the pseudo-steady deformation

state (t ² 1000 s), d ¼� 4d0 always holds true.

Next, we will look at the representative value of strain

introduced by pressing the indenter (representative strain). If

we determine the average by taking the sum of the products

of the length of each element on the contour line at © = 1 and

�¾ of that portion and dividing by the total length of the

contour line, the result is h�¾i©¼1 ¼ 0:14. At © = 0.1, it is

h�¾i©¼0:1 ¼ 0:07. Furthermore, if we determine the average by

t = 1600s,   u = 69.4µmt = 1200s,   u = 56.7µm t = 2000s,   u = 84.9µm
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Fig. 4 Contours of (a) equivalent stress and (b) equivalent plastic strain rate. The contour lines expand toward the undeformed region

while maintaining the geometrical self-similarity.
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taking the sum of the products of the area of each element

within the CV and �¾ of that portion and dividing by the total

area of the CV, the result is h�¾iCV ¼ 0:04. These respective

averages do not change as loading time elapses during the

pseudo-steady deformation state. Branch et al.26) performed

FE simulation of hardness test of linear hardening materials

and demonstrated that the average equivalent plastic strain

(representative strain) in the deformation region of �¾ �
2:0� 10�3 underneath the Vickers indenter was �¾r ¼� 0:035.

Since the positions of the contour line of �¾ ¼ 2:0� 10�3

(dashed line) and the contour line of _�¾ at © = 0.02 in Fig. 6

are essentially the same, the value they obtained for �¾r agrees

well with h�¾iCV ¼ 0:04. However, Tabor2) used ¾r ¼ 0:08 as

the representative strain introduced by the Vickers indenter,

and Chaudhri27) used ¾r = 0.25 to 0.36. Furthermore, Dao

et al.28) estimated the representative strain introduced by

NanoIn testing at ¾r ¼ 0:033. One reason that the represen-

tative strain values differ depending on the researcher in this

manner is the individual differences in how they define it.

In the present paper, we define the representative strain h�¾iCV
as the average value of equivalent plastic strain within the

CV. Representative strain h�¾iCV ¼ 0:04 is close to the values

reported by Branch et al. and Dao et al.

4.6 Indentation creep test

Constant-pressure indentation creep tests were performed

on an Al5.3mol% Mg solid-solution alloy using a micro-

indenter. The indentation load was given by F ¼ F0 expð2¡tÞ,
where F0 = 0.29N and ¡ ¼ 2:5� 10�4 to 4:0� 10�3 s¹1.

Figure 7 shows the indentation creep curves at each temper-

ature at ¡ ¼ 5:0� 10�4 s¹1. These curves have the same form

as the results of the FE simulation in Fig. 1. When Eu2 versus

Tm=T at a certain loading time is plotted semilogarithmically

as shown in the inset figure, the experimental data (open

circles) fall on a straight line. This relationship always holds

true in the pseudo-steady deformation state (t ² 1000 s). From

eq. (8), the slope of this straight line equals �Q=2:3nRTm,

and it depends on the ratio of activation energy Q and stress

exponent n for creep. The fact that all experimental data fall

on parallel lines suggests that indentation creep is governed

by the same deformation-rate-controlling mechanism.

Figure 8(a) shows the change in indentation creep rate

over time at each temperature. The indentation creep rate

rapidly decreases immediately after loading, and when time

reaches t � 1000 s, it approaches a constant value _¾inðsÞ ¼� ¡.

This experimental fact is consistent with eq. (11). These

curves become one with no apparent dependence on

200 μm

0.02=

0 2d

2d

1=

0.1=

η

η

–32 × 10=

η

ε

Fig. 6 Contours of equivalent plastic strain rate _�¾ at 1600 s. The CV is

indicated by the area in gray. The dashed line shows the contour line for

equivalent plastic strain �¾ ¼ 2� 10�3.
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As shown in the inset, the semilogarithmic plots of Eu2 versus Tm=T at

the fixed loading time fall on a straight line.
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temperature. This parallels the fact that eq. (9) does not

include a temperature term. Figure 8(b) shows the change in

indentation pressure over time. As is assumed from eq. (12),

indentation pressure asymptotically approaches a constant

value ps fixed at each temperature. When these values are

arranged as shown in the inset figure, the experimental data

points (open circles) fall on one line. If the slope � of the

straight line is equivalent to Q=2:3nRTm and the values of �

and n are known, then Q can be estimated. In this case,

� ¼ 2:14, and if n ¼ 3, it is estimated that Q = 112 kJ/mol.

