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A comprehensive review of quantitative structure-activity relation-
ships (QSAR) allowing the prediction of the fate of organic com-
pounds in the environment from their molecular properties was
done. The considered processes were water dissolution, dissociation,
volatilization, retention on soils and sediments (mainly adsorption
and desorption), degradation (biotic and abiotic), and absorp-
tion by plants. A total of 790 equations involving 686 structural
molecular descriptors are reported to estimate 90 environmental
parameters related to these processes. A significant number of equa-
tions was found for dissociation process (pKa), water dissolution or
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hydrophobic behavior (especially through the KOW parameter), ad-
sorption to soils and biodegradation. A lack of QSAR was observed
to estimate desorption or potential of transfer to water. Among the
686 molecular descriptors, five were found to be dominant in the
790 collected equations and the most generic ones: four quantum-
chemical descriptors, the energy of the highest occupied molecular
orbital (EHOMO) and the energy of the lowest unoccupied molec-
ular orbital (ELUMO), polarizability (α) and dipole moment (μ),
and one constitutional descriptor, the molecular weight. Keeping
in mind that the combination of descriptors belonging to different
categories (constitutional, topological, quantum-chemical) led to
improve QSAR performances, these descriptors should be consid-
ered for the development of new QSAR, for further predictions of
environmental parameters. This review also allows finding of the
relevant QSAR equations to predict the fate of a wide diversity of
compounds in the environment.

KEY WORDS: QSAR, molecular descriptors, physicochem-
ical properties, sorption, biodegradation, abiotic degradation,
volatilization

1. INTRODUCTION

The high number and the wide diversity of manmade organic compounds
(e.g., pesticides, pharmaceuticals, polycyclic aromatic hydrocarbons (PAH),
polychlorinated biphenyls (PCB)) that have been or will be released in the
environment constitute the most important challenge for research on the
fate and effects of these contaminants. About 100,000 substances have been
registered for use in United States or Europe over the past 30 years (Hansen
et al., 1999b; Muir and Howard, 2006). However, they cannot be studied
on a case-by-case basis, in particular because experimental studies are time-
consuming and/or cost prohibitive (Reddy and Locke, 1994a; Russom et al.,
2003; Sabljic, 1989; Türker Saçan and Balcioğlu, 1996). Therefore, the vast
majority of existing and new chemical substances are not monitored in envi-
ronmental media, and their fate and effects remain unknown, so that regu-
lators face the task of reviewing the potential risk for chemicals having little
or no empirical data (Muir and Howard, 2006; Russom et al., 2003).

Reliable environmental fate and risk assessment procedures strongly
rely on the ability to accurately measure or estimate various environmental
parameters and molecular properties of chemicals (Sabljic, 2001). Therefore,
the development of in silico methods of prediction based on quantitative
structure activity relationships (QSAR) or quantitative structure property
relationships (QSPR) has received an increasing interest for many years
(Cronin et al., 2003; Hermens et al., 1995; Mackay et al., 2001; Sabljic, 1991;
Walker et al., 2002). The QSAR approach is based on the assumptions that
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the structure of a molecule contains the features responsible for its physical,
chemical, and biological properties, and that variations in the fate within a
series of similar structures can be correlated with changes in descriptors that
reflect their molecular properties (Reddy and Locke, 1994a; Sabljic, 2001;
Walker et al., 2003). The QSAR have the potential to estimate the risks of
chemicals for environment and human health, for example, while reducing
time, monetary cost, and animal testing currently needed for ecological
risk assessment of chemicals (Organization for Economic Cooperation and
Development, 2013; Reddy and Locke, 1994a).

The QSAR can be based on (a) physicochemical properties that can
be determined experimentally (e.g., water solubility, octanol-water partition
coefficient) or (2) structural molecular descriptors that include constitutional
(number of atoms, atom types), geometric (e.g., surface, volume), topo-
logical (connectivity indices), and quantum-chemical (dipole moment, po-
larizability, energies) properties (Doucette, 2003; Sabljic, 2001; Tao et al.,
1999; Todeschini et al., 1996). However, approaches based on experimental
properties, such as water solubility or octanol-water distribution coefficient,
are prone to experimental errors in the input variables, which may result
in some severe statistical problems (Lohninger, 1994; Nguyen et al., 2005;
Sabljic, 1991; Sabljic and Piver, 1992). Therefore, some of the advantages
of the exclusive use of structural molecular descriptors are that they are
free of the uncertainty of experimental measurements and that they can be
calculated for organic compounds under development, not yet synthesized
(Gramatica and Di Guardo, 2002; Karelson et al., 1996).

The objective of this work was thus to do the first comprehensive review
of QSAR allowing the prediction of the fate of organic compounds in the
environment from their structural molecular properties. The major processes
that were considered are water dissolution, dissociation, volatilization, reten-
tion, degradation, and absorption by higher plants. The reviewed QSAR were
analyzed according to two criteria: the frequency of the use of one descriptor
in all reviewed equations, and the generic character of one descriptor (i.e., if
it is involved in the assessment of a high diversity of processes). In addition,
the physical meaning of the structural molecular descriptors was considered.
This allowed the identification of the most relevant descriptors for the assess-
ment of the environmental parameters related to the considered processes.

The different types and categories of molecular descriptors are first
presented followed by the review of the QSAR equations for each selected
process, and by the synthesis and discussion of the results.

2. STRUCTURAL MOLECULAR DESCRIPTORS USED FOR
ENVIRONMENTAL CONCERNS

The central axiom of QSAR is that the activity of molecules is reflected in their
structures (Organization for Economic Cooperation and Development, 2013).
The structure of a molecule (e.g., its geometric or quantum properties) can be
represented by several structural molecular descriptors, and the information
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contained in the descriptors reflects the nature of the molecular represen-
tation used. For example, a graph theoretical representation describes the
molecule as a set of vertices (atoms) and edges (bonds). This allows the esti-
mation of topological descriptors. A more sophisticated representation views
a molecule as a collection of nuclei bound together by overlapping electron
orbitals. Such representation can be used to derive descriptors such as atomic
charge and dipole moment. Another type of structural representation charac-
terizes the molecule as a set of hard spheres connected by bonds possessing
specific stretching, bending, and torsion energies. The shape of the molecule
is determined by the strain placed on the bonds as the spheres are allowed to
interact. Information that is related to the geometry of the molecule (size and
shape) can be obtained from such representation. A realistic representation of
a molecule must lie in the combination of these representations (Stanton and
Jurs, 1990). A lot of structural molecular descriptors that take into account dif-
ferent aspects of chemical information have been proposed and reviewed by
Todeschini and Consonni (2000). This section is focused on concise presenta-
tion of the 686 descriptors (Table S1) that were found in the 790 equations re-
ported in this work allowing the assessment of 90 environmental parameters
(Table S2). The descriptors were classified in seven categories: constitutional,
geometric, geometric-topological, geometric-electronic, topological, electro-
topological, and quantum-chemical. The review of the different QSAR will be
then organized and discussed according to these seven categories. All struc-
tural molecular descriptors can be calculated with different softwares such
as ChemOffice (2009), comprehensive descriptors for structural and statis-
tical analysis PRO (CODESSA PRO) (Katritzky et al., 2005), Dragon (2007),
Gaussian 09 (Frisch et al., 2009), HyperChem (2007) or parameter estimation
for the treatment of reactivity applications (PETRA) (TORVS Research Team,
1999).

2.1 Constitutional Descriptors

Constitutional descriptors reflect the molecular composition of a compound
without any information about its molecular geometry (Ma et al., 2010). One
hundred and forty one descriptors were used in the reviewed equations. The
simplest constitutional descriptors are the molecular weight or the number
of atoms, bonds, functional groups, and rings (Table S1).

Several other constitutional descriptors were found such as indicators of
the presence of different chemical groups (e.g., ester, epoxide, nitro group),
H attached to heteroatom (H-050), the hydrophilic factor (HY), or the grav-
itation index (IG; Table S1). H-050 is one of the atom-centered fragment
descriptors that describe each atom by its own atom type, and the bond
types and atom types of its first neighbors. It represents the first neighbor
(hydrogen) of heteroatom (Habibi-Yangjeh et al., 2009). The HY is based on
atom and group counting (e.g., number of hydrophilic groups [ OH, NH,
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SH], number of carbon atoms, and number of non-hydrogen atoms). It is
related to the presence of hydroxyl groups in the molecule (Gramatica and
Di Guardo, 2002; Gramatica et al., 1999b). The gravitation index IG reflects
the effective mass distribution within the molecule and depicts the molecular
dispersion forces in a bulk liquid media (Estrada et al., 2004; Katritzky et al.,
1998).

In the fragment approaches, a molecular structure is divided into frag-
ments (atom or larger functional groups), and values of each atom or group
are summed together to give the estimate of one environmental parameter.
The polarity of organic compounds can be taken into account through po-
larity correction factors (Meylan et al., 1992; Müller and Kördel, 1996; Sabljic,
1987; Tao and Lu, 1999). There are two types of fragment approaches: the
constructionist approach (Hansch and Leo, 1979; Meylan and Howard, 1995)
and the reductionist approach. The constructionist approach consists of de-
termining the environmental parameter values of a set of small molecules
very accurately and then calculating fundamental chemical fragments from
these values: single fundamental fragments consist of (a) isolated carbons or
(b) a hydrogen or heteroatom plus multiple atom (e.g., CN) with correction
factors. The reductionist approach assumes the deduction of coefficients for
individual fragments derived by statistical relationships between the molecu-
lar properties and individual constitutive fragments. However, there are two
main limits of the fragment approaches: first, they require a large data set
to obtain a contribution of each functional group or fragment; second, there
can be missing fragment, which means that if a compound contains a miss-
ing fragment, the parameter cannot be precisely predicted (Hou et al., 2004;
Leo, 1975; Meylan and Howard, 1995; Schüürmann et al., 2006; Sun et al.,
1996; Tao et al., 1999).

2.2 Geometric Descriptors

Geometric descriptors give information about molecular size and shape, thus
require accurate three-dimensional coordinates of the optimized geometry
of the compounds (McElroy and Jurs, 2001). In this review, 77 different
geometric descriptors were inventoried (Table S1).

The simplest geometric descriptors are related to the dimensions of
atoms or molecules: radius, diameter, length, perimeter, ovality, thickness,
surface, and volume (Table S1). Among the 15 descriptors related to the
surface, the FOSA (hydrophobic component of the total solvent accessible
surface area) is a measure of the hydrophobic property of a molecule and
as it increases, the polarity of the molecule will decrease. The FISA is the
hydrophilic component of the total solvent accessible surface area, and the
PSA is the Van der Waals surface area of polar nitrogen and oxygen atoms.
Both PSA and FISA give measures of hydrophilic properties. As they increase,
the polarity of the molecules will rise (Cao et al., 2009). For the molecular
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volume, 13 descriptors were found. Among them, the parachor (P) relates
the surface tension to the molecular volume, allowing the comparison of
molecular volumes under conditions such that surface tensions are equiv-
alent (Zhao et al., 2003). The McGowan volume (Vx) is derived from the
parachor and is calculated by a method of group contribution (Abraham and
McGowan, 1987). For a molecule, the van der Waals volume (VdW) is the
volume enclosed by the van der Waals surface, it is usually calculated with
software through the estimation of the van der Waals radius. It was shown
that the McGowan volumes are equivalent to computer-calculated van der
Waals volumes (Reddy and Locke, 1994a; Zhao et al., 2003). The Le Bas
molar volume (VLB) is based on the summation of atomic volumes with ad-
justment for the volume decrease arising from ring formation (Cousins and
Mackay, 2000).

VolSurf is a computational program that generates 2D molecular de-
scriptors from 3D molecular interaction energy grid maps (Cruciani et al.,
2000a; Cruciani et al., 2000b). The base of VolSurf is to compress the in-
formation present in 3D maps into a few 2D numerical descriptors that are
simple to understand and to interpret. These descriptors quantitatively char-
acterize the size, shape, polarity, and hydrophobicity of molecules as well
as the balance between them. Molecular shape, which affects packing and
solvent interactions, can be described through geometry dependent descrip-
tors such as SHDW, GEOM, and GRAV (McElroy and Jurs, 2001; Table S1).
The VolSurf BV31OH2, as for it, is the volume descriptor representing one
of the best hydrophilic volumes generated by a water probe calculated at –1
kcal mol−1 energy level (Bordás et al., 2011; Cruciani et al., 2000a; Cruciani
et al., 2000b).

Weighted holistic invariant molecular (WHIM) descriptors form another
group of geometric descriptors (Todeschini and Gramatica, 1997a, 1997b;
Todeschini et al., 1996). They are built to capture the relevant molecular
3D information regarding the molecular size, shape, symmetry, and atom
distribution with respect to some invariant reference frames. WHIM descrip-
tors are obtained from the molecular coordinates of the 3D structure of
the molecule (i.e., from its spatial conformation). The algorithm consists in
performing a principal component analysis on the centered molecular coor-
dinates by using six different weighting schemes: unweighted (u), weighted
by the atomic mass (m), by the van der Waals volume (v), by the Mul-
liken atomic electronegativity (e), by the atomic polarizabilities (p), or by
the electro-topological index of Hall et al. (1991; s). For each weighting
scheme, a set of statistical indices is calculated on the atoms projected onto
each principal component (1, 2, and 3). The WHIM approach can be viewed
as a generalization searching for the principal axes with respect to a de-
fined atomic property (the weighting scheme). Unlike topological descrip-
tors (see section 2.5), the WHIM descriptors are able to distinguish different
conformations of the same molecule and different geometric isomers. There
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are a total of 66 directional WHIM descriptors, and 33 global WHIM de-
scriptors: directional descriptors related to size (λ), shape (θ), symmetry (γ ),
and atom distribution and density around the origin (κ); and nondirectional
descriptors related to the total dimension of the molecule (T(λ) and A(λ)
related to linear and quadratic contribution to the total molecular size, and
V(λ) being the complete expression), its shape (K(λ)), the total molecular
symmetry (G(γ )), and its total density (D(η), with η being related to the
quantity of unfilled space per projected atom; Todeschini and Gramatica,
1997a, 1997b; Todeschini et al., 1996).

3D molecule representation of structures based on electron diffraction
(3D-MoRSE) descriptors and 2D autocorrelation descriptors were also in-
volved in some QSAR (Tables S3, S4, S6, S7, and S9). The 3D-MoRSE descrip-
tors are derived from infrared spectra simulation using a generalized scatter-
ing function (Habibi-Yangjeh et al., 2009; Todeschini and Consonni, 2000).
The Mor(12p) and Mor(31)v descriptors relate to polarizabilities and van der
Waals volumes of the atoms, respectively (Habibi-Yangjeh et al., 2009). The
2D autocorrelation descriptors are calculated from molecular graph by sum-
ming the products of atom weights of the terminal atoms of all the paths of
the considered path length (the lag). For example, the GATS1p, Geary au-
tocorrelation lag 1, weighted by atomic polarizabilities (Table S1), is one of
the 2D autocorrelation descriptors. The Geary coefficient is a distance-type
function, a function being any physicochemical property calculated for each
atom of the molecule, such as atomic mass and polarizability. For GATS1p,
the function is the polarizability. Therefore, the molecule atoms represent
the set of discrete points in space, and the atomic property the function
evaluated at those points (Habibi-Yangjeh et al., 2009).

Finally, some other miscellaneous geometric descriptors were used: the
summation of the steric factors of the additional substituents (Es; Peijnenburg
et al., 1992); the molecular refraction (MR), which affords information about
the molecular volume and polarizability (Kim et al., 2007); the excess molar
refraction (R2; Abraham, 1993); steric parameters, �D and �S, that reflect
the overall dimension of the molecule (Chaumat et al., 1992); and the sum
of the core count for non-hydrogen vertex (�αH) that may be taken as a
measurement of the molecular bulk (Roy et al., 2007).

2.3 Geometric-Topological Descriptors

The geometry, topology, and atom-weights assembly (GETAWAY) descrip-
tors include the geometric information given by the influence molecular ma-
trix, and the topological information given by the molecular graph, weighted
by chemical information encoded in selected atomic weightings (Consonni
et al., 2002). Two sets of molecular descriptors have been devised: H-
GETAWAY descriptors have been calculated from the molecular influence
matrix H, while R-GETAWAY descriptors are from the influence/distance



1284 L. Mamy et al.

matrix R where the elements of the molecular influence matrix are com-
bined with those of the geometry matrix. The molecular influence matrix H
contains some useful information on the molecular geometry, and especially
the diagonal elements (leverages) of the matrix allow discrimination among
the atoms according to their position in the 3D molecular space with respect
to the molecule center (Consonni et al., 2002). In the equations reviewed in
this work, five GETAWAY descriptors were found: H4p, H5e, HATS7p, HTp,
and R3e (Bordás et al., 2011; Gramatica et al., 2003; Table S1). The number
of donatable hydrogens, count of all donatable hydrogens (CTDH), and the
accessibility of the acidic oxygen atom in a molecule (Aaccess,O (2D)) can also
be classified as combined geometric-topological descriptors (McElroy and
Jurs, 2001; Zhang et al., 2006; Table S1).

2.4 Geometric-Electronic Descriptors

The geometric-electronic descriptors mainly belong to the charged partial
surface area (CPSA) descriptors, which combine molecular surface area and
partial atomic charge information. They encode features responsible for po-
lar interactions between molecules. The molecular representation views a
molecule as having a surface defined by the overlap of hard spheres, de-
fined by the van der Waals radii of the atoms, which is traced by a sphere
representing a solvent molecule (water by default). The surface traced out
by the center of the solvent sphere has been termed the solvent-accessible
surface. The molecule is further defined as having a specific electron distribu-
tion, thus yielding a representation of a charged contact surface where polar
intermolecular interactions can take place. Depending on the method used
to combine the surface area and the charge information, there are different
kinds of descriptors such as three partial positive surface area descriptors
(PPSA-1, PPSA-2, PPSA-3), and an equal number of the partial negative sur-
face area descriptors (PNSA-1, PNSA-2, PNSA-3). Also, there is a set of three
differences in partial surface area descriptors (DPSA-1, DPSA-2, DPSA-3), six
fractional charged surface area descriptors (three positive: FPSA-1, FPSA-2,
FPSA-3, and three negative: FNSA-1, FNSA-2, FNSA-3), and a similar set of six
total surface weighted partial positively (WPSA-1, WPSA-2, WPSA-3) or nega-
tively (WNSA-1, WNSA-2, WNSA-3) charged surface area descriptors (Stanton
and Jurs, 1990). In addition to the charged surface area descriptors, the rel-
ative influence of the most highly charged (positive and negative) atom on
the overall charge of the molecule can be taken into account. This informa-
tion is combined with the accessible surface area of the most highly charged
atoms to obtain the relative positive and the relative negative charged sur-
face area descriptors (RPCS and RNCS, respectively; Stanton and Jurs, 1990).
From these CPSA descriptors, new descriptors were created to account for
hydrogen bonding effects: the SAAA-i (i = 1 – 3), which is the summation
of the surface area of atoms that are capable of accepting hydrogen bonding
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interactions; and the CHAA-i (i = 1 – 3), which is the sum of charges on
acceptor atoms, which encodes similar information as SAAA-i (Bakken and
Jurs, 1999; Sutter and Jurs, 1996; Table S1).

Two VolSurf descriptors can also be classified as geometric-electronic
(Table S1): the H-bonding capacity derived with the CO probe (HB5O),
a hydrogen bond descriptor calculated with carboxyl oxygen probe; and
the high values of the hydrophilic region of the hydrogen bond acceptor
probe (W4O), which accounts for polarizability (Bordás et al., 2011). The
last geometric-electronic descriptor is the hydrogen bonding parameter, HB1,
which was used to estimate the vapor pressure (Basak et al., 1997; Table S6).

2.5 Topological Descriptors

Topological descriptors encode information about the atom types, bond
types, and connectivity of the molecule without the need for optimized
geometry (McElroy and Jurs, 2001; Sabljic, 1991; Sabljic and Trinajstic,
1981). They describe both the size and shape of molecules (Organiza-
tion for Economic Cooperation and Development, 1993). One hundred
and forty one topological descriptors were found in the different equations
(Table S1).

The best known topological descriptors are the molecular connectivity
indices (MCI); (symbol: χ), which characterize the degree of the molecular
branching (Randic, 1975). The molecule is considered to be a sum of parts,
namely, the bonds connecting pairs of atoms. Each atom in a molecule is rep-
resented by a cardinal number, δ, the count of all bonded atoms other than
hydrogen. The molecule is dissected into fragments or bonds, each retaining
the δ values assigned in the original graph. This decomposition produces a
set of fragments encoded by the two δ values of the atoms comprising each
bond (Kier and Hall, 2000). The MCI encode, in the various indices, informa-
tion on molecular size, branching, cyclization, unsaturation, and heteroatom
content. Four types of MCI exist: path (χ), cluster (χ c), path-cluster (χpc),
and chains (χ ch; Gerstl and Helling, 1987; Sabljic, 1991). Zero-order path-
type index (0χ) defines individual atom (vertices), first-order (1χ) deals with
single-bond length, and so on. The first-order MCI (1χ) correlates extremely
well with the molecular surface area (Sabljic, 1991; Sabljic and Horvatic, 1993;
Sabljic and Piver, 1992). In addition, Kier and Hall (2002) demonstrated that
the 1χ is the contribution of one molecule to the bimolecular interactions
arising from encounters of all bonds among two molecules. From order 3,
as the order of path index goes higher, MCI describe some local structural
properties and possibly long-range interactions. The main characteristic of
cluster-type indices is that all bonds are connected to the common, cen-
tral atom (star-type structure). The third-order cluster molecular connectivity
index (3χ c) is the first, simplest member of the cluster-type indices where
three bonds are joined to the common central atom. For this kind of index,
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orders higher than four do not have much chemical and structural sense
for organic chemicals (Sabljic, 1991). The fourth-order path-cluster molecu-
lar connectivity index (4χpc) is the first, simplest member of the path-cluster
type indices. It refers to subgraphs consisting of four adjacent bonds between
non-hydrogen atoms, three of which are joined to the same non-hydrogen
atom. Orders higher than six do not have much chemical and structural
sense either. The cluster and path-cluster indices describe local structural
properties, mainly the extent or degree of branching in a molecule. They are
very useful as steric descriptors (Sabljic, 1991; Sabljic and Piver, 1992). The
chain type molecular connectivity indices (χ ch) describe the type of rings
that are present in a molecule as well as the substitution patterns on those
rings. Thus, chain type indices also describe more local-type properties. The
lowest order for the chain type index is third order, and increases up to the
largest ring in any particular molecule (Sabljic, 1991). In the valence approx-
imation, non-hydrogen atoms are described by their atomic valence values
calculated from their electron configuration (Kier and Hall, 1986, in Sabljic
and Piver, 1992). For example, the zero-order valence MCI, 0χv, is a simple
and good approximation for the molecular volume (Sabljic, 1991; Sabljic and
Piver, 1992).

