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ABSTRACT  
 

In this paper, energy dissipation rate D vs.    curves in ductile fracture are 

predicted using a ‘conversion’ between loads, load-point displacements and crack 

lengths predicted by NLEFM and those found in real ELPL propagation. The 

NLEFM/ELPL link was recently discovered for the DCB testpiece, and we believe it 

applies to other cracked geometries. The predictions for D agree with experimental 

results. The model permits a crack tip toughness R(  ) which rises from Jc and 

saturates out when (if) steady state propagation is reached after a transient stage in 

which all tunnelling, crack tip necking and shear lip formation is established. JR is 

always greater than the crack tip R(  ) and continues to rise even after R(  ) levels 

off. 

 

The analysis is capable of predicting the usual D vs. (  )  curves in the literature 

which have high initial values and fall monotonically to a plateau at large   . It also 

predicts that D curves for CCT testpieces should be higher than those for SENB/CT, 

as found in practice. The possibility that D curves at some intermediate     may dip 

to a minimum below the levelled-off value at large     is predicted and confirmed by 

experiment. Recently reported D curves that have smaller initial D than the D-values 

after extensive propagation can also be predicted. The testpiece geometry and crack 

tip R(  ) conditions required to produce these different-shaped D vs.    curves are 

established and confirmed by comparison with experiment. 

 

The energy dissipation rate D vs.     is not a transferable property as it depends on 

geometry. The material characteristic R(  ) may be the ‘transferable property’ for 

scaling problems in ELPL fracture. How it can be deduced from D vs.     curves 

(and by implication, JR vs.    curves) is established. 

 

Keywords  
 

ductile cracking at large   ; ductile fracture; elastoplastic fracture; energy dissipation 

rate; JR curves. 
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INTRODUCTION 

 

It is well known that JR resistance curves at much greater     than permitted by J-

control 

 

(i) depend upon starting (ao/W) in a given testpiece and 

(ii) are different for different types of testpiece. 

 

At small   , where data overlap and there is experimental error, these dependencies 

are not always clear, although there has been growing evidence for point (ii) even at 

small   . This lack of uniqueness in JR curves has raised doubt not only as to whether 

a rising JR curve is a material property and ‘transferable’, but also whether a rising JR 

curve really does mean increased resistance to crack propagation. Differences in JR 

curves are often explained away by constraint arguments (T, Q). Alternatively, new 

methods of analysis have been put forward, of which the value of D is one.
a
 

 

Accumulated irreversible work, from first loading to some known crack propagation 

length, is the link in ductile fracture mechanics between D and the plastic part of Jc 

and JR [e.g. Turner
1
, Turner and Kolednik

2
]. It is well-known that for crack initiation 

(Fig. la) 

 

 
 

and for crack propagation (Fig. lb) 

 

 
 

In the above   may vary with (a/W); also for grooved testpieces having net ligament 

thickness Bn, B is replaced by Bn. (This applies for all subsequent relations too).  

 

We note that there are other, slightly different, definitions and/or ways of evaluating 

  
 

 such as the Ernst integral
3
 and the ASTM procedure for incrementing      

  
for 

  
  
 4 These differences are not important for the thrust of the present paper. However, 

as pointed out by Memhard et al.
5
 it is important to know how different parameters 

were determined when making comparisons between   
 
,   

 
 and D. 

                                            
a
 Note that we employ the symbol D for the energy dissipation rate; some authors

5
 employ the symbol 

R. We reserve R for crack tip toughness, following standard practice in LEFM and NLEFM. 



 

 

Typical shapes of   
 

 vs.    and D vs.    are shown in Fig. 2, taken from the 

experimental results in Ref. [6]. The Figure also shows numerical predictions for D 

vs.    by Siegmund and Brocks.
6
 

 

Clearly there must be a relationship between D given by Eq. (3) and   
 
 given by Eq. 

(2) which is 

 

 
so, when   is constant (independent of (a/W ) as in deeply notched bending) 

 

 
or, 

 

 
 

We see from Eq. (6) that the large initial values of D at small    in Fig. 2 correspond 

with initially steep JR curves at small   . At increased   , dJR/d(  ) diminishes and 

sometimes tends to a constant slope; this is where the D vs.    curve levels out. 