We performed indentation creep tests in the range of

¡ ¼ 2:5� 10�4 to 4:0� 10�3 s¹1, and those results showed

that _¾inðsÞ ¼� ¡ always holds true. It was also confirmed that ps

increases as the value of ¡ increases, and decreases as

temperature increases. These facts suggest that the pseudo-

steady deformation state under the indenter is realized when

_¾inðsÞ and ps are constant.

4.7 Creep characteristic values

Figure 9 is a double-logarithmic plot of _¾inðsÞ and ps=E

obtained from constant-pressure indentation creep tests at

ps = 13.9 to 159MPa. The open circles in the figure each

represent the average of 3 experimental data points. These

open circles fall on a different single straight line for each

temperature. From eq. (13), the slope of this straight line

is equivalent to the stress exponent for creep n. In this

experiment, when �· r ¼ 4:6 to 53MPa, n ¼ 3:2� 0:1. This

result agrees closely with the results of tensile creep tests by

other researchers (Al5.1mol% Mg solid-solution alloy:

n = 2.8 to 3.0 at T = 601 to 734K, · = 4.9 to 24.6MPa,29)

Al5.5mol% Mg solid-solution alloy: n ¼ 3:1 at T = 673K,

· = 9.8 to 49.0MPa30)).

Figure 10 is an Arrhenius plot of the data (open circles)

of Fig. 9. From eq. (14), the slope of this straight line is

equivalent to �Q=2:3RTm. The activation energy for creep

determined from this slope is Q ¼ 122 kJ/mol, which is

close to the tensile creep test results of other researchers (Q =

135 to 144 kJ/mol,29) and Q = 140 kJ/mol30)). This also

agrees closely with the activation energy (Qd = 130 kJ/mol)

for diffusion of magnesium atoms in the aluminum matrix.31)

Judging from the creep characteristic values obtained in this

study (n = 3.2 « 0.1, Q = 122 kJ/mol),32,33) the creep rate

of an Al5.3mol% Mg solid-solution alloy under these

experimental conditions (T = 636 to 773K, �· r ¼ 4:6 to

53MPa, and _�¾r ¼ 6:9� 10�5 to 1.1 © 10¹3 s¹1) is governed

by the viscous glide of dislocations that drag the solute

atmosphere.

4.8 Prediction of the constitutive equation for uniaxial

creep

Figure 11 is a flow chart that explains the procedure for

deriving the constitutive equation for conventional tensile

creep or uniaxial creep from the results of an indentation

creep test. (a) Perform a constant-pressure indentation

creep test, and obtain the indentation creep curve u ¼ fðtÞ.
From this curve, determine the stress exponent n and

activation energy Q for creep, and obtain the constitutive

equation for indentation creep _¾inðsÞ ¼ Aðps=EÞn expð�Q=

RT Þ. (b) Perform FE simulation, and obtain the indentation

creep curve u ¼ gðtÞ. In the FE model, assume that power-

law creep (_�¾ ¼ B �·n) occurs. Set the value of n in this model

to the experimental result of step (a). Select an appropriate

value of B such that gðtÞ ¼� fðtÞ. (c) From the contour line

pattern of equivalent stress, find the point where the

representative stress of the CV is �· r ¼ C1ps (C1 ¼ 1=3)

(representative points), and examine the equivalent plastic

strain rate thereof® that is, the representative strain rate _�¾r.

Determine the value of C2 ¼ _�¾r=_¾inðsÞ. However, the value of

C2 depends on the stress exponent n such that when n = 3,

C2 = 0.28, and when n = 5, C2 = 0.67. This is done because

if a correspondence table for n versus C2 can be obtained

beforehand, the FE simulation in step (b) can be omitted.