Based on MCI, several descriptors were then developed: the polarity
index (1Fχ

v), which is the 1χv normalized to the number of discrete functional
groups (Sekusak and Sabljic, 1992), and the ith order (i = 0 or 1) valence
nondispersive factor (�iχv), which is equal to the difference between the
MCI for the nonpolar molecular structure and the same-order MCI (Bahnick
and Doucette, 1988). To account for negative and positive contribution of
individual atoms to the modeled property within the same molecule, Pompe
and Randic (2007) developed modified variable connectivity indices (1χ f and
1χ fλ). As classical MCI were shown to be not applicable to organometallic
compound, Sun et al. (1996) introduced the radius-corrected MCI (1χ r) and
the bond-length-corrected MCI (iχb, i = 1 – 6; Table S1).

A second important group of topological descriptors is related to the
information indices such as complementary information content (CIC), infor-
mation content (IC), or structural information content (SIC), which quantify
the degree of heterogeneity and redundancy of topological neighborhoods
of atoms in a molecule (Basak, 1999; Basak et al., 1996, 1997; Estrada et al.,
2004; Gramatica and Di Guardo, 2002; Gramatica et al., 2001; Gramatica
et al., 1999a; Gramatica et al., 2000; Huibers and Katritzky, 1998; Katritzky
et al., 1998; Ma et al., 2011; Niemi et al., 1992; Table S1). These descriptors
view the molecular graph as a source of different probability distributions to
which the Shannon’s entropy and related expressions can be applied. They
are insensitive to molecular geometry, accounting for structural characteris-
tics such as size, branching patterns, bonding types, and cyclicity (Gramatica
et al., 2000).
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A set of weighted path descriptors (WTPT) was also used (Bakken
and Jurs, 1999; Mitchell and Jurs, 1998; Randic, 1984; Sutter and Jurs, 1996;
Table S1). They are based on the molecular identification number (ID)
that combines features of connectivity indices and path counts, and char-
acterize molecular branching (Randic, 1984). Each contiguous path in the
molecule can be assigned a weight based on the number of atoms adjacent to
the atoms in the path. The molecular ID is the summation of all paths of the
compound.

Four Moran autocorrelation descriptors (MATS6e, MATS7e, MATS4p,
and MATS1v) were found in the equations (Bhhatarai and Gramatica, 2011;
Goudarzi et al., 2009; Gramatica et al., 2003). The structural variables in-
troduced by Moran correspond to bidimensional autocorrelations between
pairs of atoms in the molecule, and are defined to quantify the contribu-
tion of a considered atomic property to the analyzed property. These can
be readily calculated by summing products of terms including the atomic
weights for the terminal atoms in all of the paths of a prescribed length. For
example, for MATS6e, the path connecting a pair of atoms has a length of 6
and involves the atomic Sanderson electronegativities as weighting scheme
(Goudarzi et al., 2009).

Liu et al. (1998) developed a molecular distance-edge between carbon
atoms vector (MDE) based on two fundamental structural variables: one for
distance between atoms in the molecular graph, and one for edges of the
adjacency in the graph. In these descriptors, carbon atoms are divided into
four types: (a) primary ( CH3), (b) secondary (>CH2), (c) ternary (>CH-),
and (d) quaternary (>C<). A distance edge term is computed for all pairwise
combinations of carbon types, for a total of 10 descriptors. For example,
MDE-13 represents the distance edge descriptor between primary and ternary
carbons. In addition to describing carbon bonding, these descriptors include
information regarding distance between atoms (Bakken and Jurs, 1999).

Several other miscellaneous topological descriptors were found in the
equations listed in Tables S3–S10. Among BCUT descriptors (Burden - CAS -
University of Texas eigen-values; Burden, 1989), BEHe7 brings 2D informa-
tion which takes into account the weight of different atoms in the structure
(Burden matrix) and their electronegativities (Papa et al., 2009). The DELS
could be a measure of total charge transfer in the molecule (Gramatica et al.,
2000). The group philicity (ωg

+) is a descriptor of reactivity that allows a
quantitative classification of the global electrophilic nature (electron accept-
ing capacity) of a molecule within a relative scale (Parthasarathi et al., 2006).
The Lu index is interpreted as a parameter characterizing molecular size,
and the DAI characterizes the degree of branching on aromatic ring (Lu
et al., 2006). The sum of topological distances between oxygen and bromine
atoms (T(O· · ·Br)) gives a double structural information: its values increases
according to both the number and the distance of bromine substituents, thus
T(O· · ·Br) also takes into account the information related to the position of
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the bromine atoms on the phenyl rings (Papa et al., 2009). The eccentric
connectivity index (ξC) is a topological index accounting for both size and
branching of compounds (Sharma et al., 1997), and the bond connectivity
index (ε) can be understood as molecular size corrected for geometric ac-
cessibility with respect to van der Waals contact (Schüürmann et al., 2006).
The Kapa index (3κ), which is based on path lengths, is a shape index
(Bakken and Jurs, 1999; Dunnivant et al., 1992; Kier, 1986). The numbers of
different sp hybridized orbitals between carbon atoms were also used: 1SP2,
2SP2, 3SP2. They encode information concerning attack sites for the radical
(Bakken and Jurs, 1999). The Wiener index (W) is defined as the number
of bonds between all pairs of atoms in an acyclic molecule. It measures the
compactness of the molecule (Bogdanov et al., 1989). The calculation of
the 3D Wiener index for the hydrogen-suppressed geometric distance ma-
trix (3DW) consists in summing the entries in the upper triangular submatrix
of the topographic Euclidean distance matrix for a molecule (Basak et al.,
1996). This index is considered as a measure of molecular shape (Consonni
and Todeschini, 2010). The characteristic root index (CRI) is the sum of the
positive characteristic roots obtained from the characteristic polynomial of
the matrix with the entries calculated from the electronic input information.
It was shown that it is correlated to the molecular surface area (Türker Saçan
and Balcioğlu, 1996; Türker Saçan and Inel, 1995). MAXDN represents the
maximum negative intrinsic state difference in the molecule and can be re-
lated to the nucleophilicity of the molecule, while MAXDP represents the
maximum positive intrinsic state difference and can be related to the elec-
trophilicity of the molecule (Gramatica et al., 2000). The superpendentic
index (PND) can be calculated from the pendent matrix, a submatrix of dis-
tance matrix. This index takes into consideration all pendent vertexes, and
its value changes significantly with a small change in the branching of a
molecule (Gupta et al., 1999). Finally, the Kier symmetry index (S0K) is used
to encode the shape contribution due to symmetry (Todeschini and Con-
sonni, 2000). The lower the S0K of a compound, the greater the topological
symmetry, and thus the lower the change in molecular freedom (Ding et al.,
2006).

2.6 Electro-Topological Descriptors

Electro-topological state (E-state) is a method for describing and encoding
molecular structure at the atom level. In the E-state formalism, each atom is
viewed as having an intrinsic state which is perturbed by every other atom in
the molecule. The intrinsic state combines valence state electronegativity with
the local topology of the atom. Perturbation is dependent on the difference
between intrinsic state values, and diminishes as the square of the graph
distance between atoms. The result is that the E-state index, S, for an atom
represents electron accessibility at that site. There are several extensions
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of the E-state concept. E-states indices may be computed separately for
hydrogen atoms, the hydrogen E-state indices. Also E-state indices may be
summed for all atoms of a given type in a molecule. These atom type E-state
indices encode electron accessibility, presence or absence of groups, and
count of groups (Hall and Story, 1996; Hall et al., 1991; Huuskonen et al.,
1999; Kier and Hall, 1999).

The E-state index for a given atom (or atom type) varies from molecule
to molecule, and depends on the detailed structure of the molecule. In
the different atom-type E-state index, the set of bonds to a skeletal atom
is given by a chain of lowercase letters: s (single), d (double), t (triple),
and a (aromatic). The element is given by its symbol together with the
number of hydrogen atoms. For example, SdCH2 represents the S values
for a terminal CH2 group on a double bond, while SssCH2 represents the
methylene group with two single bonds; SaasC stands for an aromatic carbon
to which a substituent is bonded (Hall and Story, 1996; Huuskonen, 2001a,
2001b; Huuskonen et al., 1999). As indicated previously, E-state index can
also be calculated for group or molecule by adding the contributions of the
single atoms present in the group or the molecule: to each atom is ascribed
an index encoding the intrinsic electronic and topological state of the atom
as well as the effect of the molecular environment in which the atom under
study resides (Gombar and Enslein, 1996; Thomsen et al., 1999).

Finally, the mean E-state (Ms), the average E-state value over all het-
eroatoms (EAVE-2), and the sum of E-state values over all heteroatoms
(ESUM-2) can also be calculated (Habibi-Yangjeh et al., 2009; McElroy and
Jurs, 2001; Table S1).

2.7 Quantum-Chemical Descriptors

Two hundred and forty eight quantum-chemical descriptors were invento-
ried in this review, representing the highest number of descriptors for one
category (Tables S1 and S3–S10).

The most well-known quantum-chemical molecular descriptors are re-
lated to energies, and in particular to the energies of the highest occupied
molecular orbital (EHOMO) and lowest unoccupied molecular orbital (ELUMO).
Orbitals play a major role in most of chemical reactions, they are particu-
larly involved in the formation of covalent bonds and thus of many charge-
transfer complexes. The EHOMO is directly related to the ionization potential
and characterizes the susceptibility of the molecule toward attack by elec-
trophiles (Karelson et al., 1996). The ELUMO measures the ability of a molecule
to accept electrons in intermolecular interactions (Chen et al., 2002a). EHOMO

represents the proton acceptance ability in forming hydrogen bond, while
ELUMO represents the proton donation ability in formation of hydrogen bond
(Zhou et al., 2005). Two descriptors are derived from EHOMO and ELUMO

(Table S1): the absolute electronegativity (EN), which provides insight into



1290 L. Mamy et al.

the energetics of the reactant molecule (Bakken and Jurs, 1999; Hu et al.,
2000; Müller and Klein, 1991), and the hardness (Hard; Bakken and Jurs,
1999). The HOMO and LUMO are generally the most important orbitals,
but in cases where lower-energy occupied orbitals are close in energy to
the HOMO, and higher-energy orbitals are close in energy to the LUMO,
other orbitals may also play a role (Brown and Mora-Diez, 2006b; Table
S1).

Klamt (1993) defined a new set of descriptors called local frontier orbital
descriptors: the charge-limited effective HOMO energy at H atom (ECHH (q)),
which is the weighted average of the orbital energies starting with the HOMO
and extending to lower orbitals until the amount of charge taken into account
reaches q; the energy-weighted effective HOMO energy (EEHH (ε)), which
is similar to an effective EHOMO of the electrons of atom H calculated with
an energetic penetration length ε; and the energy limited effective frontier
orbital charges QLA (E), where QLA (E) is the amount of electronic charge
available at atom A in the lower unoccupied orbitals down to an energy
limit E.

In contrast to conventional molecular orbital based descriptors such
as the EHOMO and ELUMO, local quantum-chemical molecular descriptors
are designed to extract, from the delocalized molecular orbital wavefunc-
tions and energies, energy and charge information that reflects the local
characteristics of a given atomic site in the molecular environment. The
energy-weighted donor energy (EEocc) describes the electron donor abil-
ity of a molecule at an atomic site, and is constructed through a sum
of occupied molecular orbital energies Ei, weighted by exponential terms
involving reference energy Eref. EEocc ranges between the EHOMO as de-
localized limit (for Eref close to 0) and the sum of the orbital energies
weighted only by pi (for Eref close to ∞). The energy-weighted acceptor
energy (EEvac) is defined accordingly through unoccupied molecular or-
bitals. It characterizes the capability of the molecule to accept additional
electron charge at an atomic site, and thus represents a localized gener-
alization of the ELUMO. Another local reactivity parameter is the charge-
limited acceptor energy (EQvac (q, r)). It characterizes the energy gain
upon accepting charge q at atomic site r, and can be understood as a
further local generalization of the ELUMO. As a general trend, EQvac (q, r)
becomes increasingly local with increasing amount of the charge penetra-
tion depth q. A complementary approach is to evaluate, for a given energy
loss or gain, the associated amount of charge released from or taken up
at site r. Therefore, an energy-limited donor charge QEocc (ε, r) can be
defined as amount of charge being removed from center r when offer-
ing the energy ε. Atomic sites with high electron donor ability are char-
acterized by large values for QEocc. The defined energy-limited acceptor
charge QEvac involves unoccupied molecular orbitals and quantifies the
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amount of accepted electron charge that is associated with a predefined
energy gain ε (Yu et al., 2011). The electron affinity (EA) represents the
energy difference associated with the gain of an electron, which should cor-
relate with the ease or difficulty of the reduction of a compound (Colón
et al., 2006).

In addition to EHOMO and ELUMO and the derived energies, the number of
descriptors related to energy is very large (Table S1). As most of these energy
descriptors are well-known—total energy (TE, TE2), torsional energy (TOE),
electronic energy (EE), attraction (EN1, EN1c, EN1x) or repulsion (CCR, EE1,
EE1c, NN2, NRE) energies, resonance energy (J, MinOH), Gibbs energy (G,
�Gaq, �Gdiss)—no detailed description is given here.

The interaction process between an acid and a base can be dissected into
two steps: a charge transfer process resulting in a common chemical potential
describing the strengths of the acid and the base, at a fixed external potential,
followed by a reshuffling process at a fixed chemical potential. The fractional
number of electron transfer, �N, and the associated energy change in the
charge transfer, �Ee, depend on the interplay between electronegativity and
hardness of the acid and the base. The �Ee is the energy lowering due to
this electron transfer from a species of higher chemical potential (base) to
that of a lower chemical potential (acid; Gupta et al., 2007). The inclusion of
pi-electronegativity of the α carbon atom, ENπ ,αC, can represent the different
hybridization states (i.e., sp, sp2, and sp3) of the α carbon atom in an acid, and
ENσ ,O is the σ -electronegativity for the oxygen atom in the acidic hydroxyl
group (Zhang et al., 2006).

Several descriptors related to the electronegativity were also used, such
as the molecular electronegativity distance vector (MEDV). The properties of
a molecule mainly depend on various interactions between its atoms. These
interactions vary with the electronegativity of the atoms and the distances
of chemical bonds formed between atoms. To describe an organic molecule
and to construct its MEDV, the atomic types of all non-hydrogen atoms in
the molecule have to be specified. If an atom is linked to k non-hydrogen
atoms through chemical bonds, then the atom belongs to the k atomic type.
There are at best four atomic types (considering the non-hydrogen atoms are
often carbon, oxygen, nitrogen, or halogen atoms) and, therefore, to express
the approximate interactions, MEDV include a maximum of 10 elements
(e.g., M11, M12, M13, M14, M22, M23, M24, M33, M34, M44). These ten elements
combine atomic attributes (both the chemical element type and the chemical
bond type of each atom), bond length, relative distance between atoms,
and their relative electronegativities. The relative electronegativity of a non-
hydrogen atom is defined as the ratio of Pauling’s electronegativity of the
non-hydrogen atom to Pauling’s electronegativity of a carbon atom, and the
relative distance or relative bond length of a chemical bond is defined as
the ratio of the length of this bond to the bond length of the C-C bond (Liu
et al., 2002; Sun et al., 2007).
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Sixty-four of the 248 quantum-chemical descriptors that were found in
the equations are related to the charges of atoms or molecules. Others are re-
lated to the dipole moment, polarizability, superdelocalizability, electrostatic
potential, moments, and bond order (Table S1).

In addition to the dipole moment μ, two descriptors derived from μ

were found useful: the Z-component of the dipole moment (Bordás et al.,
2011), and the total local dipole, μtot. The latter is defined as the difference
in charges of each atom in the bond, divided by the length of the bond,
and summed over all bonds in the molecule. The resulting μtot describes the
dipolarity as a single number independent of direction, and alleviates some
of the problems encountered in using the dipole moment μ (Famini and
Wilson, 1997).

The polarizability α was involved in many equations (Tables S3, S4, S6
to S9), but the atom self-polarizability (ALPij; Berger et al., 2001; Berger et al.,
2002; Tehan et al., 2002b; Von Oepen et al., 1991), the second (α2) and third
(α3) principal polarizabilities (Dunnivant et al., 1992), and the polarizability
of the hydroxyl oxygen atom in an acid (αO) were also used. Other po-
larizability terms are specially used in linear solvation energy relationships
(LSER) equations (see section 2.8).

The superdelocalizability of an atom is a measure of its available electron
density. It is calculated by the sum over all orbitals of the ratio between orbital
densities and the corresponding orbital energies. The superdelocalizability
of the HOMO (SHOMO) and of the LUMO (SLUMO), and the electrophilic (SE)
and nucleophilic superdelocalizabilities (SN) can also be calculated (Reddy
and Locke, 1996). The SE has been designed to quantify the susceptibility of
a molecule for an electrophilic attack (Tehan et al., 2002b).

Concerning the electrostatic potential, the most used descriptors are
the molecular electrostatic potential minima (Vmin), the surface molecular
electrostatic potential maxima (VS,max) and minima (VS,min), and the sum of
the surface maxima (�V+

s) or minima (�V−
s) values of the electrostatic

potential. The �V−
s should not be viewed as a hydrogen bond basicity de-

scriptor but one reflecting nonspecific intermolecular interactions despite the
fact that similarities exist between each other. Vmin measures the hydrogen
bond-accepting tendency or hydrogen bond basicity of a molecule, whereas
VS,max measures the hydrogen bond-donating tendency or hydrogen bond
acidity of a molecule. The electrostatic potential V(r) is created in the space
surrounding a molecule by its nuclei and electrons. The electrostatic poten-
tial surrounding spherically symmetric, neutral atoms is positive everywhere.
However, when atoms combine to form molecules, regions of negative po-
tential develop. These are usually in regions surrounding electronegative
atoms, above and below multiple carbon-carbon bonds and aromatic rings,
and along the outer edges of strained carbon-carbon bonds. Each such neg-
ative region has one or more spatial minima, Vmin, associated with it. These
Vmin, as well as surface minima, VS,min, have served as a mean for ranking
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sites for susceptibility toward electrophilic attack (Gross et al., 2001; Ma et al.,
2004; Xu et al., 2007; Zou et al., 2002). Other descriptors related to the elec-
trostatic potential are indicated in Table S1, such as molecular electrostatic
potential (MEP) on the acidic atom N, O, or S (Liu and Pedersen, 2009); high-
est hydrogen bond acceptor potential (VHHA); and highest hydrogen bond
donor potential (VHHD; Yan and Gasteiger, 2003).

Another group of quantum-chemical descriptors is related to the mo-
ments (Table S1): σ -moments are derived from quantum chemical den-
sity functional calculations combined with the continuum solvation model
(COSMO). The zero-moment M0 is identical with the molecular surface, the
second moment M2 is a measure of the overall electrostatic polarity of the
solute, the third moment M3 is a measure of the asymmetry of the polar-
ization charge density profile, and the hydrogen-bond moments Macc and
Mdon are quantitative measures of the acceptor and donor capacities of the
compound, respectively (Klamt et al., 2002). The second principal moment
of inertia (SMI) is derived from 3D representations of the molecules (Dun-
nivant et al., 1992). The magnitude of the principal moments of inertia of a
molecule (PMI) encodes information about spatial distribution of mass and
its rotational properties. It also expresses the role of molecular size and vol-
ume in occupying the space between water molecules (Dimitriou-Christidis
et al., 2008). The quadrupole moment (in particular Qzz) was also found in
some equations (Staikova et al., 2004; Zeng et al., 2012; Table S6).

Several descriptors related to bond order were useful for some environ-
mental parameters (Tables S4, S5, and S10): the bond order of the carbon-
halogen bonds (BO; Chen et al., 1998b; Chen et al., 2001c; Zhao et al., 2001);
the OH bond order (BOOH), which is a measure of the strength of OH bond
(Citra, 1999; Hollingsworth et al., 2002); the average bond order (ABO(N)),
which is a term to correct the deficiency of the electrostatic or hydrogen-
bonding parameter for the N-atom containing compounds (Katritzky et al.,
1998); and the minimum bond order of an atom C (MinC; Pompe and Veber,
2001). The bond strength (BS) of the carbon-halogen bond to be broken en-
ables the differentiation between the reactivity of the various halogen atoms
(F, Br, Cl, and I; Peijnenburg et al., 1992).

Some descriptors are defined by using a combination of topological
invariants, such as interatomic connectivity, and quantum-chemical informa-
tion, such as atomic charges and bond orders: the atom quantum-connectivity
index of path type of the order 2 defined on the basis of graphs weighted
by charge density (2�pC(q)), and the bond quantum-connectivity index of
chain type of the order 6 based on graph weighted by bond orders (6εRg(ρ);
Table S1). The 2�pC(q) accounts for the topological structural features of
the sequence of three consecutive atoms (order 2), and includes quantum
chemical information through the use of atomic charge densities. It con-
trols the influence of the number of substitutions at different sites in the
molecule. The 6εRg(ρ), as for it, accounts for the influence of bond order
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weighted cyclic fragments of six bonds, that is, six-atom rings (Estrada et al.,
2004).

Several other miscellaneous descriptors were found (Table S1) such
as the hydrogen bonding donor charged surface area, (HDCA(2)), which is
connected with the hydrogen-bonding ability of compounds (Katritzky et al.,
1998); and the hydrogen acceptor dependent hydrogen donors surface area-2
(HDSA(2)), based on quantum chemical partial charge, which is also directly
related to hydrogen-bond acceptor capability of a molecule (Modarresi et al.,
2007). The D3DRY and D6DRY, that are VolSurf descriptors, represent the
hydrophobic energy calculated with the hydrophobic probes (Bordás et al.,
2011). The spin density (SD) is a measure of free spin concentrated on the
benzylic carbon after hydrogen atom abstraction (Beasley et al., 2009).

Finally, some quantum-chemical descriptors were specially used with
the LSER approach, their description is given in the next section.