 

The relationships between   
 

 and D predicted by Eqs (4)—(6) have been 

investigated and quantified by Memhard et al.
7
 using a variety of experimental 

results, including cases where   varies with (a/W ), as in the compact tension (CT) 

testpiece; in these cases, Eqs (4)—(6) were modified to include   varying and the 

differential equations were solved. These relationships are, of course, between curves 

derived from the same experimental load-displacement-propagated crack length data 

and, in that sense, there is an ‘inevitability’ about the relations. The problem remains 

of how to predict JR and D curves from first principles. The present paper does this for 

D. A discussion of how to predict JR curves is contained by Cotterell et al.
8
 and will 

be the subject of future papers. The analysis uses a new result discovered recently in 

the exact algebraic closed-form solution of elastoplastic crack propagation in the 

double cantilever beam testpiece.
9
 This result ‘converts’ the crack propagation part of 

the fully reversible path-independent algebraic NLEFM solution for the problem, to 

the only partially reversible path-dependent elastoplastic propagation solution. In the 

DCB geometry it is possible to straightforwardly separate the local crack tip work of 

fracture and the remote plastic work, which is not the case for other cracked bodies. 

We believe that the same connection may apply to other cracked geometries.
8
 Note 

that computational methods using crack tip cohesive zone models, in particular, 

implicitly partition total work into these two work components. 



 

 

To predict D, we need first to predict Uacc. We do that first for true NLEFM where 

displacements are globally reversible, since this forms the starting point of the later 

elastoplastic solution. 

 

TRUE NLEFM 

 

We require a relationship between load (X), fully reversible load-point displacement 

(u) and crack area (A). Experiments show that ‘variables-separable’ relationships 

work well, i.e. where the dependence of X~u on A is uncoupled. Various different 

functions have been advocated, such as simple power law relations, power-linear 

relations
10

 relations derived from the EPRI handbook
11

 and so on. (Most of these X, u, 

A relations have, of course, been advocated for elastoplastic behaviour but given the 

equivalence of NLEFM and Hencky total strain plasticity up to crack initiation
12

 we 

use them here; for true NLE FM experiments and calculations, see Gurney & Ngan
13

). 

 

For purposes of illustration we shall use 

 

 
 

where b is ligament length (b = (W-a)), and W is the total width of the sample; z, n 

and C are constants. The EPRI estimation analyses
11

 may be shown to follow this type 

of variables-separable power law, particularly for high values of the work hardening 

index N in the Ramberg - Osgood version of the material work hardening relation 

(    )   (    )
  where   is true strain,   is true stress and   is a constant. The 

index n in Eq. (7) is (1/N). 

 

We follow the standard procedures of NLEFM
13

 i.e.  

 

 
 

and for cracking at crack tip toughness R 

 

 
 

In a grooved testpiece leaving a net section thickness of Bn, B in Eq. (9) is replaced 

by Bn. Hence 

 

 
 



 

 

using Eq. (8) where u in Eq. (10) is the displacement at which cracks initiate having 

starter length b and, equivalently, since true NLEFM is path independent, u is the 

current load-point displacement for a propagating crack having current length b. R 

need not be constant during propagation, of course: if R(  ) is known, Eq. (10) will 

at   (    ). give u during cracking 

 

In terms of   we have, using Eqs (8) and (10) 

 

 
 

which is independent of (a/W ) for the relation (7) Landes and coworkers
14

 have 

pointed out this simple connexion between   and z for a power-law variables-

separable X, u, A relation. Propagation need not occur at constant crack tip toughness, 

but Eq. (10) will always give the current value of R. Equation (11a) transposes to 

 

 
 

and this, too, will always give the correct R. Notice however, that Eq. (11b) employs 

Uinit and not Uacc, the significiance of which will emerge later. That is, in Fig. 3(A), 

 

 
 

The external work done during propagation in true NLE FM is given by 

 

 
 

during propagation, so 

 

 
 

whence, in Eq. (12) and using Eqs (7) and (10) 

 

 
 

Notice that the non-linearity given by n has disappeared: Eq. (14) is in fact purely 

geometric.      
    obviously depends on the form of crack tip R( a). For the moment, 

let us take R as a constant = R0 (we shall employ variable R later). Then 

 

G 



 

 

 

 
 

since db = -d( a). The accumulated work is thus 

 

 
 

using Eqs (15) and (11).
b
 
 
But in true NLEFM, some of this accumulated work is 

recoverable. It is given by R0Bb/z= R0B(b0   )/z. Whence the dissipated work is 

given by  

 

 
 

It follows from Eq. (3) that D in true NLEFM is 

 

 
 

at constant crack tip toughness and this is independent of the power law index n. The 

result is sensible, in that the only dissipated work is the crack tip toughness work. 