(d) Using C1 and C2, calculate �· r from ps and _�¾r from _¾in ðsÞ.

From these values of �·r and _�¾r, one can obtain the

constitutive equation for conventional tensile creep or

uniaxial creep _�¾r ¼ A0ð �· r=EÞn expð�Q=RT Þ.
In Fig. 12, the vertical axis is the ZenerHollomon

parameter (ZinðsÞ ¼ _¾inðsÞ expð122 ½kJ=mol	=RT Þ or Zr ¼
_�¾r expð122½kJ=mol	=RT Þ), and the horizontal axis is ps or

�· r normalized by the Young’s modulus E at each temperature.

The open circles are the data from Fig. 9 represented by

line A. When ps=E on this line is multiplied by C1 ¼ 1=3,
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the result is line B, which represents ZinðsÞ versus �· r=E.

When ZinðsÞ on this line is multiplied by C2 ¼ 1=3:6, the

result is line C, which represents Zr versus �·r=E. Through

this process, the constituent equation for conventional tensile

creep or uniaxial creep is obtained:

_�¾r ¼ 1:12� 1016
�· r

E

� �3:2

exp � 122 ½kJ=mol	
RT

� �

½s�1	:

ð18Þ
The two lines represented by the dotted line and dashed line

in the figure are the results of tensile creep test reported by

other researchers.29,30) It is clear from the figure, line C

agrees well with the results of tensile creep test. This

experimental fact shows that the constitutive equation for

conventional tensile creep or uniaxial creep can be predicted

with sufficient accuracy from the results of constant-pressure

indentation creep test.

In this paper, we defined the CV representative points

when the pseudo-steady deformation state occurs during

indentation creep. It was demonstrated that by appropriately

processing the experimental results, the results of an

indentation creep test agree well with tensile creep test

results. In practice, it is very important that the constitutive

equation for uniaxial creep can be predicted through this

method of testing and analysis. This method will play a key

role in research and development of advanced light-weight

heat-resistant structural materials that can only be obtained in

small quantities.

5. Conclusion

Indentation creep experiments and FE simulations using

an AlMg solid-solution alloy as a model material were

performed in order to demonstrate that the constitutive

equation for uniaxial creep (including all the creep parameter)

can be predicted through the instrumented indentation testing

technique. The main results are summarized as follows.

(1) When indentation pressure p and indentation creep rate

_¾in are constant (p ! ps; _¾in ! _¾inðsÞ; ¡), the contour

line patterns of equivalent stress �· and equivalent

plastic strain rate _�¾ expand while maintaining geo-

metrical self-similarity. The pseudo-steady deformation

state is realized at this time.

(2) The deformation region just below the indenter in

which the indenter velocity has been substantially

A constitutive equation for 

pseudo-steady indentation creep

Creep characterization

Evaluate a creep constant ; 0
nA = AC 2 / C 1

Predict a constitutive equation for

traditional uniaxial creep

FE modeling for indentation creep of

a power-law material

Computational indentation creep curves
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Definition of representative points in CVInput C1 and C2

Input n and B  
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determined is called the control volume (CV). When the

stress exponent for creep n is 3.0, _�¾ � ¡=180 is

estimated for that region. The size of the CV decreases

as the value of ¡ increases.

(3) The location that represents creep behavior beneath the

indenter is taken as the CV representative points. The

representative stress at these points is �· r ¼ ps=3, and

the representative strain rate is given by _�¾r ¼ ¡=3:6

when n = 3.0. The average value of equivalent plastic

strain within the CV is h�¾iCV ¼ 0:04.

(4) When the pseudo-steady deformation state is realized

in a constant-pressure indentation creep test, the values

of the stress exponent and activation energy for creep

extracted from this method are in good agreement with

the results of conventional tensile creep tests.

(5) By appropriately processing the results of constant-

pressure indentation creep tests, the constitutive equa-

tion (including all the creep parameter) for conventional

tensile creep or uniaxial creep can be predicted with

sufficient accuracy.
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