2.8 Descriptors Related to the Solvation Energy

Linear solvation energy relationships (LSER) are a part of the wider field
of linear free energy relationships (LFER; Platts et al., 1999). LSER use a
mechanistic understanding of the partition process, which considers the in-
teraction energies that contribute to the overall free energy of the transfer
process (Abraham and McGowan, 1987; Goss and Schwarzenbach, 2001;
Kamlet et al., 1988). It takes into account the energy term for cavity for-
mation (proportional to the size of the molecule which can be related to
the geometric descriptors Vi or Vx), and the interaction terms that can be
decomposed in four terms as follows: (a) the induction of dipoles within the
solutes (London dispersive forces, Debye forces) represented by the excess
molar refraction (R2), (b) electrostatic interactions represented by dipolar-
ity/polarizability term (π∗), (c) overall hydrogen bond donor acidity �α2

H

(H-donor or electron-acceptor), and (d) overall hydrogen bond acceptor ba-
sicity �β2

H (H acceptor or electron donor; Gawlik et al., 1997; Nguyen et al.,
2005; Platts et al., 2000; Van Noort et al., 2010; Wauchope et al., 2002).
For transfer between water and wet solvents, such as wet octanol or ethyl
acetate, the �α2

H and �β2
H are replaced by �α2

O and �β2
O for certain

functional groups (e.g., pyridines, sulfoxides), whose basicity is found to
change substantially between wet and dry solvents (Platts et al., 1999 and
2000).

In theoretical LSER (TLSER), the energy term for cavity formation is the
molar volume (Vm). The hydrogen bond acceptor basicity is represented
by two terms: the covalent basicity (εβ), based on EHOMO, and the solute
electrostatic basicity (largest negative net atomic charge on an atom q−). The
hydrogen bond acidity is similarly divided into a covalent acidity (εα), which
is a function of the ELUMO, and the solute electrostatic acidity (most positive
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atomic net charge on a hydrogen atom QH
+; Cramer et al., 1993; Famini and

Wilson, 1997; Wilson and Famini, 1991)
To simplify the TLSER equation, Chen et al. (1996a) developed a mod-

ified TLSER (MTLSER): the equation only depends on the polarizability (α),
the dipole moment (μ), the EHOMO and ELUMO, QH

+, and q−. These descrip-
tors were presented in the previous section (2.7).

3. PARAMETERS FOR PROCESSES GOVERNING THE FATE
OF ORGANIC COMPOUNDS IN THE ENVIRONMENT

The fate of organic compounds in the environment is mainly regulated by
their behavior in the soils on which they might be applied directly (i.e., after
application of pesticides) or indirectly through rain and water leaching, at-
mospheric deposition or organic waste amendments. In soils, organic com-
pounds are affected by various physicochemical and biological processes
conditioning their biotic and abiotic degradation, their retention (adsorption,
desorption); their transfer toward groundwater, surface water, plant, and at-
mosphere; and consequently their bioavailability and potential side effects
on the organisms living in the contaminated environment. The organic com-
pounds also undergo adsorption phenomena in sediments, and degradation
in water, sediments, and atmosphere (Katayama et al., 2010).

From QSAR that are reviewed in this work, we propose to classify the
processes governing the fate of organic compounds in the environment in
six main categories (Table S2): water dissolution, dissociation, volatilization,
retention, degradation, and absorption by higher plants. These processes are
represented by 90 different environmental parameters. Their description and
their relationships to the structural molecular descriptors are included in the
following sections.

3.1 Water Dissolution Process

The physicochemical properties of substances related to their dissolution
in water control their partitioning between air, water, soils, sediments, and
biota, and thus the accumulation and the rates of transfer between these
different compartments. The key parameters include water solubility (SW)
and octanol-water partition coefficient (KOW; Shiu et al., 1988; Table S2). A
review of the QSAR allowing, in particular, the prediction of SW and KOW

was written by Katritzky et al. (2000). In the following paragraphs, we have
completed and updated this review by considering the results that have been
published since then.
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3.1.1 WATER SOLUBILITY

Water solubility, SW, plays an important role in the fate of organic com-
pounds in the environment. One of the routes of transport of contaminants
in the environment is water, therefore SW affects the ability of a compound
to be transported as well as its rates of transfer between water and other
environmental compartments (Kühne et al., 1995). Table S3 summarizes the
65 QSAR found for the prediction of SW. They are classified in three parts:
relationships with one descriptor, with one category of descriptors, and with
several descriptors and categories. The equations involve from 1 to 30 de-
scriptors (excluding the equations based on the fragment approach), but
most of them involve 1–3 descriptors. The QSAR were developed for a wide
diversity of organic compounds (Table S3).

Several of the one-descriptor relationships involved descriptors related
to the molecular surface and volume (Cao et al., 2009; Huibers and Katritzky,
1998; Katritzky et al., 2000; Puzyn et al., 2009; Shiu et al., 1988; Table S3). For
13 androgens, the SW were moderately correlated with the hydrophobic com-
ponent of the total solvent accessible surface area (FOSA), the hydrophilic
component of the total solvent accessible surface area (FISA) or the van
der Waals surface area of polar nitrogen and oxygen atoms PSA (r2 < 0.55;
Table S3). As FISA and PSA increase, the polarity of the molecules rises and
the aqueous solubility should rise (Cao et al., 2009). For 10 chloronaph-
thalenes, a relationship between SW and the solvent accessible molecular
volume (SAVw) in the water SAVw was proposed. The correlation coefficient
is good (r2 = 0.950; Table S3), however, the number of compounds used to
develop the QSAR is low, therefore giving uncertainty on its robustness. The
SAVw is directly related to the cavitation, and formation of cavitation in the
solvent plays a critical role in dissolving highly hydrophobic compounds.
In the case of chloronaphthalenes, the SAVw mainly depends on the chlo-
rination degree: it increases from mono- to octa-chloronaphthalenes. The
influence of the substitution pattern on SW is less pronounced. The electro-
static and dispersive interactions occurring between the solvent and solute
after formation of the caves are less important for the dissolving process.
However, for chloronaphthalenes, those factors become significant when
comparing each other congeners with the same number of chlorine sub-
stituents (Puzyn et al., 2009). The molecular volume Vm was a good descrip-
tor to estimate the SW of 241 hydrocarbons and halogenated hydrocarbons
(r2 = 0.904; Table S3; Huibers and Katritzky, 1998), but also of 15 polychlori-
nated dibenzo-p-dioxins (PCDD; Shiu et al., 1988). Water as a solvent would
much prefer to interact with itself or other hydrogen bonding or ionic species
than with a nonpolar solute, so there is a lower SW for larger hydrocarbon
solutes. However, the major problem with Vm as the sole descriptor for SW

is that it does not take into account steric interactions or conformational ef-
fects (Huibers and Katritzky, 1998). For 209 polybrominated diphenyl ethers
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(PBDE) and hexabromobenzenes (HBB), there was a good correlation be-
tween SW and the 3D-MoRSE-signal 23 weighted by atomic masses, Mor23m
(r2 = 0.918; Table S3). Mor23m brings complex 3D information related to
the weights of the atoms in the structure, as viewed by an angular scattering
function (Papa et al., 2009). Topological descriptors were involved in several
relationships: the Lu index (Lu, 2009), and four different MCI: 0χv, 1χv, 3χv

or 5χv. The best correlations were obtained with 1χv and 3χv: r2 > 0.933, but
the number of compounds considered is low (Table S3; Gerstl and Helling,
1987). Using constitutional descriptors, relationships were found between
SW and the molecular weight (MW) for only six PBDE (Wania and Dugani,
2003), or with the number of chlorine atoms nCl for 15 PCDD (Shiu et al.,
1988). For each chlorine added, there is a 5× drop in solubility. Finally, the
polarizability α allowed good estimate of the SW of 20 substituted phenols (r2

= 0.951; Table S3; Xie et al., 2008), and 75 PCDD (r2 = 0.978; Table S3; Yang
et al., 2007). SW is inversely proportional to α mainly because α is correlated
with the molecular volume. Indeed, the molecular volume can reflect the
absorbed energy during the formation of cavity in the solvent (Yang et al.,
2007).

Table S3 reports 21 QSAR developed with descriptors belonging to
the same category. Chen et al. (2007) used the positions of Cl substitution
method to predict the SW of 107 polychlorinated diphenyl ethers (PCDE;
Table S3). The best model involved four descriptors relative to the positions
of chlorine atoms in the compound—N2(6), N3(5), N4, Nm—but the effect of
N3(5) on SW was the most important one. For 53 miscellaneous compounds,
the quantum-chemical descriptors atom quantum-connectivity index of path
type of the order 2 defined on the basis of graphs weighted by charge density
(2�pC(q)), and bond quantum-connectivity index of chain type of the order
6 based on graph weighted by bond orders (6εRg(ρ)) were better descriptors
to predict SW than constitutional (nC, and gravitation index (IG)), geometric
(molecular surface S, molecular volume divided by xyz box Vxyz), or topo-
logical ones (3χ , average structural information content index of order two
I2av), and better descriptors than the quantum-chemical descriptors minimal
net atomic charge Qmin, and α (Estrada et al., 2004). Three equations were
based on electro-topological descriptors (Huuskonen, 2001a; Thomsen et al.,
1999; Table S3). Two of them were obtained by Huuskonen (2001a) for 674
compounds: one only with atom-type E-state index, and one with E-state
index and three simple indicator variables that are applied, for example,
to compounds containing only aliphatic C and H, or to pyridines and their
alkyl derivatives. Then, the SW of up to six carbon atoms phthalates in the
alkyl chain was moderately reproduced with electro-topological descriptors
related to polar/hydrophilic (Sester) and polar/hydrophobic (Salkyl) characters
(r2 = 0.574; Table S3). For high molecular weight phthalates, other processes
such as the formation of micro-droplets prevail, leading to unexpected high
apparent water solubility (Thomsen et al., 1999). Several MCI (0χv, 1χ ,1χv,
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3χ , 3χv, 3χv
pc, 5χv, 6χv

c, or 6χv
pc) were used to predict the SW of 50 alcohols,

14 derivates of benzanilides, and miscellaneous compounds (Dai et al., 1998;
Gerstl and Helling, 1987; Nirmalakhandan and Speece, 1988a): the best cor-
relations were obtained for alcohols (r2 = 0.961) and the worst for pesticides
(r2 = 0.389; Table S3). The SW of 107 PCDE was correlated to six quantum
molecular electronegativity-distance vectors (M11, M12, M13, M22, M23, M33;
Sun et al., 2007). The combination of the polarizability α and the total en-
ergy TE was found useful to estimate the SW of 20 substituted phenols (r2 =
0.980; Xie et al., 2008), and of 107 PCDE (r2 = 0.956; Yang et al., 2003). The
addition of the most positive atomic net charge on a hydrogen atom (QH

+)
to the equation allowed to improve the correlation for the substituted phe-
nols (r2 = 0.985; Xie et al., 2008; Table S3). For these phenols, SW increases
with the increase in TE, because TE can be related to molecular volume.
The molecule tends to be more hydrophobic and the substituted phenol has
thus difficulty in entering water phase, resulting in low SW (Xie et al., 2008).
Similar results were found for the 107 PCDE (Yang et al., 2003). For 27 halo-
genated anisoles, SW increases with ELUMO and Qyy, and conversely with the
decrease in QH

+. The effect of Qyy was the most remarkable (r2 = 0.980;
Table S3; Zeng et al., 2012). Some relations based on the fragment approach
were successfully developed for high number of compounds (Clark, 2005;
Hou et al., 2004; Kühne et al., 1995; Table S3).

The number of descriptors involved in the several descriptors and cat-
egories equations ranged from 2 to 30 (Table S3). The combination of dif-
ferent categories of descriptors improved the estimation of SW (increase in
r2; Huibers and Katritzky, 1998), probably because it allows considering si-
multaneously different representations and properties of the molecule. Con-
stitutional descriptors (C/H, MW, number of double bonds (NBD), number
of single bonds (NSB), nC, nCl, nH, nO, NCl) were used in more than half of
the equations, combined either with topological (mainly MCI but also MDE,
WTPT, or CIC), quantum-chemical (α, number of independent points of the
positive electrostatic potentials on molecular surface N+

v, charges) and/or
geometric (GEOM, GRAV) descriptors (Bhhatarai and Gramatica, 2011; Hu-
uskonen, 2000; McElroy and Jurs, 2001; Müller and Klein, 1992; Nirmalakhan-
dan and Speece, 1988a, 1989, 1990; Patil, 1994; Sutter and Jurs, 1996; Xu
et al., 2010; Table S3). For 107 PCDE, SW depended on the NCl because
the larger PCDE molecules would yield stronger dispersion-type interactions
between them and tend to be excluded from water (i.e., the SW value be-
comes smaller). PCDE congener with smaller N+

v will likely have stronger
interaction with the water, and thus produce higher SW. The introduction of
σ 2

tot in the equation indicates that the uniformity of electrostatic potential
distribution has effect on aqueous solubility of PCDE (Xu et al., 2010). For 52
pesticides, acceptable correlation between SW and C/H, 0χ , 0χv and α was
found (r2 = 0.810; Table S3), but this relationship cannot be suitably used
for O-analogues and compounds with C/H ratio higher or equal to 2 (Patil,
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1994). The QSAR developed by Sutter and Jurs (1996) to estimate the SW of
123 organic compounds relied on nine descriptors: two constitutional (nC,
nO), one geometric (GEOH), three geometric-electronic (SAAA-1, SAAA-2,
FNSA-3), two topological (WTPT-1, WTPT-2), and one quantum-chemical
(QSUM). The nO, QSUM, and FNSA-3 descriptors could encode dipole inter-
actions; nC, GEOH, WTPT-1, and WTPT-2 could have been responsible for
London dispersion forces; and SAAA-1 and SAAA-2 were probably encod-
ing the hydrogen bonding interactions between the molecules and solvent
(Sutter and Jurs, 1996).

Combination of quantum-chemical descriptors (bond order of nitrogen
atom ABO(N), EHOMO, ELUMO, fractional area-weighted surface charge of hy-
drogen bonding donor atoms FHDSA(2), number of electron Nel, minimal
net atomic charge Qmin, QH

+, electronic spatial extent Re, TE or solvation
free energy �Gs) with geometric (molecular contact surface area CSA, largest
bond length between two carbon atoms Lcc), geometric-electronic relative
negative charged surface area (RNCS), or topological structural information
content of zeroth order (0SIC) descriptors allowed good estimate of the SW of
various compounds (Katritzky et al., 1998; Lu et al., 2008; Schüürmann, 1995;
Table S3). For 411 organic compounds, the two most important descriptors
were the number of electrons (Nel) and the most negative partial charge in
the molecule (Qmin). The Nel can be related to cavity-size effects (dispersion
and cavity formation), and the Qmin can be related to one specific type of
solute-solvent interaction, as solute-solvent interaction is a major determin-
ing factor for the SW of compounds. Among the other descriptors involved
in the relationship, the structural information content of a graph based on
zero-order neighborhood of vertices (0SIC) describes the atomic connectiv-
ity in the molecule and encodes the size and the degree of branching in
the compound. The size and the shape of the molecule also directly affect
the intermolecular interaction. The average bond order of nitrogen atom
(ABO(N)) seems to correct the deficiency of the electrostatic or hydrogen-
bonding parameter for the N-atom containing compounds (Katritzky et al.,
1998).

Some equations were found combining geometric (magnitude of the
third geometric moment GEOM-3, shadow area SHDW-i, Vm), topological
(total weighted number of paths in the molecule divided by the total number
of atoms ALLP-4, structural information content of zero-order 0SIC, average
structural information content index of order zero I0av, MDE-i, WTPT-2, 1χv

rc),
electro-topological (average E-state value over all heteroatoms (EAVE-2),
sum of E-state values over all heteroatoms (ESUM-2)), quantum-chemical
(sum of charges on all donatable hydrogens (CHDH), electrostatic hydrogen
bonding basicity (EHBB), maximum partial charge for a hydrogen atom
Qmax(H), average surface area times charge on donatable hydrogen (SCDH-
2)), and/or several geometric-electronic (sum of charges on acceptor atoms
(CHAA-2), difference in partial surface areas (DPSA-i), fractional positively
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charged partial surface areas (FPSA-1), partial negative surface area (PNSA-i),
partial positive surface area (PPSA-1), sum of the surface area of acceptor
atoms (SAAA-3), surface weighted negatively charged partial surface area
(WNSA-1), surface weighted positively charged partial surface area (WPSA-
2)) descriptors (Estrada et al., 2004; Huibers and Katritzky, 1998; McElroy
and Jurs, 2001; Mitchell and Jurs, 1998; Table S3). For 241 hydrocarbons
and halogenated hydrocarbons, the molecular volume Vm was nevertheless
the most performing descriptor (high t test value; Huibers and Katritzky,
1998). As indicated previously, in order for a solute to enter into aqueous
solution, a cavity must be formed in the solvent for the solute molecule.
For 265 miscellaneous compounds, Mitchell and Jurs (1998) developed a
nonlinear model involving nine descriptors: SHDW-3 and GRAV, which are
geometry-based descriptors, three geometric-electronic descriptors (PPSA-
1, FPSA-3, WPSA-3), three topological descriptors (2SP3, ALLP-3, WTPT-4)
that contained information about weighted paths and carbon types, and one
quantum-chemical descriptor (q−). This nonlinear model provided better
estimate of SW (r2 = 0.974) than the linear one (r2 = 0.931; Table S3).

Atom type E-state index and topological descriptors (essentially MCI)
were correlated to the SW of pharmaceuticals and miscellaneous compounds
(Huuskonen, 2000; Huuskonen et al., 1997, 1998). However, the model gave
poor predictions for the subgroup of pesticides containing phosphate or
thiophosphate group and polychlorinated hydrocarbons (Huuskonen et al.,
1998).

The LSER and TLSER approaches were used successfully to estimate the
SW of numerous compounds (Famini and Wilson, 1997; Feng et al., 1996;
Hickey and Passino-Reader, 1991; Xie et al., 2008; Table S3). Finally, for
797 miscellaneous compounds, the development of a relationship based on
the 3D structure of the molecules and eight descriptors: five constitutional
(AROM, ALIF, nH, nO, nHG), and three quantum-chemical (highest hydrogen
bond acceptor potential VHHA, highest hydrogen bond donor potential VHHD,
and α) allowed good estimate of the SW (Yan and Gasteiger, 2003).

As a conclusion, the descriptors related to the surface (CSA, FISA, FOSA,
PSA, S) and volume (SAVw, Vi, Vm, Vxyz) of molecules seem to be the most
appropriate ones to estimate the SW of organic compounds, but descriptors
such as 0χ , 0χv, the number of chlorine atoms nCl, and the polarizability
α (which can be related to the volume) also play an important role. All
categories of descriptors were used in the equations.

3.1.2 OCTANOL-WATER PARTITION COEFFICIENT

The octanol-water partition coefficient, KOW, is the most frequently used
parameter to characterize the hydrophobicity (or lipophilicity) of chemicals,
which is a very important property in environmental sciences (Katritzky
et al., 2000). Therefore, a high number of QSAR were developed to predict
the KOW. The 115 equations that are reported in Table S4 contain from 1 to 19
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molecular descriptors, most of them relying on one, three, or four descriptors,
and they were developed for a wide diversity of organic compounds.

As for SW, the prediction of KOW with only one descriptor mainly in-
volved geometric descriptors related to the molecular surface or volume
(Table S4). Indeed, the size of the molecule is a major factor in determining
its solubility and partition behavior (Doucette and Andren, 1988). The FOSA,
FISA, or the PSA (Table S1) of polar nitrogen and oxygen atoms allowed
good estimates of the KOW of several hormones (r2 > 0.782; Table S4; Cao
et al., 2009). The FPSA-3 was not well correlated to the KOW of 133 PCB (r2 =
0.251; Table S4; Lü et al., 2007), but the total surface area (TSA) was very well
correlated with the KOW of PCB and several miscellaneous compounds (r2 >