 

REAL ELASTOPLASTIC PROPAGATION AND TRUE NLEFM 

 

The equivalence of NLEFM and Hencky total strain plasticity
12

 permits loads or 

displacements at crack initiation in elastoplastic cracking to be predicted, but the 

lacuna is how to predict the path-dependent loads and displacements during 

propagation where the NLEFM/ Hencky total strain plasticity connexion is lost as 

soon as the load falls. 

 

We recently published the exact, closed-form, solution for elastoplastic crack 

propagation in the DCB testpiece.
9
 In this special cracked geometry, the remote 

plastic work can be uncoupled from the local crack tip work. That cannot be done 

easily in other cracked geometries, which is why there are no algebraic (X, u, A) 

relations known for elastoplastic crack propagation under decreasing load in other  

cracked bodies. In comparing and contrasting the NLEFM solution for the DCB 

problem and our elastoplastic crack propagation solution, we showed that extra work 

                                            
b When   is permitted to vary – no longer employing Eq. (7) for the load (X)-load-point displacement 

(X)-crack length (A) relationship – it may be shown
8
 that      

                . 
 



 

 

had to be performed in the elastoplastic case compared with the true NLEFM case to 

achieve the same    because not all the energy stored in the arms of the test-piece is 

recovered; in true NLEFM all such work is recovered and the only dissipated work is 

the crack-tip fracture work. This meant that the load-point displacements during 

propagation under decreasing load were greater in elastoplastic cracking than in NLE 

FM. The connexions between work and displacements in the two cases are 

algebraically exact for the DCB geometry. 

 

The link between fully reversible NLEFM and path-dependent ELPL may be 

expressed in the following terms. During propagation we have for NLEFM 

 

 
 

and, 

 

 
 

For propagation over a decreasing ligament, as in three-point bending, Fig. 4, dV is 

negative. In NLEFM negative  is permissible as it represents the incremental 

recovery of stored elastic energy in d6. But in ELPL  must be set at zero as 

there is no recovery from the plastic part of the deformation zone. Putting  = 

0 and subtracting Eq. (20) from (21) we obtain 

 

 
 

where we recognize that the NLE and ELPL work densities are strictly different. 

 

Furthermore, to a very good approximation X
elpl 

=X
nle

 =X  which has the value of the 

work hardening collapse load for the ligament [e.g. Hu & Albrecht,
15

 Miller
16

8 given 

by Eq. (7) Hence 

 

 
 

in which  extra is the additional irreversible displacement beyond the NLEFM 

displacement, i.e. the total ELPL load-point displacement is given by (unle +uextra). 



 

 

The full solution of Eq. (23) is discussed elsewhere
17

 but we note that if 

, Eq. (23) reduces to: 

 

 
 

in which (U
nle

/V) is the mean NLEFM/Hencky deformation plasticity work density, 

Fig. 3(b).
18

 Since dV is negative over reducing ligaments,  dV is a positive 

quantity, and duxtra is positive. Equation (24) gives a lower bound on X duextra since 

 We shall use the simpler Eq. (24) rather than Eq. (23) in what 

follows to produce ELPL solutions from the corresponding NLEFM solutions, and 

hence give algebraic expressions for D. 

 

ELASTOPLASTIC TESTPIECES  
 

Constant crack tip toughness 

 

We assume that the initial non-linear loading lines are given by Eq. (7) where the 

displacements are now irreversible. Any recoverable elastic displacements have 

already been removed from displacements u, in accordance with Eq. (3). Equation (7) 

now represents the work hardening collapse load across the ligament, and z will be 

determined by the geometry of the body, e.g. z = 2 for bending; z = 1 for CCP 

testpieces. 

 

To maintain generality, assume that      (Fig. 4) in which case dV/V = q
db/b

.U
nle 

is the NLEFM Uinit at different (a/W ) and is given by Eq. (8). Equation (24) therefore 

yields  

 
 

after substituting for     
   from Eq. (10). 

 

For R= R0 = constant (at the Jc initiation value) throughout propagation 

 

 
 

The accumulated irreversible work in elastoplastic crack propagation with constant 

crack tip toughness during propagation is given by the sum of Eqs (16) and (26) i.e. 