0.870; Table S4; Doucette and Andren, 1988; Hansen et al., 1999a; Hawker
and Connell, 1988; Lü et al., 2007), and the SAS with the KOW of 139 PCB
(r2 = 0.898; Table S4; Makino, 1998). The volume, as for it, was used to pre-
dict the KOW of 15 PCDD (Shiu et al., 1988), and of 142 compounds including
haloalkanes, aromatics, haloaromatics, and alkenes (Bodor and Buchwald,
1997). Then, some relationships were found with MW for 139 PCB, only
six PBDE or 64 aromatic compounds (Doucette and Andren, 1988; Makino,
1998; Wania and Dugani, 2003), the maximum valency of C atom (MVC) for
133 PCB (Lü et al., 2007), nBr for only nine PBDE (Braekevelt et al., 2003),
and nCl for 15 PCDD (Shiu et al., 1988). The addition of chlorine substituents
results in an increase in the KOW. In general, topological descriptors such as
MCI (Dai et al., 1999; Doucette and Andren, 1988; Gerstl and Helling, 1987;
Güsten et al., 1991; Sabljic, 2001), CRI (Türker Saçan and Inel, 1995), the Lu
index (Lu, 2009), and T(O· · ·Br) (Papa et al., 2009) allowed good estimate
of the KOW of various compounds (HBB, PAH, and their alkyl derivatives,
PBDE, PCB, polychlorinated organic compounds (PCOC), and phthalates;
Table S4). In particular, 0χv, which is a simple and acceptable approxima-
tion for the molecular volume, was found to be a good descriptor for the
KOW of PAH and their alkyl derivatives (Güsten et al., 1991; Sabljic, 1991,
2001; Sabljic and Piver, 1992) but not for that of nonacid pesticides and
miscellaneous organic compounds (Gertsl and Helling, 1987). Among the
quantum-chemical descriptors involved in one-descriptor relationships, the
ionization potential (IP) and the dipole moment (μ) were used to estimate
the KOW of 139 PCB, however, the correlations were very bad (r2 < 0.340;
Makino, 1998). Yang et al. (2007) modeled KOW using the polarizability α

of 75 PCDD and dibenzo-p-dioxins: the greater the α is, the larger the KOW

is, suggesting that PCDD molecule with large α possesses great dispersion
force and can easily enter the octanol phase. Similarly, the KOW of 133 PCB
was correlated with α (Lü et al., 2007). Finally, the electron affinity (EA) and
the final heat of formation (HOF) were satisfactorily correlated with the KOW

of 139 PCB (r2 = 0.743 and 0.870, respectively; Makino, 1998), and the total
energy (TE) with the KOW of 20 substituted phenols (r2 = 0.843; Xie et al.,
2008; Table S4).
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Using several descriptors of the same category, it was shown that con-
stitutional descriptors based on the numbers of chlorine atoms (N2(6), N3(5),
N4) allowed good prediction of the KOW of 107 PCDE (r2 = 0.983) and of 209
PCB (r2 = 0.949; Chen et al., 2007; Han et al., 2006). As observed before for
PCDD (Shiu et al., 1988), the higher the number of substituted chlorine atom
is, the larger the KOW value of PCDE is. For 22 polychlorinated diphenyl
sulfides (PCDPS), the pairwise of Cl atoms at meta position Nm was added to
N2(6), N3(5), and N4, and KOW was shown to increase with Nm for compounds
with the same number of chlorine substituents (Shi et al., 2012). But, these
equations were only developed for organochlorines, therefore their applica-
bility domain remains limited. Atom/fragment contribution approaches were
used successfully for high number of compounds (Clark, 2005; Katritzky
et al., 2000; Meylan and Howard, 1995; Table S4). However, the fragment
constant approach leads to oversimplification of steric and conformational
effects of complex structures. In addition, there is a need for correctional
factors, and it is not possible to estimate KOW for uncorrelated or unknown
fragments. Some equations were based on several topological descriptors:
MCI, the number of path length (P7, P10), the Balaban index based on dis-
tance (Jb), the Wiener index (W), and information indices (CIC, IC, SIC) led
to good estimate of KOW of various organic compounds (r2 > 0.652; Table
S4; Basak et al., 1996; Dai et al., 1998; Niemi et al., 1992). However, for pes-
ticides and miscellaneous compounds, the KOW were not well correlated to
MCI (r2 < 0.425; Table S4; Gerstl and Helling, 1987). For 50 aromatic hydro-
carbons, 300 pharmaceutical compounds and 14 phthalates, the KOW were
correlated to E-state indices (Gombar and Enslein, 1996; Huuskonen et al.,
1999; Thomsen et al., 1999), but these indices cannot account for 3D and
conformational effects, which may play a major role for solubility properties
of chemical compounds. The polarizability α was combined with μ to predict
the KOW of 22 PCDPS (Shi et al., 2012); with μ and the superdelocalizability
of the highest unoccupied molecular orbital (SHOMO) to predict the KOW of 17
ureas (Reddy and Locke, 1996); with μ, ELUMO and the largest negative net
atomic charge on an atom (q−) for 28 alkyl (1-phenylsulfonyl) cycloalkane-
carboxylates (Chen et al., 1996a); with EHOMO and ELUMO for 209 PCB (Zhou
et al., 2005); and with the partial atomic charge on nitrogen (q2N) and the
partial atomic charge on oxygen (q2O) to predict the KOW of 592 miscella-
neous compounds (Xing and Glen, 2002). As indicated before, the bigger the
α, the more hydrophobic the molecule is predicted to be: molecules which
require a bigger cavity are predisposed to move into the octanol layer. The
μ relating with the intermolecular dipole-dipole and dipole-induced dipole
interactions also plays a role in the variations of KOW because molecules with
larger μ also tend to transfer from octanol phase to water phase (Shi et al.,
2012). Finally, the atomic charges q2N and q2O are derived from computed
charge densities of nitrogen and oxygen atoms of the molecule, which is a
measure of their ability to form hydrogen bonds with the solvent molecules
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(Xing and Glen, 2002). For the 209 PCB, EHOMO had the most important influ-
ence on KOW. Large values of EHOMO and ELUMO would result in small values
of KOW for PCB because EHOMO represents the proton acceptance ability in
forming hydrogen bond, while ELUMO represents the proton donation ability
in formation of hydrogen bond. Therefore, the compounds with large values
of EHOMO and ELUMO tend to donate or accept protons easily (Zhou et al.,
2005). The KOW of 49 halogenated anisoles was correlated to ELUMO, the most
positive atomic net charge on a hydrogen atom (QH

+), and the quadrupole
moment (Qzz). The KOW increases with increasing QH

+, which suggests
intermolecular electrostatic interactions between halogenated anisoles and
octanol molecules, with the carbon atoms in halogenated anisoles to accept
electrons and the oxygen atoms in octanol molecules to donate electrons.
On the contrary, KOW increases with decreasing ELUMO (see previous) and
Qzz (Zeng et al., 2012). Finally, quantum-chemical (EHOMO, q−, QH

+, TE, μ)
descriptors allowed the estimate of the KOW of 70 PCOC (r2 = 0.931; Table
S4; Dai et al., 1999), and for 107 PCDE, the equation was based on the in-
teractions between non-hydrogen atoms M11, M13, M22, and M33 (r2 = 0.984;
Table S4; Sun et al., 2007).

In general, as for SW, the combination of descriptors of several cate-
gories improved the quality of the prediction of the KOW (Dai et al., 1998;
Güsten et al., 1991; Lü et al., 2007; Makino, 1998; Xie et al., 2008; Table
S4). Numerous relationships were based on the molecular volume (V, VdW,
VdWA, Vi, Vm) and/or surface (CSA, PSA, S, SAS, TSA), associated with sev-
eral constitutional (Ialkane, Iv, MW, Np), topological (MCI, CICi, ICi, P10, 3DW),
or quantum-chemical (EA, EHOMO, ELUMO, HOF, IP, QN, qO, QO, QON, SHOMO,
SN, TE, VS,max, Vmin, �Gs, μ, μtot, �V−

s) descriptors (Basak et al., 1996; Bodor
and Buchwald, 1997; Bodor et al., 1989; Edward, 1998; Famini and Wilson,
1997; Li et al., 2008; Makino, 1998; Nandihalli et al., 1993; Reddy and Locke,
1994b, 1996; Schüürmann, 1995; Xie et al., 2008; Zou et al., 2002; Table S4).
The molecular volume was a key descriptor because molecules with larger
size would tend to distribute into octanol: it is much easier to open a cavity
in octanol than in water (fewer hydrogen bonds) therefore larger molecules
will preferentially solvate in the octanol layer (Famini and Wilson, 1997).
For 118 compounds, including basic heterocycles, halogenated compounds,
multiple substituted benzenes derivatives, and pharmaceuticals, the geomet-
ric descriptors, surface S (indirectly, the volume), and ovality O, but also the
MW, which is also a volume-related descriptor, were the most significant
descriptors. The need to include Ialkane (classifier indicator for alkane) in
the relationship may arise from the different nature of partition of alkanes:
they cannot participate in any special interaction, such as hydrogen bonding
and electrostatic effect with the surrounding solvent molecules; therefore,
the alkanes cannot account for a quasi-structured hydrate environment. All
the remaining descriptors are derived from computed charge densities of
nitrogen and oxygen atoms of the molecules, these elements being
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capable of forming hydrogen bonding with the solvent molecule (Bodor
et al., 1989).

As indicated previously, the polarizability α plays an important role in
the prediction of KOW (the greater the α is, the larger the KOW is) and it was
involved in several equations (but never in equations containing descriptors
related to surface or volume; Table S4). The polarizability α with FPSA-3
and/or MVC, allowed good prediction of the KOW of 133 PCB (r2 = 0.928;
Table S4; Lü et al., 2007), and with MW and �Hf it provided satisfactory
estimate of the KOW of 106 PCDE (r2 = 0.976; Table S4; Yang et al., 2003).
The relationship obtained by Patil (1994) for 55 pesticides, and based on
carbon to hydrogen ratio C/H, α, and two MCI (0χ and 0χv), cannot be
used acceptably for O-analogues and compounds with C/H ratio higher or
equal to 2.

Constitutional descriptors, such as the number of the chlorine atoms on
phenyl rings NCl, the number of ortho-chlorine substituents normalized to
the molecular weight of the compound NrCl0, the number of meta-chlorine
substituents ClMETA, the number of meta/para pairs of chlorine substituents
ClMP-PAIR or the number of branching points in the carbon skeleton NoB3

were combined to MCI to estimate the KOW of chlorinated compounds
and of PAH and their alkyl derivatives (Güsten et al., 1991; Sabljic et al.,
1993), or to quantum-chemical descriptors (the number of independent
points of the positive electrostatic potentials on molecular surface N+

v, and
the average of the sum of the surface minima values of the electrostatic
potential V−

s,av) to estimate the KOW of 107 PCDE (Xu et al., 2010). For
PCDE, the NCl term was introduced in the equations because the larger
PCDE molecule would yield stronger dispersion-type interaction between
the octanol molecule (i.e., the KOW value becomes higher), and tend to
be excluded from water. As V−

s,av can be viewed as a descriptor reflecting
nonspecific intermolecular interactions, the introduction of this descriptor in
the equation reveals that nonspecific intermolecular interaction is statistically
significant to KOW (Xu et al., 2010). For 64 benzotriazoles, the geometric de-
scriptor Geary autocorrelations-lag 3 weighted by atomic masses (GATS3m)
was combined with two topological descriptors (2D binary fingerprint that
takes into account the presence of C-C (C-C single bond) at a topological
distance 8B08[C-C], and Moran autocorrelations lag (1) weighted by atomic
van der Waals volume MATS1v), and nN to give correct estimate of the
KOW (r2 = 0.886; Table S4; Bhhatarai and Gramatica, 2011). With global
descriptors, constituted by 19 constitutional and quantum-chemical descrip-
tors, Cheu et al. (1996) modeled the KOW of 30 phenylthio, phenylsufinyl,
and phenylsulfonyl acetates. E-state indices associated to MW or to several
topological descriptors were used successfully to estimate the KOW of miscel-
laneous organic compounds (Gombar and Enslein, 1996; Tetko et al., 2001)
but the results were not good for drug compounds (Huuskonen et al., 1999;
Table S4). Finally, for 122 nonionic organic compounds, the use of several
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functionality index [η‘F] allowed good estimate of the KOW (r2 = 0.960; Table
S4; Roy et al., 2007).

Some relationships were developed using LSER, TLSER, and MTLSER
approaches (Chen et al., 1996a; Dai et al., 1998; Kamlet et al., 1988; Katritzky
et al., 2000; Xu et al., 2002). In general, the molecular volume was again the
most significant descriptor (Famini and Wilson, 1997; Feng et al., 1996; He
et al., 1995; Xie et al., 2008; Xu et al., 2002). The coefficient was positive,
indicating an endoergic effect consistent with most cavity/bulk effects. As
indicated previously, cavity effects are critical, and therefore larger molecules
will preferentially solvate in the octanol layer (Famini and Wilson, 1997).
For 28 alkyl(1-phenylsulfonyl)cycloalkane-carboxylates, the polarizability α

was the most significant descriptor, but it is in direct proportion to the
intrinsic molecular volume (Chen et al., 1996a). TLSER equation was also
combined with a fragment approach to estimate the KOW of 148 various
organic compounds (Platts et al., 1999 and 2000).

Considering all the results that are summarized in this section, it ap-
peared that the molecular descriptors related to the volume (V, VdW, VdWA,
Vi, Vm, Vx) were the most relevant ones to assess the KOW of organic com-
pounds, but MW, 0χv, 1χv, α, μ, EHOMO and ELUMO were also frequently
involved in the equations and found to allow good estimate of the KOW.
All categories of descriptors were used in the equations, except geometric-
topological descriptors.

3.2 Dissociation Process

The dissociation constant, pKa, which describes the extent to which a com-
pound dissociates in solution, is a fundamental physical property of a chem-
ical. It is a key feature, which governs the chemical reactivity of the sub-
stances with other compounds in any solvent, and also the interaction with
the solvent itself, and thus its hydrophobicity and water solubility (Citra,
1999; Jover et al., 2008). Lee and Crippen (2009) focused on the descrip-
tion of the methods used to predict the pKa (e.g., quantum chemical and
continuum electrostatic methods or artificial neural networks), rather than
to review the different descriptors used in the relationships. This section is
therefore different and complementary to the work of Lee and Crippen.

A very high number (145) of QSAR were developed to estimate the
pKa of organic compounds (Table S5). Most of these relationships use only
one molecular descriptor but they can use up to eight descriptors, and most
of the descriptors are quantum-chemical descriptors (the pKa values them-
selves reflect electronic properties in a direct manner). Few constitutional,
geometric, and topological descriptors have been also involved (Table S5).
The QSAR were developed for several specific classes of organic compounds
but not, for example, for pesticides (Table S5).
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The estimation of the pKa using one descriptor mostly involves the elec-
trophilic superdelocalizability (SE) of the atoms N, C or O. The best correla-
tions were found for anilines and amines, and ortho phenols (r2 > 0.900), and
the worst for heterocycles, pyridines and tertiary amines (r2 < 0.570; Tehan
et al., 2002a; Tehan et al., 2002b; Yu et al., 2010; Table S5). SE quantifies the
susceptibility of a molecule for an electrophilic attack. The negative value of
SE indicates that increasing SE correlates with increasing pKa and thus de-
creasing acidity (Yu et al., 2010; Table S5). The charges of atoms or groups
were also involved in numerous equations: the atomic partial charges of
carbon connected to hydroxyl or carboxyl groups (apc(C)), the atomic par-
tial charges of hydrogen of the hydroxyl group (apc(H)), the atomic partial
charges of oxygen of the hydroxyl group (apc(O)) (Hanai, 2003), the natural
charge on the amino nitrogen (Qn(N)) (Gross and Seybold, 2000; Gross et al.,
2001), the natural charge on the neutral amino group (Q(NH2)), the natural
charge on the cationic ammonium group (Q(NH3

+)) (Seybold, 2008), the
natural charge on the phenoxide oxygen (Qn(O−)) and the natural charge
on the phenolic hydrogen (Qn(H)) (Gross and Seybold, 2001), the Mulliken
charge of COO− group (QM(COO−)), the Löwdin charge of hydrogen (QL(H))
and of COOH (QL(COOH)), the AIM charge of hydrogen (QA(H)), the natu-
ral population analysis charge of COOH group (Qn(COOH)) (Hollingsworth
et al., 2002), the charge on the acidic hydrogen (Qacid

H) and the charge on
the basic nitrogen (Qbase

N) (Brown and Mora-Diez, 2006b), and the charge
on phenolic O or phenolate O atoms, (dOphenolic or dOphenolate) (Grüber and
Buß, 1989). In general, the correlation coefficients were high (r2 > 0.810),
except for protonated benzimidazoles (r2 = 0.644), but the number of com-
pounds used to develop the QSAR were sometimes very low, in particular
for fluorinated ethylamines (Table S5). For phenols, the significant correla-
tion between pKa and dOphenolic (r2 = 0.810; Table S5) can be explained by
the heterocyclic dissociation of the OH bond that should be facilitated by a
positive charge on O, both by polarizing the bond and by accommodating
the developing negative charge. The correlation with dOphenolate was never-
theless better: the charge distribution of the anion, especially at the acidic
center, is an indicator of the ability of the system to accommodate excess
negative charge and as such should correlate with acid strength (Grüber and
Buß, 1989). The Qn(H) and the Qn(O−) should serve as good measures of
acidity, more acidic hydrogens having lower electron densities. In the same
manner, delocalization of the phenoxide oxygen negative charge is expected
to impart stability to the phenoxide, favoring its formation and lowering the
pKa (Gross and Seybold, 2001). The Qacid

H is related to the delocalization of
charge over the molecule and in turn to the acidity: a lower value of Qacid

H

indicates good delocalization and should produce a higher pKa. The higher
pKa could also be explained by stating that the lower the positive charge on
the acidic hydrogen, the less polarized the N-H bond and the less acidic the
compound. The values of Qbase

N become more negative with increasing pKa
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which indicates that the larger the negative charge on the basic nitrogen of
the neutral molecular form, the stronger it will be as a base, hence a weaker
acid once protonated; that is well illustrated in the case of the benzimidazole
(Brown and Mora-Diez, 2006b). Hanai (2003) developed another approach
to estimate the pKa: the pKa is the sum of the pKa (base compounds) de-
rived from the atomic partial charge (apc) of basic compounds, and of �pKa

(substitute effect) derived from the difference in the atomic partial charge
between derivatized and base compounds. Good correlations between the
partial charges apc(H), and apc(O) were obtained, but again the number
of data is very low (r2 > 0.864; Table S5). The substitute effect on atomic
partial charge �pc was balanced between the atomic partial charge of the
substituted phenol and phenol, and was well correlated with �pKa (r2 >

0.900; Table S5; Hanai, 2003).
Equations were also developed with the molecular electrostatic potential

minima (Vmin), the surface molecular electrostatic potential minima (VS,min)
or the surface molecular electrostatic potential maxima (VS,max) for phenols,
phenolates, benzoic acids, benzoates and anilines. In any case, the corre-
lation coefficients were very good (r2 > 0.868; Table S5). Vmin and VS,min

are related to the initial attraction that brings the proton into the vicinity
of the amino group. When the VS,min values are more negative, the anionic
conjugate base is more attractive to the approach of an electrophile, and the
acidity is lower. VS,min indicates how negative is the electrostatic potential
of the oxygen, and VS,max how positive is the electrostatic potential of the
hydrogen. The VS,min values of the conjugate bases reflect the tendencies of
electrophiles to approach the anions to reform the acids; the VS,max values of
the acids are good indicators of the ease of proton loss (Gross et al., 2001;
Ma et al., 2004). Some equations were found with the molecular electrostatic
potential on the acidic atom (MEP) for amines, anilines, carboxylic acids,
alcohols, sulfonic acids, and thiols (r2 > 0.878; Table S5). The pKa of these
compounds were also correlated to �MEP (i.e., the MEP evaluated for the
isolated neutral acidic atom subtracted from the MEP value on the acidic
nucleus for each category of compounds; Liu and Pedersen, 2009).

Several QSAR were developed using the energies of orbitals (EHOMO,
Eacid

HOMO−1, Eacid
HOMO, Ebase

HOMO-2, Ebase
HOMO-1, Ebase

HOMO, ELUMO, Eacid
LUMO,

Eacid
LUMO+2, Ebase

LUMO; Brown and Mora-Diez, 2006b; Gross and Seybold,
2001; Grüber and Buß, 1989; Soscún Machado and Hinchliffe, 1995; Tehan
et al., 2002a; Yu et al., 2010; Table S5). For 18 protonated benzimidazoles,
the Eacid

LUMO+2 showed the strongest correlation to the experimental data
(r2 = 0.843; Table S5), followed by Ebase

HOMO-2 (r2 = 0.768; Table S5): an
empty orbital of an acid will be more involved in its deprotonation process,
while an occupied orbital of the base will be more involved in its protona-
tion process. The energy of the LUMO of the protonated species is related
to the formation of hydrogen bonds with the solvent molecules and the
subsequent deprotonation. A lower value for Eacid

LUMO means that hydrogen
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bonds will form with greater ease, and allows for easier deprotonation and
a lower pKa (Brown and Mora-Diez, 2006b). Among the other quantum-
chemical descriptors, the sum of the valence p natural atomic orbitals of the
atom (NAO) was correlated to the pKa of amines, anilines, carboxylic acids,
alcohols, sulfonic acids, and thiols (r2 > 0.905; Table S5; Liu and Pedersen,
2009). For 17 benzoic acids and benzoates, 19 phenols and phenolates, and
36 anilines, pKa values increase as the minimum molecular surface local
ionization energy (IS,min) values decrease. The IS,min is related to the sub-
sequent charge sharing or charge transfer. When the IS,min values are low,
there is a greater tendency for a proton to transfer back to form the neutral
acid, leading to a lower acidity and a higher pKa (Gross et al., 2001; Ma
et al., 2004). Finally, some relationships were found using (a) the OH bond
order (BOOH): the pKa of 17 substituted benzoic acids are proportional to
the strength of the bond between hydrogen and oxygen in the carboxylic
acid group (Hollingsworth et al., 2002); (b) the energy difference between
acid and conjugated base (Hf) for phenols (Grüber and Buß, 1989); (c) the
energy difference in aqueous phase between the neutral amines and their
cationic forms (�Eaq) for 26 amines (Seybold, 2008); (d) the energy dif-
ference in gas phase between the neutral amines and their cationic forms
(�Ed) for four fluorinated ethylamines and 28 amines (Seybold, 2008); (e)
the relative proton transfer energy (�Eprot) for 17 substituted benzoic acids
or 19 phenols derivatives, or the relative proton transfer enthalpy (�Hprot)
for 36 anilines (Gross and Seybold, 2001; Gross et al., 2001; Hollingsworth
et al., 2002): a positive value of �Eprot indicates that the substituted phenol
is less acidic than phenol itself, and a negative �Eprot suggests the substi-
tuted phenol is more acidic; (f) the aqueous Gibbs free energy (�Gaq) for
benzimidazoles (Brown and Mora-Diez, 2006a, 2006b); (g) the Gibbs free
energy of dissociation (�Gdiss) for 64 organic and inorganic acids (Klamt
et al., 2003); (h) the standard free energy (�GO) for 12 aliphatic, alicyclic,
and aromatic amines (Kallies and Mitzner, 1997); (i) the fractional number of
electron transfer (�N), or the associated energy change (�Ee) for 58 acids
(Gupta et al., 2007): a larger �Ee value denotes a stronger Lewis acid and
that corresponds to a smaller pKa value implying a stronger Brønsted acid. A
larger value of �N indicates a greater amount of electron transfer and hence
a better Lewis acid-base pair. Since the base remains the same for all the
acid-base pairs studied, a larger �N would indicate a stronger acid and a
smaller pKa value (stronger Brønsted acid).

With topological descriptors, relationships were developed with the
group philicity (ωg

+) for small number of compounds: nine substituted phe-
nols, nine alcohols or 14 substituted anilines and phosphoric acids, but
also for 31 substituted carboxylic acids (r2 > 0.722; Table S5; Parthasarathi
et al., 2006), and with two modified MCI, 1χ f and 1χ fλ, for 31 carboxylic
and halogenated carboxylic acids (Pompe and Randic, 2007; Table S5).
For 18 benzimidazoles, Brown and Mora-Diez (2006b) tried to develop a
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relationship with the change in the volume of the solvent cavity going from
the protonated to the neutral species (�VSC), but the correlation was poor
(r2 = 0.269; Table S5).

The QSAR based on several descriptors of the same category
only involve quantum-chemical descriptors. Ten equations combine self-
polarizability (e.g., ALPC1, ALPC2, ALPC4, ALPO3, and ALPN1), partial atomic
charges of atom N or O at position 1 (e.g., AQN1, AQO1, AQO2, AQO3), su-
perdelocalizability (e.g., SEC1, SEC2, SEC4, SEN, SEN1, SEO, and SEO3), charge
descriptors (e.g., Coulson net atomic charge of the nitrogen atom QC(N),
net atomic charge at the carbonyl O of the carboxylic group Q = O), the
nucleophilic frontier electron density of atom N at position 1 (FNN1), the
electrophilic frontier electron density of atom O at position 1 or 3 (e.g.,
FEO1, FEO3), and ELUMO (r2 > 0.690; Table S5; Tehan et al., 2002a; Tehan
et al., 2002b; Yu et al., 2010). One relationship was based on four charges of
carbon at different positions (dC4, dC12, dC16, dC18), and one charge of oxygen
(dO11) for 48 benzoic acids (r2 = 0.880; Table S5; Grüber and Buß, 1989). For
phenols, and aromatic and aliphatic carboxylic acids, EHOMO, Hf and charges
play an important role in the prediction of pKa. The other descriptors, relying
on atomic charges, enter the regression equations with negative signs show-
ing that the acid strength increases as excess negative charge decreases. For
phenols, the high regression coefficient of the meta-carbon (dC15) seems to
indicate that resonance effects which are primarily related to ortho- and para-
positions do not play a dominant role in differentiating acid strength (Grüber
and Buß, 1989). Three relationships contained different combinations of two
of the following descriptors (Yu et al., 2011): the energy-weighted acceptor
energy (EEvac), the energy-weighted donor energy (EEocc), the charge-limited
acceptor energy (EQvac), the energy-limited acceptor charge (QEvac), and the
energy-limited donor charge (QEocc). The correlations were good (r2 > 0.820;
Table S5). For 29 phenols with intramolecular H bonding, the pKa was corre-
lated to the EEvac evaluated at the acidic H atom, and EEocc evaluated at the
oxygen atom bonded to this H atom. The EEvac increases with increasing elec-
tron acceptor strength of H, indicating a larger energy demand for ionizing H
to become H+. Thus, EEvac increases with decreasing acidity and accordingly
increasing pKa, which is reflected by its positive regression coefficient. The
EEocc evaluated at the oxygen bonded to H increases with increasing oxygen
donor strength, which in turn reflects an increasing OH bond strength and
thus a lower tendency for bond fission. Accordingly, EEocc correlates with
decreasing acidity and thus with increasing pKa. EEvac evaluated at H is also
used as local reactivity parameter of the pKa prediction models calibrated
for the 190 aliphatic carboxylic acids. For this compound class, the QEocc is
used as second molecular descriptor. QEocc increases with increasing amount
of loose electron charge ready for donation, which stabilizes the carboxylic
O-H bond. QEocc increases with decreasing acidity (decreasing O-H bond
fission tendency) and thus with increasing pKa (Yu et al., 2011). The pKa
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of 19 phenols and phenolates was well correlated to IS,min and VS,max (r2 =
0.908; Table S5; Ma et al., 2004), and that of 13 benzimidazoles was found
to depend on the difference in molar energies of the ground states of the
product and reactants at 0 K (�Eo), molecular partition functions (qfi), and
the stoichiometric coefficient (ν i) of each species (Brown and Mora-Diez,
2006a; Table S5). Other equations involve the gas-phase free energy of the
proton abstraction (�Gg) and the solvation free energy (�Gs) for only eight
weak acids (Topol et al., 2000); or the charge on hydrogen atom (qH) and
the net atomic charges on the oxygen atom (qO) combined with BOOH for
various compounds (Citra, 1999; Table S5).

There is no result allowing the comparison of equations using one cat-
egory of descriptors and several categories of descriptors (Table S5). Using
constitutional descriptors such as Iortho associated with EEvac, Yu et al. (2011)
found good pKa predictions for 150 aromatic carboxylic acids (r2 = 0.820;
Table S5). The Iortho has a negative regression coefficient, indicating an in-
creased acidity for ortho-substituted compounds. Ortho substitution might
destabilize the molecular ground state as compared to meta and para sub-
stitution, and the associated steric repulsion decreases upon dissociation,
thus supporting the cleavage of H+. For 190 phenols without intramolec-
ular H bonding, the pKa was correlated to EQvac, QEvac, and Iortho (r2 =
0.900; Table S5). The H atoms with a large EQvac prefer more strongly to
retain electron charge and accordingly provide more resistance in donating
charge to their bonding partner in order to become dissociated. Larger QEvac

values reflect larger amounts of electron charge per unit energy transferred
to H and thus a larger polarizability of H in its bonding situation. Because
increasing polarizability indicates a decreasing resistance to changing local
electron density, QEvac increases with increasing readiness of the acidic H
atom to become ionized upon dissociation. Accordingly, QEvac increases with
increasing acidity and thus with decreasing pKa as indicated by the negative
sign of its regression coefficient. For 288 alcohols, the pKa was correlated to
the inductive descriptor of the acidic oxygen atom in an acid (Qσ ,O), the pi-
electronegativity for the α carbon atom in an acid (ENπ ,αC), Icarboxy, and Iamino

(Zhang et al., 2006). The negative coefficient sign for the atomic inductive
descriptor Qσ ,O is consistent with the physical meaning of this descriptor,
as a large Qσ ,O value means a large inductive effect of the substituent. For
1122 aliphatic carboxylic acids, the best multiple linear-regression equation
is obtained with five molecular descriptors: the accessibility of the acidic
oxygen atom in an acid (Aaccess,O (2D)), ENπ ,αC, Iamino, Qσ ,O, and αO (Zhang
et al., 2006). As for alcohols, there is a small pKa value if there is a large
Qσ ,O value. The positive sign for Aaccess,O (2D) means that a large steric hin-
drance will increase the pKa and therefore decrease the acidity of the acid,
as access of water to take up the proton is hindered (Zhang et al., 2006). The
geometric descriptor �VSC combined with Eacid

LUMO+2 and Qacid
H provided
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excellent results to estimate the pKa of benzimidazoles (r2 = 0.990; Table S5)
however the number of data used for the correlation was not indicated in
the study (Brown and Mora-Diez, 2006b). For 15 imidazol-1-yl alcanoic com-
pounds, there was a good correlation between pKa and ELUMO, nester, and QN3

(r2 = 0.978; Table S5). For the protonated species, LUMO is located over the
azole ring. A low ELUMO would suggest an easy formation of a hydrogen
bond with the water molecule and donation of a proton by overlapping with
the HOMO of water, namely, a low pKa (Soriano et al., 2004). Finally, the
charges on hydrogen (qHδ+) and on oxygen (qOδ-) atoms combined with
the change in O-H bond length (bl(OH)) provided good assessment of the
pKa of 74 aromatic acids derivatives (r2 = 0.988; Table S5). Increasing qOδ-

on the hydroxyl oxygen induces more hard characteristics to oxygen and
consequently lowers the tendency for dissociation: this causes the molecule
to be a weaker acid (Ghasemi et al., 2007).

Using artificial neural network methodology, Jover et al. (2007, 2008) in-
troduced, in addition to five descriptors relative to the solute, two descriptors
relative to the solvent. For 136 benzoic acids, they found good correlations
between the pKa and the FPSA-2, the maximum electron-electron repulsion
for an O atom (MaxeeO), the minimum resonance energy for O-H bond
(MinOH) the maximum valency of C atom (MVC) and the maximum partial
charge for a hydrogen atom (Qmax(H)) (in all cases, the involved hydrogen
atom corresponds to the carboxylic group) for the solute, and the hydrogen
bond donor acidity (αm) and the standard internal energy of vaporization
(�vapUO) for the solvent (Jover et al., 2008). Thus, four solute descriptors
of this model are related to the stability, reactivity, or the tendency to dis-
sociate the carboxylic group. The Qmax(H) reflects the polarity of the OH
bond that is cleaved in the dissociation process. Also, the MinOH descriptor
is related to the energy of the bond that dissociates, and MaxeeO and MVC
account for the reactivity of the atoms, respectively. On the other hand, the
fifth solute descriptor, FPSA-2, represents a density of charge of the solute
and explains the intermolecular interactions, in this case those between the
benzoic acid and the solvent. All these solute descriptors can be associated
to the nonspecific solute/solvent interactions. Of the two solvent descriptors,
the �vapUO indicates the energy involved in the solute cavity formation in
the bulk of the solvent in the dissolution process and can also be associated
to the nonspecific solute/solvent interactions. The αm is associated to the
specific hydrogen-bonding interactions and stands for the hydrogen-bond
donor properties of the solvents. Similarly, for 199 phenols, the pKa was cor-
related to ELUMO+1, the maximum electron-neutron attraction for a C-O bond
(MaxenC-O), the maximum partial charge for a hydrogen atom (Qmax(H)),
the relative positive charged surface area (RPCS), and the polarizability α for
the solute; and αm and μ for the solvent. The dipole moment μ of the sol-
vent, and the solute descriptors MaxenC-O, RPCS, and α contain information
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related to the nonspecific solute/solvent interactions. On the other hand, the
ELUMO+1 and αm encode information related to the specific interactions (Jover
et al., 2007).

Methods such as principal component-genetic algorithm-multiparameter
linear regression (PC-GA-MLR) and principal component-genetic algorithm-
artificial neural network (PC-GA-ANN) models were employed to predict
the pKa of miscellaneous organic compounds (Habibi-Yangjeh et al., 2009;
Lee and Crippen, 2009). For 282 nitrogen-containing compounds, 15 prin-
cipal components were first selected by PC-GA-MLR, then descriptors hav-
ing the highest correlations with the principal components were retained,
leading to a selection of eight descriptors: two constitutional (H attached
to heteroatom H-050, number of total primary C(sp3) nCp), three geometric
(Geary autocorrelation-lag 1 weighted by atomic polarizabilities GATS1p; 3D-
MoRSE-signal 12 weighted by atomic polarizabilities Mor(12)p; 3D-MoRSE-
signal 31 weighted by atomic van der Waals volumes Mor(31)v), two topolog-
ical (mean information content index based on the zero-order neighborhood
of vertices in a graph IC0, structural information content of a graph based
on one-order neighborhood of vertices SIC1) and one electro-topological
(constitutional descriptor of the mean E-state of the molecule related to the
polarizability, Ms). The Mor(12p) and Mor(31)v descriptors relate to polariz-
abilities and van der Waals volumes of the atoms, respectively, whereas IC0

and SIC1 are related to information content, which is a measure of the degree
of diversity of the elements in the set. The Ms gives information related to
the electronic and topological state of the atom in the molecule. Therefore,
it is concluded that polarizabilities and van der Waals volumes of the atoms,
diversity of the elements in compounds, electronic state of the atoms in the
molecule, and the number of first neighbor (hydrogen) of heteroatom play
main roles in the pKa of the compounds. With the same 15 principal com-
ponents, the PC-GA-ANN method gave higher correlations (Habibi-Yangjeh
et al., 2009; Table S5). Finally, some relationships can take into account the
temperature (Brown and Mora-Diez, 2006a; Topol et al., 2000).

In summary, the most efficient descriptors to predict the pKa were re-
lated to the superdelocalizability, the charges and to EHOMO. No geometric-
topological and no geometric-electronic descriptors were used in the equa-
tions, and contrary to SW and KOW, no MCI was involved.

3.3 Volatilization Process

Volatilization from soil and volatilization from leaf surfaces are distinguished
as the factors that are involved may be different. Indeed, trying to corre-
late observed volatilization fluxes with physicochemical properties of the
compounds, the vapor pressure alone (liquid vapor pressure PL, solid vapor
pressure PS) and the Henry’s law constant (KH) divided by the adsorption
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coefficient are often found to give the best fit when considering volatiliza-
tion from leaves and from soil, respectively (e.g., Woodrow et al., 1997). The
octanol-air partition coefficient (KOA) is also thought to be a key descriptor
of the distribution of semi-volatile compounds between the atmosphere and
terrestrial organic phase (Zhao et al., 2005). Finally, a volatility index (VIN)
can also be used to differentiate between volatile and nonvolatile compounds
(Gramatica and Di Guardo, 2002).

3.3.1 VAPOR PRESSURE

The 40 equations allowing the estimate of vapor pressure involve from 1 to
12 descriptors, and more than half of them are only based on one descriptor.
The QSAR were developed for a wide diversity of organic compounds, but
not for pesticides (Table S6).

In contrast to other environmental relevant compounds properties such
as water solubility or lipophilicity, vapor pressure is highly dependent on
temperature. Therefore the temperature was introduced in a few number of
QSAR (Ding et al., 2006; Kühne et al., 1997).

The prediction of the liquid vapor pressure (PL) of organic compounds
with one descriptor mainly involved the polarizability α, and correlations
were good (r2 > 0.731; Table S6; Liang and Gallagher, 1998; Staikova et al.,
2004). In any case, an increase in α led to a decrease in PL. Indeed, α is related
to dispersion forces or induced dipole-induced dipole interactions, which are
the main component of the intermolecular forces in nonpolar compounds.
On the other hand, polarizability α showed lower correlations for relatively
polar compounds, such as the alcohols, amines, and halogenated ketones.
This may be due to the potential for hydrogen bonding and/or dipole inter-
actions which are not adequately accounted for by α (Liang and Gallagher,
1998; Table S6). Other equations involve nCl, MW, Vm, or T(O· · ·Br) as single
descriptor (Papa et al., 2009; Shiu et al., 1988; Wania and Dugani, 2003). PL

tends to fall by a factor of eight per chlorine atom added (Shiu et al., 1988).
Using several topological descriptors, Basak et al. (1997) developed four

relationships to estimate the PL of 476 various organic compounds (Table
S6). The efficiency of topological descriptors to estimate PL (r2 ranges from
0.515 to 0.804; Table S6) showed that adjacency and distance in chemical
graphs, being general descriptors of molecular size, shape, and branching,
are important in predicting this parameter. For 23 PBDE or 72 PCDE, PL was
very well related to three quantum-chemical descriptors: the largest negative
net atomic charge on an atom (q−), α and μ (r2 > 0.988; Table S6; Wang
et al., 2008; Zeng et al., 2007). PCDE molecules with great absolute values
of q− tend to have great intermolecular electrostatic interactions and limited
volatilization. The larger the value of μ is, the smaller the value of PL is,
because intermolecular interactions are in direct proportion to μ2, therefore
PCDE molecules with larger μ values tend to volatilize less. As indicated
previously, increasing α value of the PCDE leads to decreasing PL (Zeng
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et al., 2007). For 15 PCDD, PL was also very well correlated to α and to
the most positive atomic net charge on a hydrogen atom (QH

+; r2 = 0.985;
Table S6). Again, the PCDD with larger α values tend to have lower PL val-
ues. The more chlorine atoms present in the parent structures, the greater
α is, and thus the lower the PL value is. Increasing QH

+ values leads to
a decrease in PL values because PCDD molecules with great QH

+ values
also tend to have great intermolecular interactions that reduce volatilization
(Zeng et al., 2013). The PL of 11 chlorinated compounds was again well
correlated to α, and Qzz (r2 = 0.952; Table S6) but it has to be noticed that
the number of data used to develop the equation is low (Staikova et al.,
2004). For 72 PCDE, the relationship involved the number of chlorine atoms
at different positions: the more the number of substituted chlorine atoms
is, the lower the PL value of PCDE is. Furthermore, PL decreases with the
different chlorine positions: N2(6) < N3(5) < N4. This indicates that congeners
with Cl substitutions in the ortho positions to the etherlink, that is, the (2,
6, 2, 6′) positions, have higher vapor pressures compared to those with Cl
substitutions in the nonortho positions to the ether-link, that is, the (3, 5, 3,
5’) and (4, 4’) positions. Furthermore, for compounds with the same number
of chlorine substitution, the values of PL increases with the increase in pair-
wise of Cl atoms at meta position (Nm; Zeng et al., 2007). Finally, PL of 107
PCDE was correlated to five quantum-chemical molecular electronegativity-
distance vectors (M11, M12, M13, M23, M33): M11, M13, and M33 increase with
the degree of chlorination, but M22 decreases with increasing degree of chlo-
rination. PCDE congeners with higher chlorination have lower PL (Sun et al.,
2007).

As observed in previous sections for SW and KOW, the combination of de-
scriptors of different categories allows improvement in the assessment of PL

(Basak et al., 1997; Liang and Gallagher, 1998; Table S6). Quantum-chemical
descriptors were involved in almost all equations, combined with constitu-
tional and/or geometric descriptors (Table S6). For 22 PBDE, PL was well
correlated to the molecular volume V, and to the sum of the surface maxima
values of the electrostatic potential �Vs

+ (r2 = 0.981; Table S6). Indeed,
the larger PBDE molecule would yield stronger dispersion-type interaction
between each other (lowering the volatility and liquid vapor pressure; Xu
et al., 2007). For 107 PCDE, PL can be estimated with NCl, �Vs

+, and σ 2
tot (Xu

et al., 2010), but also with MW, TE, α, and �Hf (Yang et al., 2003). Based
on these descriptors, it can be concluded that PL of PCDE congeners are
mainly governed by the intermolecular dispersive interactions (Yang et al.,
2003). The dispersion forces are a function of the molecule’s polarizability,
while hydrogen bonding can be facilitated by the presence of OH, NH, or

SH groups. Indeed, the addition of the number of polar functional groups
OH (nOH), C = O (nC = O), NH (nNH), COOH (nCOOH), NO2 (nNO2),

and C N (nC N) to the polarizability α allowed improvement of the es-
timate of PL (r2 = 0.960; Table S6; Liang and Gallagher, 1998). The PL of
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17 benzenes was correlated to the molecular contact surface area (CSA) and
to the solvation free energy (�Gs): positive �Gs coefficient and negative
CSA coefficient agree with theory because increasing (negative) electrostatic
interactions and increasing (positive) dispersion interactions both lead to
decreasing PL and thus decreasing volatilization (Schüürmann, 1995). For
411 compounds, a five-descriptor performing relationship (r2 = 0.949; Ta-
ble S6) was developed: the most important descriptor was the gravitation
index (IG), and the second most important descriptor was the hydrogen-
bonding donor charged surface area (HDCA(2)). The combination of IG and
HDCA(2) adequately represents the forces of intermolecular attraction: IG
is connected with the dispersion and cavity-formation effects in liquid, and
HDCA(2) is connected with the hydrogen-bonding ability of compounds.
The three additional descriptors were the maximum net atomic charge for
a chlorine atom (MNAC(Cl)), the sum of the surface area of fluorine atoms
(SA-2(F)), and the surface area of nitrogen atoms (SA(N)). The inclusion
of these three descriptors in the model shows that the IG and HDCA(2)
could not describe adequately the intermolecular interactions with solute
molecules containing fluorine, chlorine, or nitrogen atoms (Katritzky et al.,
1998). Finally, for 33 benzotriazoles, Bhhatarai and Gramatica (2011) devel-
oped a relationship based on combination of one constitutional number of
rotatable bonds (RBN), and two topological descriptors (BCUT 2D descriptor
encoding the lowest eigenvalue number 2 of the Burden matrix weighted
by atomic polarizabilities, BELp2; and 2D binary fingerprint that corresponds
to the presence of a N-Cl bond at topological distance 9, B09[N-Cl]). They
found good results (r2 = 0.809; Table S6).

Only two relationships were reported to estimate the solid vapor pres-
sure PS of 257 PCDD and PCDF, they involve the temperature (Ding et al.,
2006; Table S6). The main factors governing PS values, from important to less
important, are temperature, intermolecular dispersive interactions (through
α), entropic factor (through the Kier index S0K), and intermolecular dipole-
dipole and dipole-induced dipole interactions (through μ).

The synthesis of these results shows that the polarizability α is a fun-
damental descriptor to explain the vapor pressure range of organic com-
pounds and to estimate this parameter. No geometric-topological and no
electro-topological descriptors were used in the equations.

3.3.2 HENRY’S LAW CONSTANT

Henry’s law constant, KH, is a physical property of a chemical that is a
measure of its partitioning between two phases, air and water. Chemicals
with low KH will tend to stay in the aqueous phase, while those with high
KH will partition more into the gas phase. As air and water are the major
compartments of the environment, and water is considered to act as a vector
among air, soil, sediment, and biota, the knowledge of KH is very important
in assessing environmental risks associated with a chemical (Nirmalakhandan
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and Speece, 1988b). Dearden and Schüürmann (2003) reviewed some of the
methods developed for the estimation of KH. This review is completed and
updated in this section. The 17 equations reported in Table S6 involve from
1 to 10 descriptors. As for vapor pressure, the QSAR were developed for a
wide diversity of organic compounds but not for pesticides.

Seven one-descriptor equations are reported in Table S6 to estimate
KH. For 15 PCDD, KH was correlated to nCl: KH tend to fall by a factor
of 1.6 per chlorine added (Shiu et al., 1988). KH was also correlated to
geometric descriptors such as the molecular volume Vm for 15 PCDD (Shiu
et al., 1988), or the TSA for 58 PCB (Brunner et al., 1990). With topological
descriptors, QSAR were based on 4χpc for 58 PCB (Brunner et al., 1990),
and on the highest eigenvalue number 7 of Burden matrix, weighted by
Sanderson electronegativities (BEHe7) for 209 PBDE and HBB (Papa et al.,
2009). BEHe7 brings 2D information which takes into account the weight of
different atoms in the structure (Burden matrix) and their electronegativities
(Papa et al., 2009). The quantum-chemical descriptor average of the sum
of the surface minima values of the electrostatic potential (V−

s,av) provided
correct prediction of the KH of 7 PBDE but based on a low number of
compounds (r2 = 0.929; Table S6; Xu et al., 2007). Finally, for 17 benzenes,
a relationship was developed using the solvation free energy (�Gs). An
incomplete account of the cavity formation energy in water in the �Gs term
could have lowered the regression coefficient, which is nevertheless good
(r2 = 0.830; Table S6; Schüürmann, 1995).

QSAR with several constitutional descriptors (nCl and northo Cl) or with
several MCI (4χ , 4χpc, or 6χpc) allowed good estimate of KH of PCB (r2 >

0.908; Table S6; Brunner et al., 1990; Sabljic and Güsten, 1989). Sabljic and
Güsten showed that the degree of ortho-substitution was the major factor
that governs the magnitude of KH. In their model, this structural feature is
described by 4χ whose size is proportional to the number of ortho-chlorine
atoms. Its positive regression coefficient indicates that the PCB with the great-
est ortho-substitution have higher KH and show tendency to stay in the air.
The second structural property that controls the KH is the relative position of
chlorine substituents (i.e., their distribution between two phenyl rings and
their relative position within each ring). The accumulation of chlorine atoms
on one phenyl ring in di- and trichlorinated biphenyls tends to increase the
value of corresponding KH. This structural feature is in part described by the
4χ c whose size is proportional to the extent of adjacent substitution. Con-
geners which have chlorine substituents together have smaller KH. The third
structural feature identified to influence the KH is the degree of branching.
This feature is also described by 4χ c, which is highly sensitive to changes
in branching. The negative regression coefficient indicates that branching
lowers the magnitude of KH. Unfortunately, branching overlaps, to a certain
degree, some of the structural features described previously (i.e., the extent
of adjacent substitution; Sabljic, 1991; Table S6). For seven PBDE, KH was
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correlated to two quantum-chemical descriptors: V−
s,av and the equilibrium

parameter of electrostatic potentials on molecular surface (ν). The correlation
coefficient is high (r2 = 0.998; Table S6), but the number of data points sub-
mitted to the regression is low. The larger ν value is, the better the balance
between positive and negative electrostatic potentials is, and the smaller KH

is (Xu et al., 2007).
Meylan and Howard (1991) developed a bond contribution method

based on 345 compounds to estimate KH. The advantage of the bond con-
tribution method is its ability to estimate KH for many types of chemical
structures. It is relatively accurate for predicting KH for hydrocarbons, mono-
functional compounds, and many multifunctional compounds. The major
disadvantage is that inaccuracy is introduced by the occurrence of multiple
polarizable groups. As chemical structures become more complex, the bond
contribution method is more likely to become inaccurate. Comparing several
methods of KH estimation (experimental, bond contribution, MCI, and LSER),
Brennan et al. (1998) found that the bond contribution method of Meylan
and Howard (1991), and the use of MCI as done by Nirmalakhandan and
Speece (1988b; see next paragraph), were the most performing ones.