 

 
 

It follows that D from Eq. (3) becomes 



 

 

 
 

Changing crack-tip toughness R( a) 

 

In what follows, note carefully that R(  ) is a crack-tip characterizing parameter 

associated with tunnelling, shear lip formation, etc. Unlike JR it does not include the 

remote plastic work during propagation. Hence JR vs. Aa always lies above R(  ), 

and JR continues to rise even after R(  ) saturates out when (if) shear lips are fully 

formed. 

 

Uinit is always given by Eq. (11).      
    by Eq. (14). Uextra is given by Eq. (25). 

Hence     
    

, given by the sum of these three equation becomes  

 

 
 

Hence, 

 

 
 

When the crack tip R is constant, Eq. (30) reduces to Eq. (28). Note that there is a 

separate D curve for each starting ligament b0 = W [1—(a0/W )] since b = (bo—  ). 

For dR/da decreasing at the propagating crack tip as    increases, the D curve falls 

from left to right, tending towards the asymptotic value given by (z + q-1)R/z when 

dR/da = 0. Note also the influence of z on the overall height of the D curve: other 

things being equal, the levelled-out D for CCT testpieces (z = 1) are expected to be 

higher than for SENB testpieces (z = 2).  

 

The predictions of     
    

 and D will depend on the form taken by the cracktip R(  ). 

This has to be determined experimentally. Our experiments show that 

 

 
 

is a good candidate expression. It is very similar to the relations employed for GR 

curves in LEFM. The relationship, sketched in Fig. 5, is independent of (a0/W ), but 



 

 

will vary with B.
c
 The form of R(  )reflects changing constraint at the crack tip. 

Saturation of R(  ) occurs when, in ductile fracture, shear lips have been fully 

developed, tunnelling is complete and the crack is propagating in steady-state. 

(Whether steady-state propagation is achieved depends upon cracked geometry, for 

example whether the ligament is long enough). The saturation R level is given by (R0 

+Rp) in Eq. (31). R0 is the same as Jc. The distance over which the change in R(  ) 

occurs is determined by the parameter k: large k indicates a rapid rise, vice-versa for 

small k; (the saturated level is, theoretically, of course an asymptote). Other 

expressions for R(  ) have been investigated.
19 

 

Using Eq. (31) for R(  ), we obtain 

 

 
 

and, 

 

 
 

At very large   , D becomes an asmptopic value given by  

 

 

                                            
c Constraint indicated by T or Q has been invoked to explain the dependence of JR curves on (a0/W ), so 

it might be thought that R(  ) should be similarly affected. Within experimental error and for 0.2 

         say , our experiments do not reveal such a strong dependency for the crack-tip R( A), as 

opposed to the global JR. 

 



 

 

Of course, the greatest crack growth can only be       and not infinity, at which 

point 

 

 
 

In the case when k is large, however, the levelled-off value of D at large      is 

practically the same as that given by Eq. (35). 

 

Differentiation of Eq. (33) gives the slope of the D(  ) curves as 

 

 

The slope is zero when    =  and also when 

 

 
 

A second differentiation shows that the    value given by Eq. (38) corresponds with a 

minimum in D. The magnitude is 

 

 
 

This is smaller than the final asymptotic value for D. We note, in passing, that a 

minimum in D implies a point of inflexion in the JR curve. This is discussed in 

another paper.
20

  

 

COMPARISON WITH EXPERIMENT 

 

For proper assessment of the new ideas presented in this paper, it is desirable to 

have data from a range of (ao/W ) in the same type of specimen, together with 

extensive crack growth. Unfortunately, most JR curves and many D curves are given 

for only limited (a0/W ) - often in the range slightly shorter and slightly longer than 

a0/W= 0.5 - and, owing to the perception to remain within ‘J-control’,    is usually a 

small fraction of b0. We have therefore performed a number of our own experiments 

employing testpieces with a wider range of (a0/W ) in which the crack is propagated to 

extensive   . From the raw load (X) displacement (u) crack length (A) plots for 

testpieces having different b0, Uacc may be determined and D vs.    curves 



 

 

constructed using Eq. (3). Analysis of D curves will give values of Rp and k for Eq. 

(33). The method is as follows (we assume we know Jc = R0). 

 

(i) find or estimate     = 0 for various b0 from which the product (Rpk) is given by 

Eq. (34). 

(ii) find or estimate    or    
whence Rp is given by Eq. (35) or (36) and the 

associated k is given using step (i). 