As for vapor pressure, the combination of descriptors of different cat-
egories improves the estimate of KH (Schüürmann, 1995; Table S6); and
quantum-chemical descriptors were involved in almost all equations. Modar-
resi et al. (2007) developed a performing 10-descriptor QSAR for a wide set
of 770 organic compounds (r2 = 0.925; Table S6): the model involved four
constitutional, one geometric, one geometric-electronic, and four quantum-
chemical descriptors. The four constitutional descriptors were nF, nNO2, nOH,
and nR6. The nNO2 most probably represents hydrogen-bond acceptor abil-
ity, and the nOH reflects molecular capability for hydrogen-bond acceptance
or donation. The quantum-chemical descriptors, sum of absolute Ca and
Cd values (hydrogen-bond free energy acceptor and donor factors, respec-
tively) for all H-bond donor and acceptor atoms in molecule (�Cad(o)), and
largest Ca (hydrogen-bond free energy acceptor) factor value in molecule
(Max(Ca(o))), demonstrated marked influences on the performance of the
QSAR model. Inclusion of hydrogen bonding descriptors reveals that hy-
drogen bonding is the most important molecular feature of solvent-solute
interaction in governing KH of organic compounds in the air-water system.
These results are consistent with the nature of water molecules as solvent, as
they are very good hydrogen-bond acceptors and donors. Electrostatic inter-
molecular forces between solute and solvent molecules are characterized by
the Geary autocorrelation-lag 1 weighted by atomic Sanderson electronega-
tivities (GATS1e), the partial negative surface area (PNSA-1), and the relative
positive charge based on quantum chemical partial charge (RPCG; Modarresi
et al., 2007). For 31 PCB, Dunnivant et al. (1992) related KH to two topolog-
ical descriptors (path-three κ index 3κ , and 4χ) and three quantum-chemical
descriptors (second moment of inertia SMI, second- and third-principal
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polarizability α2 and α3; r2 = 0.899; Table S6). For 17 benzenes, KH was
found to be correlated to �Gs and CSA (r2 = 0.870; Table S6; Schüürmann,
1995), and for 180 miscellaneous organic compounds KH was correlated to α

and MCI (0χ and/or 1χv; r2 > 0.932; Table S6; Nirmalakhandan and Speece,
1988b). Finally, Goss (2006) used the TLSER equation to estimate the KH of
408 miscellaneous organic compounds and obtained very good results (r2 =
0.998; Table S6).

The temperature dependency of KH was only taken into account in
one model, developed from 456 miscellaneous organic compounds. This
model is based on 45 parameters: 18 fragments, 26 correction factors, and 1
indicator (presence of halogen in 2-position to ring O as in polychlorinated
dibenzodioxins or -furans). The correlation coefficient was found to be good
(r2 = 0.810; Kühne et al., 2005).

It has to be noticed that, after reviewing a large number of calculation
schemes focusing on the KH, Dearden and Schüürmann (2003) concluded
that the prediction capability of the tested methods was found inferior to the
expected one.

As a conclusion, no particular descriptor appeared to be more relevant
than another one to estimate KH. No geometric-topological and no electro-
topological descriptors were used in the equations.

3.3.3 OCTANOL-AIR PARTITION COEFFICIENT

As indicated previously, the environmental fate of semivolatile organic com-
pounds depends strongly on their distribution between different environ-
mental compartments. Thus, accurate estimation and/or prediction of envi-
ronmental distribution coefficients are essential. The octanol-air partition co-
efficient, KOA, is a key descriptor of the distribution of semi-volatile organic
compounds between the atmosphere and terrestrial organic phase (Zhao
et al., 2005). Twenty-one QSAR allowing the assessment of KOA are reported
in Table S6, they involve from 1 to 16 descriptors. As for vapor pressures and
Henry’s constant, the QSAR were developed for a wide diversity of organic
compounds but not for pesticides.

Four of the eight one-descriptor relationships involved topological de-
scriptors (Table S6): MCI (1χv, 2χ , 2χv), but the numbers of compounds used
to develop the QSAR were very low (Zhao et al., 2005), or sum of topo-
logical distances between oxygen and bromine atoms (T(O· · ·Br)) for 209
PBDE and HBB (Papa et al., 2009). The T(O· · ·Br) descriptor gives a double
structural information: its value increases according to both the number and
the distance of bromine substituents, on each phenyl ring, from the oxygen
ether. Thus, T(O· · ·Br) also takes into account the information related to the
position of the bromine atoms on the phenyl rings. For only six PBDE, KOA

was correlated to MW (Wania and Dugani, 2003), and for 22 phthalates, KOA

was correlated to the Le Bas molar volume (VLB; Cousins and Mackay, 2000;
Table S6). Then, for 82 chlorinated organic compounds, good estimate of
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KOA was found using the polarizability α (r2 = 0.979; Table S6; Staikova et al.,
2004); and similarly good correlation was found with α for a low number of
PCDD (r2 = 0.983; Table S6; Zeng et al., 2013). Increasing α value of PCDD
molecule leads to increasing the KOA values. Molecules with great α values
may have great intermolecular dispersive forces with octanol molecules thus
favoring partitioning into the octanol phase (Zeng et al., 2013). This is con-
sistent with the previous results showing that PL decreases when α increases
(Liang and Gallagher, 1998; Table S6).

Combination of several topological (1χv, 2χ , 3χv) or several quantum-
chemical (largest negative net atomic charge on an atom q−, quadrupole
moment Qzz, α, μ) descriptors led to good estimate of KOA of PBDE, poly-
chlorinated naphthalenes and chlorinated organic compounds (r2 > 0.927;
Table S6; Staikova et al., 2004; Wang et al., 2008; Zhao et al., 2005).

All the equations based on descriptors of different categories involved
quantum-chemical descriptors (Table S6). It is not possible to determine if
the combination of several descriptors of several categories improved the
prediction of KH as no result has been published to allow a rigorous com-
parison. For 22 PBDE, KOA was very well correlated to the molecular volume
V and to the sum of the surface maxima values of the electrostatic poten-
tial (�Vs

+; r2 = 0.976; Table S6). The V term means that the larger PBDE
molecule would yield stronger dispersion-type interactions with the octanol
molecule (i.e., the KOA value becomes larger; Xu et al., 2007). For 16 hydrox-
ylated polybrominated diphenyl ethers (OH-PBDE) and eight methoxylated
polybrominated diphenyl ethers (MeO-PBDE), KOA was estimated with six
descriptors: electronic energy (EE), ELUMO, MW, the largest positive atomic
charge on a bromine atom (QBr+), the most positive atomic net charge on a
hydrogen atom (QH

+), and μ. The descriptors MW and ELUMO were the two
most important factors governing KOA values. Increasing MW, QBr

+, QH
+,

and μ of OH-PBDE and MeO-PBDE led to the increase in KOA. On the
contrary, increasing ELUMO and EE can lead to the decrease in KOA (Chen
et al., 2001d; Chen et al., 2003a; Zhao et al., 2010). Similarly, for 209 PCB,
increasing CCR, MW, most positive net atomic charge on a chlorine atom
(qCl), and α values of the PCB led to increasing KOA, whereas increasing EE,
total energy (TE), and standard heat of formation (�Hf) values of the PCB
led to decreasing KOA. In this case, the α was the most significant descriptor.
The more chlorines in PCB molecules, the larger the size of PCB molecules,
the greater the MW, and the greater the α and KOA values. ELUMO was also
a significant descriptor, and increasing ELUMO of the PCB leads to decreasing
KOA. ELUMO measures the ability of a molecule to accept electrons in inter-
molecular interactions: molecules with a low ELUMO tend to easily accept
electrons. So the lower the ELUMO values, the greater the tendency of PCB
molecules to accept electrons in intermolecular interactions, the greater the
intermolecular interactions between PCB and octanol molecules, and thus
the greater the KOA values (Chen et al., 2002a).
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Some relationships were developed taking into account the temperature
(Chen et al., 2002b; Chen et al., 2003b; Chen et al., 2003c; Chen et al., 2004;
Table S6). Very good results were obtained for both correlations done with
a small and a high number of compounds (r2 > 0.918; Table S6). The most
significant descriptors were still ELUMO, MW, TE, and α. As observed previ-
ously, increasing α and MW leads to increasing KOA values, while increasing
TE, and ELUMO leads to decreasing KOA.

As for the vapor pressure, the polarizability α is the descriptor that
explains the best the variation of KOA. The molecular weight MW, the dipole
moment μ, and the ELUMO and EE energies also play an important role. No
geometric-topological, no geometric-electronic, and no electro-topological
descriptors were used in the equations.

3.3.4 POTENTIAL OF TRANSFER TO THE ATMOSPHERE

Only one equation was found to estimate the potential of transfer of organic
compounds to the atmosphere (Table S6). For 135 pesticides, Gramatica and
Di Guardo (2002) developed a VIN allowing a preliminary ranking of the
pesticides according to their tendency to distribute in the atmosphere. The
VIN was well correlated (r2 = 0.771) to three constitutional descriptors (HY,
number of multiple bonds (nBM), number of rings NoRING), two topological
descriptors (0χv, mean information content index on vertex degree equality
IEdeg) and one geometric descriptor asphericity (ASP) (Table S6). The most
important descriptor is HY, which is related to the presence of hydroxyl
groups in the molecule. Then, the next most important descriptors are 0χv

and nBM, whereas the least important one is IEdeg.

3.4 Retention Processes

The mobility of organic compounds in the environment mainly depends
on their retention on soils and sediments, which is essentially determined
by adsorption. Therefore, retention is one of the most important processes
that control the fate of organic compounds in the environment because
it regulates their availability for degradation, absorption by plants and for
transfer toward ground and surface water, and air. In this section, only
the adsorption of organic compounds at the liquid-solid interface, the most
important retention process, is considered (Katayama et al., 2010).

A total of 102 QSAR are inventoried for adsorption on soils, and 38
QSAR for the adsorption on sediments. The nonlinearity and nonequilibrium
of adsorption, and the desorption were rarely studied by QSAR approaches:
only 18 equations were found for these phenomena (Table S7). Finally, a
small number of equations (6) has been published to estimate the potential
of transfer of organic compounds to groundwater, and no equation has been
published concerning the potential of transfer to surface water (Table S7).
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3.4.1 ADSORPTION PROCESSES

3.4.1.1 Adsorption on Soils. To estimate the adsorption of organic
compounds on soils, the QSAR were generally developed for Koc (adsorption
coefficient normalized to soil organic carbon content; e.g., Doucette, 2003;
Gawlik et al., 1997; Wauchope et al., 2002), and few of them were developed
for Kom (adsorption coefficient normalized to soil organic matter content;
Briggs, 1981; Sabljic, 1987 and 1989; Sabljic and Piver, 1992), Kf (Freundlich
adsorption coefficient; Hance, 1969; Jin et al., 1997), Kd (linear adsorption
coefficient; Hansen et al., 1999a; Hu et al., 1995), or KL (Langmuir adsorption
coefficient; Mon et al., 2006; Table S2). The reviews of Doucette (2003),
Gawlik et al. (1997), and Wauchope et al. (2002) are completed and updated
in this section. In addition, the present review is focused on QSAR only based
on structural molecular descriptors.

The number of descriptors used for the estimation of adsorption coeffi-
cients ranged from 1 to 11, excluding QSAR based on the fragment approach
(Table S7). The increase in the number of descriptors does not improve the
significance of the QSAR but the degree of correlation rather decreases with
increasing heterogeneity of the training set (Reddy and Locke, 1994a, 1994b;
Wauchope et al., 2002). The QSAR equations that are reported in Table S7
were developed for a wide diversity of organic compounds.

The prediction of the adsorption with only one descriptor mainly in-
volved the MCI (Table S7), and in particular a lot of equations involved 1χ

and 1χv to estimate the Koc, Kom, or Kd of many organic chemicals (Bahnick
and Doucette, 1988; Baker et al., 1997; Baker et al., 2001; Dai et al., 1999;
Doucette, 2003; Gawlik et al., 1997; Gerstl and Helling, 1987; Gerstl, 1990;
Hu et al., 1995; Liu and Yu, 2005; Meylan et al., 1992; Müller and Kördel,
1996; Sabljic, 1984, 1987, 1989, 2001; Sabljic et al., 1995; Sabljic and Piver,
1992; Thomsen et al., 1999; Von Oepen et al., 1991; Wauchope et al., 2002).
The r2 are highly variable depending on the classes and on the number of
compounds used to develop the relationship (r2 ranges from 0.006 to 0.973;
Table S7), and it seems that the inclusion of polar compounds in the dataset
led to a decrease in r2. Some correlations were also found between the Koc
and 0χ , 0χv, 2χ , 2χv, 3χv, or 5χv for different classes of organic compounds
(pesticides, alcohols; Baker et al., 1997; Gerstl and Helling, 1987; Müller and
Kördel, 1996), and between the KL and 9χ for only nine dye tracers (Mon
et al., 2006). Indeed, MCI encode intermolecular accessibility, and, for exam-
ple, 1χ correlates very well with the molecular surface, and also represents
the contribution of one molecule to the bimolecular interactions arising from
encounters of bonds among two molecules (Kier and Hall, 2000; Sabljic and
Piver, 1992). Other topological descriptors were used successfully to esti-
mate the Koc: the CRI for 36 various compounds (r2 = 0.964; Türker Saçan
and Balcioğlu, 1996), and the Lu index for only 11 phthalates (r2 = 0.788;
Lu, 2009; Table S7). The Koc could also be estimated using MW (Kanazawa,
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1989; Liu and Yu, 2005), the TSA (Doucette, 2003; Hansen et al., 1999a), and
the volume of the molecules: molar volume Vm (Von Oepen et al., 1991);
parachor P (Hance, 1969; Briggs, 1981) or van der Waals volume VdW (Hu
et al., 1995). A larger molecular volume is unfavorable for partitioning to the
aqueous phase where strong hydrogen bonds have to be broken to create
room for the solute molecule (Baker et al., 1997; Briggs, 1981). However,
the correlations with Vm were not good in some soils for acids and amines
(r2 < 0.360; Von Oepen et al., 1991). Finally, Baker et al. (1997), Liu and
Yu (2005), and Von Oepen et al. (1991) tried to establish correlations with
only one topological (second- (�2χ) or third-order (�3χ) simple nondis-
persive force factor), or one quantum-chemical descriptor (self-polarizability
ALP, probability of nucleophilic attack DN, EHOMO, ELUMO, MR, net negative
atomic charges on atom N in anilines or atom O in phenols q, average charge
of molecule Qave, total charge of molecule Qtot, α, and μ) but the correlation
coefficients were sometimes very low, and depended on soil characteristics
(Table S7).

The combination of several MCI allowed acceptable estimates of Koc
(r2 ranges from 0.575 to 0.905; Table S7; Baker et al., 2001; Gerstl, 1990;
Gerstl and Helling, 1987; Tao and Lu, 1999; Uddameri and Kuchanur, 2004).
Nevertheless, the QSAR only based on MCI were not suitable for polar or-
ganic chemicals, and polarity correction factors have to be introduced in the
equations to improve the prediction (Meylan et al., 1992; Müller and Kördel,
1996; Sabljic, 1987; Tao and Lu, 1999). The results may be erroneous if an
estimate is desired for a compound that has a polar group for which there
was not enough data to develop a polarity correction factor (Baker et al.,
1997). Good correlations were also found between the Koc and several topo-
logical indices (1χ and sum over all atoms of the intrinsic state differences
DELS, Lu index, and different distance-based atom-type topological index
DAI; r2 > 0.900; Table S7; Gramatica et al., 2000; Lu et al. 2006). To take
into account the nonhydrophobic contribution to Koc, Bahnick and Doucette
(1988) included, in addition to 1χ , a first-order valence nondispersive force
factor (�1χv). The two descriptors relate to intermolecular interactions
due to molecular size and nondispersive effects, and are important in pre-
dicting Koc for molecules exhibiting substantial hydrophilicity. These nondis-
persive factors were also used by Baker et al. (1997) for 14 miscellaneous
compounds (Table S7). A relationship based on constitutional descriptors,
24 structural correction factors (e.g., number of triple bond or number of
quaternary carbon) and 74 group fragments, allowed a robust assessment
of the Koc of a wide variety of organic compounds (r2 = 0.969; Table S7).
These results confirmed the ability of the fragment approach to predict Koc
of untested chemicals (Tao et al., 1999). Thomsen et al. (1999) developed
a concept of grouped E-state index, and in particular, they showed that the
Koc of eight phthalates is correlated to Sester and Salkyl that consider the po-
lar/hydrophilic and nonpolar/hydrophobic effects, respectively (r2 = 0.822;
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Table S7). However, the number of data used to develop the relationship
was low. Finally, for 387 miscellaneous compounds, the Koc was estimated
using several moment descriptors (M0, M2, M3, Macc, Mdon; Klamt et al., 2002),
and for 65 PCOC, the relationship based on several quantum-chemical de-
scriptors such as EHOMO, TE or μ showed good results (r2 = 0.854; Table S7;
Dai et al., 1999; Table S7).

As observed for SW, KOW, PL, and KH in previous sections, when several
descriptors of different categories are used together, the assessment of the
adsorption coefficients is improved (Reddy and Locke, 1994a). Reddy and
Locke (1994a) obtained better correlations between Koc and EHOMO, VdW,
α and μ for 71 herbicides than with the volume alone (Table S7). The
combination of some constitutional descriptors (MW, structural fragments)
and topological (MCI, bond connectivity index) and/or electro-topological
descriptors led to correct estimations of Koc for a lot of organic compounds
(r2 > 0.772; Table S7; Huuskonen, 2003; Lohninger, 1994; Schüürmann et al.,
2006). Sekusak and Sabljic (1992) introduced the number of polar (NoPP)
and nonpolar parts (NoNP) in a molecule, the number of rings (NoRING), and
the polarity index (1Fχ

v), and found good correlations for 11 amides, 15
triazole, 16 dinitroanilines, and 21 acetalinides (r2 > 0.846; Table S7). For 44
substituted phenylureas, the estimation of Koc based on VdW, μ and ELUMO

was correct (r2 = 0.700; Table S7) but the range of experimental data and/or
structural differences among substituted phenylureas in terms of substitution
on N3 atom was narrow (Reddy and Locke, 1994b).

Gramatica et al. (2000) developed several equations based on a rep-
resentation of molecular structure by different types of descriptors, such as
count descriptors, topological indices, information indices, fragment-based
descriptors, and WHIM descriptors. For example, the Koc of 29 carbamates
was correlated to the presence of electronegative atoms in the molecules:
the greater the number of electronegative atoms in the molecule, the higher
the probability of H-bonding with water, leading to a decrease in soil ad-
sorption; and to the eccentric connectivity index (ξC): the size increase leads
to increased hydrophobic effects and compound tendency to bind with the
soil organic matter. The Koc of 43 phenylureas were well correlated to the
MW, nCl, and NoRING, and to two directional WHIM descriptors (r2 = 0.911;
Table S7). Most of these descriptors indicated that an increase in phenylurea
size favors their adsorption.

Several other relationships were established with various descriptors:
scanning a very large number of molecular descriptors (1,457), Goudarzi
et al. (2009) identified seven descriptors leading to accurate prediction of the
Koc of 62 pesticides: three 2D descriptors (one BCUT index: BEHm2, and
two Moran autocorrelation descriptors: MATS6e and MATS4p) and four 3D
descriptors (one GETAWAY: HTp, one MoRSE: Mor(05)m, and two WHIM:
G1m and G3v; Table S7). Winget et al. (2000) developed a set of effective
solvent descriptors that characterize the organic carbon component of soil,
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and combined these descriptors with solute atomic surface tension parame-
ters to predict the Koc of any solutes composed of H, C, N, O, F, P, S, Cl, Br,
and I. However, the errors in predicting experimental data were greater than
those resulting from other methods. Nevertheless, the developed models do
not use different parameter sets for different classes of solutes, and thus are
applicable to totally new classes of molecules. In addition, no experimen-
tal data are needed for a new compound once the molecular structure is
known, and since the resulting solvent descriptors have reasonable values,
it is possible to understand the sources of different partitioning phenomena
in cases where the results exhibit significant fragment interactions.

Finally, the LSER and TLSER approaches, based on a mechanistic un-
derstanding of the partition process (section 2.8), were also efficient for the
estimation of the Koc (r2 > 0.720; Table S7; Baker et al., 1997; Famini and
Wilson, 1997; Feng et al., 1996; Poole and Poole, 1999; Xu et al., 2002). In
any case, the leading terms in the equations were those that measure cavity
formation (the intrinsic volume Vi or the McGowan characteristic molecular
volume Vx), and the overall or summation solute hydrogen bond basicity
(�β2

H or �β2
O). The correlation coefficient seems to decrease with the

heterogeneity of the compounds in the dataset (Table S7).
As a conclusion, it was shown that the prediction of adsorption of

organic compounds in soils mainly depends on MCI and especially on 1χ ,
1χv, and 3χv, but also on MW and on descriptors related to the volume (P,
Vi, Vm, VdW). Indeed, compounds with high branching properties and high
volume are less susceptible to partition in the aqueous phase. No geometric-
electronic descriptor was used in the equations.

3.4.1.2 Adsorption on Sediments. The 38 QSAR equations reported in
Table S7 allow the assessment of seven parameters related to the measure-
ment of the adsorption on sediments: the association coefficient between
PCB and humic marine substances (Kh), the Freundlich adsorption coeffi-
cient (Kfs), the linear adsorption coefficient (Kds), the adsorption coefficient
normalized to sediment organic carbon content (Kocs; or total organic carbon
normalized sediment-porewater distribution coefficient KTOC), the sediment
water partition coefficient (KS/W), and the maximum concentration of the
compound that can be adsorbed (Csm; Tables S2 and S7). The equations
involve from one to four descriptors, the majority of them involve one or
two descriptors. Contrary to adsorption on soils, there is notably no QSAR
for pesticides (Table S7). In general, the number of compounds used for the
QSAR development was very low.

The 28 one-descriptor equations developed to estimate the adsorption
on sediments involve constitutional, geometric, topological, or quantum-
chemical descriptors (Table S7). For chlorobenzenes, PCDD and PCDF, Arp
et al. (2009) found correlations between the KTOC and nCl, and for PAH, they
found a relation between the KTOC and naromatic-C. However, the number of
compounds used in these QSAR was not indicated in their study. The Kocs
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and Csm of 5 chlorobenzenes on sediment was very well correlated to the
molar volume Vm (r2 > 0.890; Table S7), but the number of chemicals used
to develop this relationship was low (Von Oepen et al., 1991). Similarly,
Vm was well correlated to the Kocs of esters, acids, and amides (not with
that of amines), but the number of data was also very low (Djohan et al.,
2005). For 26 PCB, Lara and Ernst (1989) found better correlation between
the Kh and the TSA calculated for the planar configuration (r2 = 0.954) of the
PCB than with the nonplanar configuration (r2 = 0.919; with phenyl rings
perpendicular to each other; Table S7). However, a disadvantage of using
molecular surface areas as structural descriptors is that the molecular geom-
etry has to be well known (Sabljic et al., 1989) and, indeed, bad correlations
were found between the Kfs of eight organotin (organometallic species) and
the TSA (r2 = 0.095; Table S7; Sun et al., 1996). Bad correlations were also
obtained with several MCI or the Leo fragment constant (π ; r2 < 0.135; Table
S7; Sun et al., 1996), and, similarly, there was no good correlation between
MCI and the Kds of 11 naphthoic acids and five quinoline compounds (r2 <

0.220; Table S7; Burgos and Pisutpaisal, 2006). The authors rather observed
that the adsorption of naphthoic acids increased with the addition of ortho-
substituent groups and with increasing chain length of the acid group, and
that the adsorption of quinoline decreased with substituent group addition
(except for nitro group) and with additional heterocyclic N atoms, but they
did not develop any QSAR. On the contrary, for several esters, acids, amides
and amines, Von Oepen et al. (1991) found some satisfactory correlations be-
tween Kocs and 1χ , 1χv, self-polarizability (ALP), probability of nucleophilic
attack (DN), average charge of molecule (Qave), or total charge of molecule
(Qtot), but it depended on the soil and the number of data was low (Table S7).

The seven equations developed with several descriptors of the same
category involved constitutional, topological, or quantum-chemical descrip-
tors (Table S7). For PCB, the KTOC was correlated to nCl and to northo Cl.
Orthochlorine atoms cause the planar conformation of PCB to be energet-
ically unfavorable, which in turn causes lower adsorption (Arp et al., 2009;
Hawthorne et al., 2011). Using MCI, Sabljic et al. (1989) found good correla-
tions between the Kh of 26 PCB and 1χ , following a quadratic function (r2 =
0.948; Table S7). These results show that the adsorption of PCB on marine
humic substances is primarily influenced by the size of molecule which is
described by 1χ : the larger PCB molecules showed a higher affinity for humic
Qtot substances than smaller ones. For 11 alcohol ethoxylates (Kiewiet et al.,
1996) and for 31 alcohol ethoxylates and four other alcohols (Van Comper-
nolle et al., 2006), the Kds was found to be correlated to the ethoxylate chain
length (#EO), and to the alkyl chain length (#C). The dominant influence of
the alkyl chain suggests a hydrophobic adsorption mechanism (Table S7).

For 26 PCB, the addition of the number of orthochlorine substituents
(noCl) to MCI improved the prediction of Kh (r2 = 0.990; Table S7; Sabljic
et al., 1989). The negative regression coefficient of noCl indicates that the
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adsorption decreases with the degree of ortho substitution: noCl provides an
estimate for the extent of nonplanarity of PCB. Thus, it may be viewed as
third dimension corrections for the 1χ index that is unable to completely
handle 3D situations (stereochemistry). However, this term limits the value
in modeling the adsorption for other classes of nonionic chemicals with
dissolved humic substances, as the noCl is specific for PCB. The quadratic
relationship also indicates that each new chlorine substituent increases the
extent of adsorption less than the previous one (Sabljic, 1991, 2001). Combin-
ing topological and quantum-chemical descriptors, Dai et al. (2000) showed
that the Kocs of 14 substituted benzaldehydes was well predicted with QH

+,
μ, 2χv and 3χpc (r2 = 0.922; Table S7). The dipole moment μ was the most
significant descriptor.

He et al. (1995) used the LSER approach to estimate the Kocs of 28
phenylsulfonyl acetates, and found excellent results (r2 = 0.976; Table S7).
The intrinsic volume Vi was a leading term in the adsorption of these com-
pounds on sediments. Finally, with the MTLSER approach, Chen et al. (1996a)
showed, for 22 alkyl(1-phenylsulfonyl)cycloalkane-carboxylates, that α and
μ were leading terms influencing the Kocs. The polarizability α is in direct
proportion to the intrinsic molecular volume, and therefore it increases the
Kocs since the larger molecules would tend to be excluded from the wa-
ter and be adsorbed on the sediments. The dipole term decreases the Kocs

probably because greater dipole would increase interactions between the
solutes and more polar water, increasing solubility in water.

As for the adsorption on soils, the variations of the adsorption of or-
ganic compounds on sediments are mainly represented by MCI (mainly 1χ ,
and 1χv). No geometric-topological, no geometric-electronic, and no electro-
topological descriptors were used in the equations.

3.4.1.3 Nonlinearity of Adsorption. The nonlinearity of adsorption is
indirectly taken into account in the QSAR designed to assess the Kf or KL.
However, there is no estimation of the parameters such as nf, the Freundlich
exponent.

Only Droge et al. (2009) tried to develop QSAR describing the nonlin-
earity of adsorption. They proposed to consider the nonlinear adsorption
of nine alcohol ethoxylates into the illite clays and sediments using a dual-
model combining a Langmuir (KLs) and a linear (KII) adsorption term. They
showed that both adsorption coefficients are correlated to the ethoxylate
chain length #EO and to the alkyl chain length #C (r2 > 0.910; Table S7).
The KLs increases with both chain lengths, on the contrary, the KII slightly
decreases with #EO. This probably results from the increased solubility with
longer ethoxylate chains and because sorbate-sorbate interactions mainly oc-
cur via the alkyl chain, leaving the ethoxylate chains solvated with water. For
illite, the increase in KLs with both chain lengths is consistent with adsorption
mechanism that depends on both hydrophobic properties and polar interac-
tions with the surface. The enhanced nonlinearity of isotherms with longer
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ethoxylate chains is explained by both an increasing adsorption coefficient
and a decreasing bilayer formation affinity with additional ethoxylate units
(Droge et al., 2009).

3.4.1.4 Nonequilibrium Adsorption and Desorption. Very few results
have been published concerning the nonequilibrium adsorption and the
desorption of organic compounds, and only 14 equations were found: 13 for
nonequilibrium adsorption and one for desorption (Table S7).

Brusseau (1993) and Hu et al. (1995) demonstrated that the nonequilib-
rium adsorption in soils of several classes of compounds (PAH, pesticides),
measured through a mass transfer coefficient (MT), was correlated to 1χv (r2

> 0.830), and to a lesser extent to the VdW (r2 > 0.700). Indeed, most of
the rate-limited adsorption behavior can be explained by accounting for the
size and structure of the solute molecule. However, it has to be noticed that
few compounds were used to develop the QSAR (Table S7).

Colón et al. (2002) studied the adsorption kinetics in sediment slurries
of 21 anilines with substituents in the ortho, meta or para positions. They
introduced fast and slow rates of adsorption (kfast, kslow) because the adsorp-
tion kinetics of the substituted anilines were characterized by an initial, rapid
adsorption process followed by a much slower adsorption process. The rates
of adsorption were correlated to the EHOMO or to the one electron oxidation
potentials (E1), however the correlation coefficients were not very high (r2

< 0.598; Table S7).
Only one equation was found for the desorption (Table S7): assuming a

reversible adsorption, Hsieh and Mukherjee (2003) showed that the desorp-
tion of six halogenated aliphatic hydrocarbons from biosolids was very well
related to 1χ (r2 = 0.979; Table S7), but the number of data is low. There is
no result concerning the estimation of the desorption when the adsorption
is partially irreversible.

3.4.2 POTENTIAL OF TRANSFER TO GROUND AND SURFACE WATERS

Transfer of organic compounds to ground and surface waters first depends
on their availability to be leached through the soil profile or to be mobilized
by runoff water. This availability for water extraction changes with time since
the compound has reached the soils either directly or indirectly, due to re-
tention and degradation processes, and to climatic and soil conditions that
enhance or inhibit these two processes (Louchart and Voltz, 2007; Sharer
et al., 2003; Walker et al., 2005). It is therefore difficult to derive organic
compound transfer properties on the basis of time-variable environmental
parameters such as Koc and half-life (DT50). A few authors defined time-
varying environmental parameters equivalent to Koc, taking into account a
reference Koc, and either the time (Beigel et al., 1997; Renaud et al., 2004)
or the cumulative rainfall (Louchart and Voltz, 2007), as organic compound
application. Nevertheless, a few indicator or parameter of the potential for
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organic compound to be transferred toward water bodies have been devel-
oped on the basis of constant Koc and DT50 values (Gustafson, 1989; Rao
et al., 1985).

The occurrence of organic compound in both ground and surface waters
also depends on the water fluxes through the soil and at the soil surface, re-
spectively. In fact, water fluxes are driven by meteorological conditions, soil
hydrodynamics and initial soil water profile, and soil surface characteristics.
This occurrence is classically estimated by means of complex mathematical
fate models that take into account these water fluxes, and the environmental
parameters such as DT50 and Koc, that can be derived from QSAR models.
But the use of such model is time consuming and do not permit to simulate
the occurrence of each organic compound in water bodies easily. Another
approach is to use QSAR to estimate the occurrence of organic compounds
in groundwater (Worrall, 2001; Worrall and Thomsen, 2004). However, the
number of QSAR that have been developed is very low: only six equations
were found to estimate the potential of transfer to groundwater (Table S7),
and no relationship was found to estimate the potential of transfer to surface
water. In addition, these QSAR were only built with pesticides data, no equa-
tion has been developed for other organic compounds that are susceptible
to reach groundwater (e.g., pharmaceuticals, PCB).

To assess the potential transfer of pesticides to groundwater, the leach-
ing index (LIN) was developed by Gramatica and Di Guardo (2002) in order
to give a preliminary ranking of these compounds according to their ten-
dency to distribute in different environmental media. For 135 pesticides,
LIN was correlated to three constitutional (nX, nNO2, nS), one topological
radial centric information index (ICR), and one electro-topological (consti-
tutional descriptor of the mean E-state of the molecule related to the polar-
izability, Ms) descriptors with satisfactory model performance (r2 = 0.870;
Table S7).

To distinguish polluting from nonpolluting compounds, only on the
basis on molecular topology and/or quantum-chemical descriptors, Worrall
(2001) and Worrall and Thomsen (2004) used a dataset of 56 pesticides
monitored in 303 boreholes across 12 states in the midwestern United States
during 1991–1992. With logistic regression, they estimated the probability of
finding these pesticides at a level concentration > 0.1μg L−1, θ , using 6χv

and 7χv
pc, the hydration energy �Hhyd, and the dipole moment μ, which

gave good results (r2 = 0.910; Table S7). Furthermore, they obtained more
than 85% of variance explanation by considering the rule that a compound
can be found in groundwater if 6χv < 0.55 (Worrall, 2001) or if 0.28 μ <
6χv (Worrall and Thomsen, 2004). They concluded that the dependence of
leaching potential on the descriptors that control solubility (μ and �Hhyd)
indicates that predictions of environmental fate based on this approach may
represent a strong alternative to the use of adsorption and degradation
parameters.
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3.5 Degradation Processes

Degradation is one of the key processes governing the fate of organic com-
pounds in the environment as it determines their removal and/or transforma-
tion to metabolites, conditioning their persistence and transfer to different
components of the environment (soil, water, sediment, plant, or air). The
degradation can be biotic (following degradation by living organisms in-
cluding microorganisms) or abiotic (hydrolysis, photolysis). The QSAR that
have been found to assess both types of degradation processes are reviewed
here.

3.5.1 BIODEGRADATION

The structure of this section is slightly different from the structure of the
others because, contrary to other processes, the biodegradation of organic
compounds can be estimated using a wide range of environmental param-
eters (Table S2), and nonetheless few QSAR equations were developed for
each parameter (Table S8). Indeed, as explained in the following paragraphs,
the measurement of the biodegradation of organic compounds can be done
according to different methods and in different experimental conditions re-
lying on the use of artificial media to test degrading activity of pure bacterial
cultures under laboratory conditions or of more complex natural matrices
such as soils, sediments, or water, or man-made matrices such as wastewater
or activated sludge incubated under controlled conditions; leading to the
determination of different kinds of QSAR. A total of 75 equations is reported
in Table S8 for a wide diversity of compounds.

Microbial biodegradation is often considered as the major driving force
of the fate of organic compounds in the environment. It is the result of
aerobic or anaerobic enzymatic activities of microorganisms. Biodegradation
acts on the transformation of organic compounds (primary degradation with
production of metabolites), and on their removal (mineralization or ultimate
degradation refers to the complete degradation of an organic species to stable
inorganic species) from the environment as well. Consequently, biodegrada-
tion determines the persistence of organic compounds. Persistence is defined
by the length of time a compound remains in an environmental compart-
ment before it is transported to another one or is chemically or biologically
transformed. As persistence is a usual criteria used in regulatory bodies, the
estimation of the biodegradability (ability of a compound to be biodegraded),
which is one way to define such criteria (a substance that is easily degraded
is considered non persistent) is fully developed particularly with in silico
models such as QSAR. The biodegradation ability can be experimentally de-
termined by measuring half-lives of organic compounds in experimental tests
conducted under environmental conditions. The main guidelines are given
by Organization for Economic Cooperation and Development (e.g., Orga-
nization for Economic Cooperation and Development, 1992, 2009). These
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experimental results are highly dependent on the environmental conditions
found in the matrix (temperature, water content, pH, redox potential, oxy-
gen, substrates, salinity, trace element type, and concentration), on the nature
of the microbial community (diversity, density, activity), and on the tested
chemicals (structure, concentration). All these aspects are fully discussed in
Howard (2000). Some of the available sources of biodegradation databases
are given by Pavan and Worth (2008). The two most famous databases used
in recent QSAR development are the MITI-I database made of the information
on more than 1000 chemicals from one uniform biodegradation test, and the
BIODEG database developed by the U.S. Environmental Protection Agency
(EPA) and Syracuse Research Corporation (SRC) containing biodegradation
information on 815 chemicals.

From these databases, the training sets used in QSAR development are
more qualitative data than those issued from the standardized OECD tests.
These tests measure either oxygen consumption, or CO2 production, or dis-
appearance of dissolved carbon by comparison to that resulting from easily
mineralized compound such as sodium acetate. This type of test results in
the classification of chemicals into two main categories readily biodegrad-
able and not readily biodegradable. These categories can be divided to
give biodegrades fast, biodegrades fast after acclimation, biodegrades slowly,
biodegrades slowly even after acclimation or biodegrades sometimes (Rücker
and Kümmerer, 2012). Each classification is rated according to the quality of
the summarized data on one chemical, with rate 1 (three consistent results), 2
(at least two consistent results), and 3 (one result only or severely conflicting
results). This results in two types of data used in QSAR development: either
quantitative data such as half-lives (DT50), biodegradation rates, or kinetic
constants (BS, k, K, kb, kx/kh, RC), theoretical oxygen demand (%ThOD),
biological oxygen demand (BOD), or qualitative data using Boolean-type
logic (BM; 1 for readily biodegradable and 0 for not readily biodegradable;
Table S2).

The first QSAR and quantitative structure biodegradability relationship
(QSBR) models were developed in the 1980s on chemicals with similar
structure (homologous models). They were based on octanol/water parti-
tion coefficients, Hammett constants or alkaline hydrolysis rate constants not
considered there (Peijnenburg, 1994; Yonezawa and Urushigawa, 1979), or
on molecular descriptors such as MW (Boethling, 1986), van der Waals ra-
dius (YVdW; Paris and Wolfe, 1987; Paris et al., 1983), MCI (2χ , 2χv, 3χ , 3χ c,
3χv, 3χv

c, 4χ , 4χ c; Boethling, 1986), and charge difference in the modulus
charges on the atom of specified bonds (�δx−y; Dearden and Nicholson,
1986, 1987) that were well correlated to biodegradability endpoints (r2 >

0.722; Table S8). Some equations were also found using EHOMO, ELUMO, IP,
μ, and charges (Peijnenburg, 1994). However, these models were often lim-
ited in terms of applicability, prediction (class specific compounds and few
numbers of compounds) and quality of datasets.
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The construction of the two high-quality biodegradation datasets in the
1990s (BIODEG and MITI databases) led to the development of more re-
liable and accurate biodegradation prediction models. This was also facili-
tated by the application of new and advanced modeling approaches such
as multivariate techniques such as principal component analysis (PCA) and
partial least square analysis (PLS), nonlinear neural network, artificial intelli-
gence, computer-automated structure evaluation (CASE), or empirical knowl-
edge. These allowed the development of heterologous models describing the
degradability of compounds displaying varying chemical structures.

The majority of these models are based on one category of descrip-
tors which are functional groups or structural composition of chemicals
combined or not with the molecular weight MW: indeed the so-called
group contribution models (OECD hierarchical approach, Biodegradation
Probability Program-Biowin 1–7 models) are based on the counts of struc-
tural/substructural fragments (number of carboxyl, hydroxyl, unsubstituted
aromatic, phosphate ester). The 40-year work of Howard, Boethling, and
collaborators (Table S8) contributed to the development of the most used
models in predicting aerobic degradation in water, the Biowin models, that
are based on constitutional descriptors: MW and 36 or 42 defined chem-
ical substructures (Boethling, 1986; Boethling et al., 1994; Howard, 2000,
2008; Howard et al., 1991; Howard et al., 1992; Howard et al., 2005; Meylan
et al., 2007; Sabljic and Peijnenburg, 2001; Tunkel et al., 2000). Loonen et al.
(1996, 1999) proposed a similar ready/nonready aerobic categorization but
using a PLS model based on a bigger training set (894 substances) and 127
predefined substructures. All these group contribution models present an
acceptably accurate prediction with only a single set of chemical substruc-
tures (for models performances comparison, see Pavan and Worth, 2008;
Raymond et al., 2001; Rorije et al., 1999; Rücker and Kümmerer, 2012). As
indicated in the previous sections, the main drawback of this method is
the nonprediction for compounds that did not contain any of the substruc-
tures. In order to overcome this drawback, models (MultiCASE approach)
were developed based on the random generation of all fragments (all linear
and terminally branched substructures), and the most significant ones were
statistically correlated to the endpoint (Klopman, 1992). The fragments that
activate the aerobic degradation were called biophores (aliphatic, carboxyl
substructures) and the ones that inactivate biophobes (aromatic substruc-
tures). It was successfully applied on N-heterocycles compounds by Philipp
et al. (2007) with 99% of correct classification.

Various statistical techniques were used to correlate descriptors to
biodegradation data, including linear, multilinear, and nonlinear (e.g., neu-
ral networks) regressions; classification tools; and expert system based on
if-then-else rules and artificial intelligence (Baker et al., 2004; Blockeel et al.,
2004; Cuissart et al., 2002; Gamberger et al., 1996; Tabak and Govind, 1993).
If the most used endpoints are the data from MITI-I and BIODEG databases
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(qualitative), other quantitative endpoints were also used, such as the per-
centage of theoretical biological oxygen demand achieved in five days (BOD;
Sedykh and Klopman, 2007), first-order biodegradation constants (k; Desai
et al., 1990; Tabak and Govind, 1993), or Monod constants (Tabak et al.,
1992). To go further than predicting the extent of biodegradation, other
models (META/MultiCASE and CATABOL/CATALOGIC) were developed to
predict possible degradation products and pathways based on either ex-
pert system or machine-learning systems. The META/MultiCASE approach
is an expert system that can predict the metabolic transformation thanks to
hierarchized metabolic rules defined by constitutional descriptors. Indeed
the 70 general rules are based on a set of MultiCASE biophores (fragments
that activate biodegradation), the weights of the fragments being used to
define the hierarchy of transformation rules for a given chemical structure
(Klopman et al., 1994; Klopman et al., 1995). CATABOL is a hybrid system
predicting the extent of degradation through BOD evaluation, and biotrans-
formation pathways through an expert knowledge-based system (Jaworska
et al., 2002). The BOD of one compound is there considered as a complex
sequence of reaction steps occurring spontaneously (abiotic) or being cat-
alyzed by enzymes: BOD is thus modeled by a sum of terms, each term
being the product of the BOD of one step multiplied by the probability of
the step to occur. The set of reactions (550) were extracted from the litera-
ture and were based on constitutional descriptors of the parent and daughter
molecule taking into account the presence/absence of inhibiting fragments
for each transformation reaction.