(iii) predict the D vs.    curves for different b0 using these Rp and k in Eq.(33). 

(iv) check that there is no systematic variation in Rp and k with (a0/W ). 

(v) in the absence of systematic variations, fine-tune Rp and k to get best fits for all 

separate D curves using the same Rp and k. 

(vi) Also, if there are minima in the D curves at smaller    than the levelled out 

values, use Eqs (38) and (39) to obtain additional estimates of Rp and k. 

 

When JR curves are available for the same data, it is possible to find the best pair of 

Rp and k-values that make the algebra for JR (given in Ref. [20]) fit the experimental 

curves. (Checks should be made here too for systematic variations of Rp and k with 

(a0/W )). Since JR and D are derived from the same data for Uacc - Equations (2), (3), 

(5) and (6) - it is expected that the best values should be the same. The acid test for 

the analysis is however, that the same Rp and k obtained from best-fitting the D and JR 

curves must also satisfactorily predict the X, u, A load-displacement-crack length data 

for all (a0/W ). We find that this seems to be the case.
20

 Figure 6 shows schematically 

the relationship between the NLEFM initiation solution for given a0 and the 

subsequent propagation paths, viz: NLEFM with constant R= Jc; NLEFM with R(  ) 

given by Eq. (31) and the ELPL solution with R (  ) given by Eq. (31) which is 

obtained from the NLEFM solution using the ‘additional work’ line of attack. 

 

We have performed three-point bend tests on 50%- side-grooved 12 mm thick 

HE30TF aluminium alloy (similar to 6165) using standard methodology, but with a 

wide range of (a0/W )and extensive   . Figure 7(a) shows the load-plastic component 

of displacement-crack length results for three-point bend testpieces having (a0/W )= 

0.2, 0.4, 0.6, 0.8 where W= 50 mm and the span S = 200 mm. The associated D 

curves for each (a0/W )are shown in Fig. 7(b). The JR curves for each (a0/W )are 

presented elsewhere.
20

 Using z = q = 2 in Eq. (33) for D, and in other algebra for JR 

and the loaddisplacement-crack length X, u, A curves
20

 it is found that the following 

R(  ) well represents the (X, u, A), D and JR results for all (a0/W )investigated, viz: 

 

 
Note in Fig. 7(a) that the crack initiation points at different (a0/W )marked by arrows 

all lie on the NLEFM constant R= 80 kJ m
-2

 locus, but that subsequent propagation 

follows different paths. 

 

Steady-state propagation (defined as the attainment of constant-width central flat 

fracture regions) occurs after      5-6 mm. At this   , R from Eq. (31) is rather 



 

 

more than 90% of the saturated value of (R0 + Rp)= 300 kJm
-2

. The rise in R(  )  in 

HE30TF alloy comes about not from the formation of shear lips (the testpieces are 

grooved) but from crack growth across the crack front as well as along it. 

 

Results for 50% side-grooved CT specimens made from the broken halves of the 

bend testpieces suggest 

 

 
 

which was also roughly the R(  ) relationship derived from a third set of experiments 

on 50% side-grooved DENT testpieces also made from the broken halves of the bend 

specimens. 

 

The theoretical D curve for (a0/W )= 0.8 in Fig. 7(b) dips below the asymptotic 

value of (3/2)(R0 + Rp) = 450 kJ m
-2

 in bending. According to Eq. (38) with the 

parameters in (40) a minimum in D should occur at     5 mm when (a0/W ) = 0.8 

having value 423 kJ m
-2

. With a stretch of imagination it might be said that the 

experimental result agrees, but more data are desirable. For the other (a0/W ), Eq. (38) 

gives larger     values for minima than the     giving the levelled-out value, so no 

minima are seen in D curves for the other (a0/W ). Chen et al.
20

 shows that only the JR 

curve for (a0/W ) = 0.8 has an inflexion in this particular material. We observe, in 

passing, that there are far fewer results for D than for JR in the literature. Inflexions in 

JR can be found in the literature and this implies minima in D at the same    had D 

curves been constructed from the same data. 

 

 Furthermore while it might be argued that the dip in D down to some 420 kJ m
-2

 

shown in Fig. 7(b) is within experimental error of the asymptotic level of 450 kJ m
-2

, 

data recently given by Stampfl and Kolednik
21

 support the analysis of this paper by 

displaying marked minima in some D curves before the levelled-out value at large   ; 

the associated JR curves also inflect upwards after the    at the minimum, Fig. 8, for 

different testpiece thicknesses of plain-sided steel V720. These results also display 

later falls in D at larger    which the authors attribute to crack instability and 

increased crack velocity. We note that the JR curves maintain reasonably constant 

slopes at large Aa. According to Eq. (6) the D curves should therefore not drop off as 

they are shown to do in Fig. 8. Clearly there is some unresolved discrepancy in this 

part of the diagram. 

 

Analysis of the Stampfl and Kolednik D curves using Eqs (33)—(39) suggests 

something like: 

 



 

 

 
 

(all kJ m
-2

;    in m). These results imply that the ‘saturated’ crack tip toughness 

given by (R0 +Rp) is ever higher the thinner the material, but that the rate of climb 

from Jc = 65 kJ
 m-2

 is lower the thinner the sheet. Both these effects seem to be 

explicable on the basis of lower constraint in thinner sheets. 

 

Inspection of Eqs (33) and (39) says that marked minima will be given when 

(Rp/z)exp[(z + q - 2)- kb0] is large. This means large Rp and small (kb0). In a given 

material (fixed R0, Rp and k) minima in D will appear at small b0; this occurs for our 

data in Fig. 7(b). On the other hand, for fixed b0 as in the Stampfl and Kolednik
21

 

experiments, where   /W= 0.56 for all testpieces in their Fig. 5, dips in D curves can 

only come about from different Rp and k. This is what we have just calculated to give 

relations (42).  

 

Stampfl and Kolednik's results
21

 are additionally interesting, because they show 

      <    for all cases except the thickest plate (ignoring the fall in D for some 

thicknesses at large    referred to above). Inspection of Eqs (34) and (39) shows that 

this can happen when 

 

 
 

which, for their CT testpieces with z = q = 2, means kb0 < 3. 

 

All the testpieces illustrated in Fig. 8 taken from Stampfl and Kodelnik
21

 have b0 = 

0.022 m. Using the k-values in relations (42) for the different thickness plates, we 

obtain kb0 = 2.6 (25 mm); 2.42 (16 mm); 2.09 (8 mm); and 2.02 (4mm). The only 

      <     occurs for B = 25 mm, so we should expect that kb0 to be numerically 

greater than three, with all the others less than three in value. While kb0 for B = 25 

mm is, in fact, just less than three, we note that the ranking of kb0 for all thicknesses 

has the correct trends, the smallest kb0 being associated with the thinnest (4mm) plate 

which has the lowest      . It is worth mentioning that the Rp and k given above are 

values that best fit all the Eqs (33)-(39) so that they may imperfectly describe separate 

     ,    ,      ,      , etc. values. 

 

Calculations have also been performed on the D curves given by Memhard et al.
5
 

and Siegmund and Brocks
6
 to establish the values of Rp and k which would fit their 

data. We find 

2024-T351 aluminium alloy 

 



 

 

              (      )            (       ) 
 

              (      )            (   )d 

 

StE460 steel 

 

               (      )            (  ) 
 

                (      )            (   )  

 

The CCT D curves lie above the SENB/CT D curves as shown in Fig. 2 for the 

steel. At the same Rp and k this is to be expected from Eq. (33) owing to the different 

 (=1, not 2) giving     = 2(R0+Rp) for the CCT geometry in place of     = (3/2)( 

R0+Rp) for the SENB/CT. In addition, however, the CCT plots have larger Rp and 

lower k. That is, the crack-tip growth resistance (i) rises to a higher value in the CCT 

testpiece, and (ii) takes a longer    to reach the saturated-out value. This seems to 

reflect the lower constraint in the CCT type of testpiece. 

 

CONCLUSIONS 

 

Energy dissipation rate D vs.    curves have been predicted at small and large    

from the load (X)-displacement (u)-crack length (A) relation for elastoplastic crack 

propagation at large    which, in turn, has been 'converted' from the path-

independent and reversible Hencky/NLEFM X, u, A solution for the same problem, by 

means of the requirement for ‘extra work’ in the real path-dependent, displacement-

irreversible elastoplastic case. The ‘conversion’ separates the crack tip fracture work 

from the remote plastic work elsewhere in the test-piece. It is found that the usual 

shape for D vs.    curves (large values at small   , decreasing to constant values at 

large    is readily explained but, in addition, unusual-shaped D vs.    curves are also 

predicted where values at small     can be smaller than at large    and also where, 

even in the usual-shape D vs.    curve, an intermediate minimum in D can be found 

smaller than the levelled-off value at large   . The circumstances under which these 

unusual curves can occur depends upon the type of test-piece and its starter crack 

length, and upon the material parameter k in  =  0 + p (1 - exp(-k  )) which 

controls the distance over which the crack tip fracture toughness R rises from the 

initiation value  0 to the steady-state plateau level of ( 0 + p) after any tunnelling 

and shear lip formation has been completed. 

 

Experimental results from a variety of sources agree with the predictions in a 

consistent fashion for given materials. There is a separate D curve for each starting 

ligament. Since D vs.    depends on testpiece geometry, it cannot be a ‘transferable’ 

material property. The crack tip R(  ), uncoupled from the remote plasticity always 

                                            
d
 Care is required in the interpretation of CCT (also called M(T) testpieces) regarding whether    is for 

one or both crack tips, and whether     
    

 is for the whole testpiece or only half of it. 

 



 

 

included in D and JR curves, may be a transferable material property. It will, however, 

be subject to through-thickness constraint, as shown by the results of Brocks and 

coworkers
5,6

 where constraint changed because of different types of testpiece, all of 

the same thickness, and by the results of Stampfl and Kolednik
21

 where constraint 

changed because of different thickness plates of the same type of testpiece. From both 

approaches, we may tentatively conclude that lower constraint gives greater (R0 +Rp) 

steady-state plateau toughness, and lower k (a less rapid rise over a greater transitional 

   from the initiation R0 level to the plateau level). Other things being equal, small k 

promotes Dmin dips, and a tendency for       <    . Even so, we note that the 

analysis predicts higher D vs. Aa curves for CCT testpieces, compared with 

SENB/CT testpieces of the same material and thickness (as found in experiments), 

even for the same Rp and k. It follows from Eq. (6) that differences in JR curves 

between CCT and SENB/CT are to be expected, without recourse of having to invoke 

T or Q arguments. 
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List of Figures  

 

Figure 1 (a) Irrecoverable work Uinit up to crack initiation in rigid plastic 

fracture. (b) Irrecoverable work accumulated during crack propagation 

in rigid plastic fracture. Uacc= Uinit + Uprop . 

 

Figure 2 Typical shapes of (a) energy dissipation rate D curves,(b)   curves for 

StE460 ferritic steel [after (3)]. 

 

Figure 3 (a) Load-displacement-ligament-crack length plots for path-

independent displacement-reversible NLEFM. (b) For path-dependent, 

displacement-irreversible ELPL cracking, showing the extra 

displacement and extra work required to ‘convert’ the NLEFM 

solution to the practical ELPL problem. 

 

Figure 4 The incremental volume dV from which energy is fully recovered in 

nle fracture, but not in ELPL propagation. 

 

Figure 5 The change of crack-tip resistance to cracking described by R(  ) = Ro 

+Rp [1 - exp(-k   )]. Saturation occurs when (if) steady-state is 

achieved, when shear lip formation, etc. is fully developed. 

 

Figure 6 Schematic relation between the NLEFM initiation solution and 

subsequent possible propagation paths. Initiation at point C; 

propagation according to NLEFM at constant toughness R=Jc along 

CD; propagation according to NLEFM with R(  ) given by Eq. (31) 

along CE; and ELPL propagation along CF. The additional 

displacements along CF, in comparison with those along CE at the 

same load, indicate the ‘extra work’ requirement. 

 

 

Figure 7 (a) X-u-a results for side grooved three-point bend testpieces of 

HE30TF (6165) aluminium alloy with W= 50 mum, B = 12.5 mum, 

Bn= 6.3 mum, S= 200 mum having (  /W ) = 0.2, 0.4, 0.6 and 0.8. 

Curves are theoretical predictions for X-u-a employing R= 80 + 220 [1 

- exp (- 400   )] kJ m
-2

 (   in m). All initiation points (indicated by 

arrows) lie on the constant R= 80 kJ m
-2

 NLEFM locus. (b) D curves 

for the same (a0/W ). Note the slight dip in the D curve for (a0/W )= 

0.8 where a minimum is displayed, lower than the final levelled-out 

value for D. Curves are predictions of Eq. (33) when R= 80 + 220 [1 - 

exp(- 400   )] la m
-2

 (   in m). 

 

Figure 8 JR and D curves derived from the same data by Stampfl and Kolednik
21

 

in different thickness plates of V720 steel. 
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