All these models, from the first ones of Geating (1981) and Boethling
and Howard’s (Boethling et al., 1994; Howard et al., 1991; Howard et al.,
1992; Howard et al., 2005) to the following ones, are based on the common
assumption that attack by microorganisms takes place at a specific func-
tional group of the molecular skeleton and that the presence of a particular
fragment may enhance or delay the degradation. This assumption of simi-
lar structure-similar microbial metabolism is a strong hypothesis, not always
verified. For example, EHOMO-ELUMO gap and ionization potential (IP) may be
useful descriptors to describe redox behavior (Rücker and Kümmerer, 2012).
But, consequently to this assumption, other descriptors, such as constitu-
tional or topological descriptors, that take into account the global structure
of chemicals, were assumed not to describe this microbial ability, particu-
larly if the models are used for compound sets of highly diverse structure.
Nevertheless, some models were developed using these descriptors: consti-
tutional such as MW or number of rotatable bonds RBN, geometric such as
solvent accessible surface area SAS, or topological such as MCI or Wiener
index W, alone (Boethling, 1986; Boethling and Sabljic, 1989; Dearden and
Nicholson, 1986; Kim et al., 2007; Li and Xi, 2007; Lindner et al., 2003), or in
combination with other constitutional descriptors such as the number of chlo-
rine atoms (nCl), geometric descriptors such as the MR, quantum-chemical
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descriptors such as the charge on the substituted carbon (C12), EHOMO,
the sum of charges on all carbons on the substituted benzene ring C8-C12
(SUMC8:C12) and μ (Boethling and Sabljic, 1989; Gombar and Enslein, 1991;
Kim et al., 2007; Li and Xi, 2007; Lindner et al., 2003) for a series of similar
compounds (Greaves et al., 2001; Kompare, 1998), but also for compounds
with varying structures (Delisle and Dixon, 2004; Jaworska et al., 2003; Okey
and Stensel, 1996; Table S8). Boethling and Sabljic (1989) observed that the
structural features found to have a major influence on ultimate biodegrada-
tion of chemicals were size and shape, degree of chlorination, and degree of
branching. The size and shape of chemicals accounted for the major part of
the variation in the biodegradation data. In the model, this structural feature
is described by 2χv, the magnitude of which is directly proportional to the
size and shape of the chemical. Its positive regression coefficient indicates
that microbial biodegradation will be slower for the bigger and more ex-
tended chemicals than for the smaller and more compact ones. The second
structural property that controls the biodegradation rate of chemicals was
the degree of chlorination (halogenation). The relative importance of this
structural feature decreases with the size of the chemical. The third struc-
tural feature influencing the biodegradation is the degree of branching. It is
described by 4χpc, which is highly sensitive to changes in branching, and its
value rapidly increases with the degree of branching. The positive regression
coefficient of 4χpc indicates that the degree of branching increases the period
required for ultimate biodegradation. The relative importance of this struc-
tural feature decreases with the size of the chemical. It can be concluded that
the ultimate biodegradation rate of a chemical will be a balance between the
global structural features and some local structural features, the presence of
particular functional groups (Sabljic, 1991).

Some models were developed without constitutional descriptors but
based on the combined use of geometric (molecular diameter D, solvent
accessible surface area SAS; Kim et al., 2007; Yang et al., 2004), topological
MCI (Huuskonen, 2001b, Yang et al., 2004, 2006), and/or quantum-chemical
descriptors (EHOMO, ELUMO, repulsion energy NRE, q−, natural charge on
the NH group Q(NH), spin density SD, α, �Gs, μ; Beasley et al., 2009;
Berger et al., 2002; Kim et al., 2007; Yang et al., 2004; Table S8). They were,
however, developed on a small set of similar compounds. Finally, for 18
PAH, the biotransformation affinity coefficient (Ks) and the maximal specific
biotransformation rate (qmax) were well correlated to geometric (radius of
gyration (RadOfGyration), fraction of the area of the projection of a molecule
on the y,z-plane divided by the area of the rectangle enclosing the projection
of the molecule SHDW-Yzfrac, length of the projection of the molecule on
the y axis SHDW-Ylength), topological (Kier flexibility index ø), geometric-
electronic (PNSA-1) and quantum-chemical (final heat of formation (HOF),
magnitude of the principal moment of inertia [PMI]) descriptors (r2 > 0.821;
Table S8; Dimitriou-Christidis et al., 2008). Descriptors related to 3D shape of
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the molecules were found essential. Indeed, PMI and RadOfGyration encode
information about spatial distribution of mass and rotational properties of a
molecule. The SHDW-Yfrac and SHDW-Ylength encode information about
size, shape and orientation, and ø expresses the conformational flexibility of
a molecule (Dimitriou-Christidis et al., 2008). Wammer et al. (2005) did not
find any reliable QSAR to estimate the first-order biomass-normalized rate
coefficients of 22 PAH, however their study did not include a comprehensive
analysis of all possible molecular descriptors.

As for other environmental parameters (see previous subsections), it was
observed that the combination of several categories of descriptors improves
the prediction of B, BOD, COD, and AERUD (Boethling and Sabljic, 1989;
Kim et al., 2007; Li and Xi, 2007; Tables S2 and S8). We finally ended
up with the concept that the combination of descriptors may be the best
option: group contribution models may be good for initial screening of the
chemicals, but adding other descriptors than fragments may be good to better
understand the biodegrading mechanisms.

As a conclusion, although the existence of an important number of stud-
ies, it remains difficult to identify descriptors explaining the huge variations
in biodegradation of organic compounds. However, MCI were involved in
almost half of the reviewed equations (33 over 75), especially 2χv and 4χ c,
and they provided satisfactory results. MW was also involved in 11 equations,
and EHOMO and ELUMO in eight equations. No geometric-topological and no
geometric-electronic descriptors were used.

3.5.2 ABIOTIC DEGRADATION

Among the abiotic degradation processes, the chemical degradation occur-
ring in soil, water, and sediment is the most studied for the development of
QSAR (84 equations), followed by the degradation in atmosphere (35 equa-
tions; Table S9). Few QSAR were developed to estimate the degradation
of organic compounds at the surface of the leaves of plants (2 equations).
Most of the equations involve one or two descriptors to estimate the dif-
ferent abiotic degradation processes (i.e., hydrolysis, photolysis, reduction,
and oxidation), but the number of descriptors can reach a maximum of
26 (photolysis, reduction; Table S9). The environmental parameters that are
considered are essentially the degradation rates and the half-lives of the com-
pounds, but several relationships were also developed using the quantum
yield of the reactions �, the one-electron reduction potential Eo

H, and the
activation energy Ea (Tables S2 and S9).

A number of reviews were written concerning the photooxidation pro-
cesses (Mill, 1989), the tropospheric degradation (Güsten et al., 1995), the
radical reactions of benzene derivatives (Hansch and Gao, 1997), the pho-
toreaction rates in surface waters (Mill, 1999), and the atmospheric oxidation
of chemicals (Meylan and Howard, 2003). However, almost all the reviewed
QSAR are not based on structural molecular descriptors.
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3.5.2.1 Abiotic Degradation in Soils, Water, and Sediments. Among
the fate processes essentially occurring in natural surface, ground and inter-
stitial water, and sediment, hydrolysis is one of the most important; however,
only 12 QSAR equations have been found (Table S9). These equations only
involved just one or two quantum-chemical descriptors, and were only de-
veloped for a small number of phenylurea and sulfonylurea herbicides. There
was no QSAR for other types of organic compounds.

The pseudo-first-order reaction rate constant, khy, of six sulfonylureas
herbicides decreased significantly with higher ELUMO (r2 > 0.702; Table S9).
This is related to electron affinity and thereby reflects the energy for the up-
take of electrons (Berger and Wolfe, 1996). In general, the self-polarizability
of the carbonyl carbon (ALPCO) and self-polarizability at the heterocycle atom
4 (ALPHeterocycle atom, 4), or the superdelocalizability of the carbonyl carbon
(SE(CO)) and at the heterocycle atom 4 (SE(4)) allowed correct prediction of
the khy of 11 sulfonylureas in buffer, sterile soil and sterile sediment (Berger
et al., 2002). The carbonyl group drives the hydrolysis at the sulfonylurea
bridge, and the carbon 4 of the heterocycle part of the molecule is the
atom where the substitution reaction takes place (hydrolysis of the methoxy
group). The ALPCO describes the reactivity of the pi electron system, reflect-
ing the higher reactivity at the carbonyl-carbon of methylmethoxy-substituted
compared with dimethyl-substituted phenylureas.

The transformation rates T of 10 phyenylureas in sterile soil and water
can be well estimated with ALPij (r2 > 0.745; Table S9; Berger et al., 2001).

The 39 QSAR that are summarized in Table S9 to estimate the photolysis
of organic compounds were mainly developed for the quantum yield φ, and
more rarely for the degradation rates kp or for the half-life T1/2ph (Table S9).
The equations are mostly based on one descriptor, but they can involve up
to 27 descriptors. They were developed for several compounds but neither
for PCB or pesticides, for example.

Twenty-four one-descriptor QSAR are reported to estimate the quantum
yield φ of various aromatic halides. The equations mostly involved quantum-
chemical descriptors (bond order for the carbon-halogen bonds BO, bond
strength of the carbon-halogen bond to be broken BS, electronic energy EE,
EHOMO, ELUMO, electron-nuclear attraction energy of the one-center term for
the halogen atoms EN1, electron-nuclear attraction energy of the two-center
term of the weakest carbon-halogen bond EN2, nuclear-nuclear repulsion
energy of the two-center term of the weakest carbon-halogen bond NN2, net
atomic charges on the carbon atoms in the benzene ring that are connected
with the halogen atoms qc, net atomic charges on the halogen atoms qx,
total of electronic and nuclear energy of the two-center term of the weakest
carbon-halogen bond TE2, α, μ), but also constitutional (MW) or geometric
(summation of the steric factors of the additional substituents Es) descriptors
(Chen et al., 1998b; Peijnenburg et al., 1992; Table S9). The best correlations
were found with qx for 15 substituted chlorobenzenes (r2 = 0.829) and Es
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for 12 substituted aromatic halides (r2 = 0.810), and the worst with BS for
12 substituted aromatic halides (r2 = 0.000), μ for 17 substituted bromo-
and iodobenzenes (r2 = 0.242), and EN2 for 15 substituted chlorobenzenes
(r2 = 0.267; Table S9). Es was one of the most efficient descriptor showing
that steric effects seem to play a dominant role during the rate-limiting step
of photolysis. However, the number of data used to develop the QSAR was
low (Peijnenburg et al., 1992).

All equations based on descriptors of the same categories used quantum-
chemical descriptors, and in particular EHOMO and ELUMO. The absolute elec-
tronegativity was a common descriptor able to predict the quantum yields of
different substituted aromatic halides (bromo-, iodo-, chloro-, and fluoroben-
zenes) showing φ are dependent on the overall character of the halides, the
character of carbon-halogen bond to be broken, and/or the nature of halo-
gen atoms to be replaced. Considering each group of substituted aromatic
halides independently, EN1 was the best descriptor for chlorobenzenes; and
EHOMO for fluorobenzenes (Chen et al., 1998b). Similarly, the quantum yield
of 41 substituted halides was correlated to EN2 and ELUMO (r2 = 0.807; Table
S9; Chen et al., 1998a). For 11 PBDE, the quantum yields (in methanol/water)
increased with EHOMO, ELUMO, qC− and QH

+, and decrease with CCR, QBr+,
and QO− (r2 = 0.982; Table S9; Niu et al., 2006).

Using a number of molecular descriptors of different categories, Chen
et al. (1998a) developed some relationships to predict the quantum yields of
several classes of organic compounds (Table S9). The quantum yields of 41
substituted aromatic halides can be well predicted from EE2, ELUMO, and MW
(r2 = 0.848; Table S9). Compounds with higher ELUMO and EE2 could have
a higher probability of intersystem crossing, a higher probability of forma-
tion of excited triplet state, and thus a higher probability of photochemical
reaction. A relationship was also developed using four factors condensing
different types of information: (a) the strength of the carbon-halogen bonds,
(b) the most positive or negative net atomic charges on an atom, (c) molecu-
lar ability to be oxidized or reduced, and (d) structural information related to
polarizability α. This may imply that the weaker the carbon-halogen bonds
are, the higher the quantum yields are. Thus, the compounds with higher
polarizability tend to have smaller quantum yields. Because the electrons
in the molecules of the compounds with higher polarizability can relatively
move easily, both excited singlet and triplet states of the molecules of such
compounds may be unstable (i.e., they may easily undergo processes such
as internal conversion and fluorescence) resulting in smaller quantum yield
(Chen et al., 1998a). The quantum yields in water/acetonitrile of PCDD, as
for it, mainly depended on core-core repulsion energy (CCR), EE, electron-
electron repulsion energy of the one-center term for the oxygen atoms (EE1-
O), EHOMO, ELUMO, electron-nuclear attraction energy of the one-center term
for the oxygen atoms (EN1-O), HOF, MW, largest negative atomic charge on
a carbon atom (qC-), largest positive atomic charge on a chlorine atom (qCl),
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net atomic charges on the oxygen atom (qO), TE, and α. The correlation
coefficient was good (r2 = 0.972; Table S9), but the number of data used
for the regression is small. Increasing bulkiness and polarity of PCDD led to
decrease in quantum yield values; increasing ELUMO, EHOMO, and HOF values
led to increase in quantum yield. EE1-O, EN1-O, and qO describe the char-
acter of the oxygen atoms and play an important role in the relation. This
supports the suggestion that fission of the ether bond in the dioxin ring is the
most likely route for direct photolysis (Chen et al., 2001c). The combination
of MW and bond order of the carbon-halogen bonds (BO) led to correct
estimate of φ of 17 substituted bromo and iodobenzenes (r2 = 0.789; Table
S9; Chen et al., 1998b), and the quantum yield of 12 substituted aromatic
halides was best correlated with BS and Es (r2 = 0.940; Table S9; Peijnenburg
et al., 1992). Finally, PAH with large average polarizability α, HOF and MW
values tend to have smaller quantum yield, and PAH with great ELUMO and
ELUMO/EHOMO values, and small EHOMO values tend to have great φ (Chen
et al., 2000).

For 11 PBDE, CCR, MW, TE, and ELUMO or EHOMO were common de-
scriptors to estimate their photolysis rate constants kp in different solutions.
As all PBDE congeners have a same parent diphenyl ether, it can be con-
cluded that the more bromine atoms in the parent molecule, the higher the
photolysis rate. Because a nucleophile reacts by means of its EHOMO values,
the compound with higher EHOMO values will be a better nucleophile and
will generate more stable. Similarly, PBDE with big absolute EHOMO – ELUMO

values tend to be more stable. This result implies that photolysis rates of
PBDE are also affected by the characteristics of solution in which they take
place (Niu et al., 2006). EHOMO and ELUMO were also good descriptors for the
assessment of kp of 17 PAH (r2 = 0.848; Table S9; Chen et al., 1996b).

The direct photolysis (in water) half-lives T1/2ph of 13 PAH under irra-
diation of sunlight was mainly correlated to ELUMO + EHOMO and ELUMO –
EHOMO, but also to α (r2 = 0.912; Table S9; Chen et al., 2001e): the half-lives
decrease when EHOMO and α increase, but they increase with ELUMO – EHOMO

gap and ELUMO. As indicated before, chemical structures tend to be more
stable at larger values of the ELUMO – EHOMO gap. In sunlight, ELUMO – EHOMO

was presumed to be an indicator of the wavelengths absorbed, and therefore
of the energy of the intermediate excited state. The half-lives also decreased
with MW therefore it can be concluded that the larger the PAH molecules,
the faster the degradation rate. This is probably mainly caused by enhanced
spectral overlap of the absorption spectra of the high molecular weight PAH
with solar radiation. In methanol/water solution, it was shown that PAH
with larger ELUMO – EHOMO gap absorbs light with small wavelengths and
may exhibit greater photolysis rate (Chen et al., 1996b).

The most relevant descriptors to explain the variability of the photolysis
of organic compounds were found to be EHOMO and ELUMO. The molecu-
lar weight MW, and the quantum-chemical descriptors α and μ were also
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relevant. Only constitutional, geometric, and quantum-chemical descriptors
were used in the equations.

Reductive transformation is the dominant reaction pathway for many
organic compounds in anoxic environments, and reducing environments
abound in nature (e.g., subsurface waters and soils, aquatic sediments,
sewage sludge, oxygen-free segments of eutrophic rivers). Most of the re-
search in reductive transformations of chemicals focuses on dehalogenation
of chlorinated aliphatic or aromatic contaminants, and on the reduction of ni-
troaromatic compounds (Tratnyek et al., 2003). Only nine QSAR were found
to estimate three parameters related to reduction processes: rate constants
kred, k for dechlorination, and one-electron reduction potential EO

H, which
quantifies the tendency for a reduction reaction to occur (Tables S2 and
S9). The diversity and number of organic compounds from which the equa-
tions were developed is low: only nitroaromatics, chlorinated aliphatics and
halogenated aliphatic hydrocarbons.

The ELUMO was the best descriptor to explain the variability in the reac-
tivity data for the reduction of six nitroaromatics (r2 = 0.990; Table S9) and
12 chlorinated aliphatics (r2 = 0.832; Table S9; Colón et al., 2006; Scherer
et al., 1998). ELUMO characterizes the tendency of a compound to accept
electrons or to be reduced: the greater the ELUMO values are, the lower the
tendency of a compound to accept electrons is. Correlations were also found
with electron affinity EA (r2 = 0.834) and one-electron reduction potential
E1 (r2 = 0.810). EA represents the energy difference associated with the
gain of an electron, which should correlate with the ease or difficulty in the
reduction of a compound (Colón et al., 2006). E1 is a promising descriptor
for dechlorination as it represents the potential of the rate limiting initial
electron-transfer step (Scherer et al., 1998).

The kred of 13 halogenated aliphatic hydrocarbons can be correctly esti-
mated using a combination of constitutional (MW), and of several quantum-
chemical (BO, C, CCR, EE, EE1c, EE1x, EE2, EHOMO, ELUMO, EN1c, EN1x,
EN2, HOF, J, K, NN2, q−, q-cx, QH

+, qxc, TE, TE2, α, and μ; Table S1)
descriptors (r2 = 0.808; Table S9). As for nitroaromatics and chlorinated
aliphatics, the greater the ELUMO values, the lower the dehalogenation rate
constants of halogenated aliphatic hydrocarbons. Increasing the values of
QH

+ led to decreasing values of kred, and the higher the BO, the lower the
kred, which implies that the stronger carbon-halogen bond, the slower the
dehalogenation rate. Halogenated aliphatic compounds with great BO, EE,
ELUMO, QH

+, and TE tend to be dehalogenated slowly, whereas halogenated
aliphatic compounds with high values of CCR, MW, and α values tend to be
dehalogenated fast (Zhao et al., 2001).

The EO
H of 20 nitroaromatics can be estimated with one of these three

quantum-chemical descriptors: EA, ELUMO in aqueous or gas phase, or vertical
detachment energy (VDE). ELUMO and VDE are alternative measures used to
approximate the energy change accompanying the transfer of one electron.
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EA value incorporates the effect of changes in geometry between the (gas-
phase) anion and neutral species, whereas ELUMO and VDE do not account for
geometry changes. All correlations have similarly high predictive capabilities
(r2 ranges from 0.913 to 0.940; Table S9) suggesting that any reasonable
measure of the energy change accompanying the one-electron reduction
process will be highly correlated with the reduction potential (Phillips et al.,
2010).

As a conclusion, ELUMO was found to be the most fundamental descrip-
tor allowing the prediction of the reduction of organic compounds in the
environment. Only constitutional, and quantum-chemical descriptors were
used, but the number of equations is low.

Oxidation, along with hydrolysis and reduction, accounts for the vast
majority of chemical reactions that result in degradation of organic contam-
inants, especially in aquatic systems. Oxidation of organics can occur by a
wide variety of mechanisms: the main ones are loss of electrons or hydrogen
atoms (abstraction by the oxidant), addition of an oxidant (OH, 1O2, man-
ganese (III/IV) oxides), or substitution of a hydrogen atom by an electron-
withdrawing atom or functional group (Canonica and Tratnyek, 2003; Rorije
and Peijnenburg, 1996). Oxidation by ozone (ozonation) is also considered
in this review as it is an effective method for removing residual pollutants
such as pesticides and other hazardous chemicals from water during drinking
water treatment (Hu et al., 2000; Sudhakaran and Amy, 2013). Twenty-four
QSAR allowing the prediction of oxidation rates are reported in Table S9.
They mainly involve one descriptor (with a maximum of three descriptors)
and were developed for several classes of organic compounds (Table S9).

EHOMO was the best descriptor to estimate the oxidation of substituted
phenols by singlet oxygen, manganese (III/IV) oxides, chlorine dioxide, per-
oxydisulfate, and potassium dichromate in the aqueous phase (r2 > 0.750;
Table S9), and the oxidation reactivity decreases with increasing EHOMO. In-
deed, an electron from the HOMO with a large ionization potential has to
overcome a larger energy barrier before it can be removed from its orbital
(Rorije and Peijnenburg, 1996). EHOMO was also strongly related to the reac-
tion rates kHOCl of eight organophosphorous pesticides in the presence of
chlorine (r2 > 0.950; Table S9; Duirk et al., 2009), and with reaction rates
with ozone kO3 for different pesticides (r2 > 0.840; Table S9; Hu et al.,
2000), but kO3 increases with EHOMO. However, the number of compounds
used for the development of these QSAR was very small (from three to
a marginal maximum of 24; Table S9). For eight phenoxyalkylacetic pes-
ticides, the rate constant kO3 was very well predicted by a two-parameter
QSAR model that used EHOMO and the absolute electronegativity (EN) as
predictors (r2 = 0.970; Table S9), but the number of data for the regression
was also low. The dependence of rate constants of pesticides on EHOMO

shows that the reaction between pesticides and ozone was controlled by
the frontier orbital effect connected with partly covalent bonding in the
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transition state (Hu et al., 2000; Ljubic and Sabljic, 2002). For 55 miscella-
neous compounds, some correlations between kOH and constitutional de-
scriptors such as nC = C or double bond equivalence (DBE), geometric such
as SAS, and quantum-chemical such as α were found. With one descrip-
tor, the best estimates of kOH of 55 miscellaneous organic compounds were
found with DBE or the number of ring atoms (NR; r2 = 0.767 and 0.902,
respectively; Table S9), but the greatest correlation was obtained with a
combination of DBE and the weakly polar component of SAS (WPSA; r2 =
0.918; Table S9). Similarly, for 27 organic compounds, the best estimate of
kO3 used DBE, WPSA, and IP (r2 = 0.832; Table S9). DBE focuses on the
double bond nature of the organic compounds which enhances ozonation
efficiency. WPSA focuses on the surface area occupied by halogens, and IP
represents the energy required to remove an electron from a neutral atom. An
increase in both WPSA and IP decreases ozonation efficiency (Sudhakaran
and Amy, 2013). For 60 aromatic compounds, two models were found to
give good estimate of kOH (r2 > 0.735; Table S9). The four-descriptors model
involves EHOMO, the Geary autocorrelation-2 lag weighted by atomic polariz-
abilities (GATS2p), the leverage-weighted autocorrelation of lag 7 weighted
by atomic polarizabilities (HATS7p) and the number of path of length 8 (P8),
whereas the five-descriptors model involves EHOMO, MW, P9, and two 3D
MoRSE-signal descriptors (Mor(02)e and Mor(26)p). In both cases, the main
contribution to the degradation rate was obtained from EHOMO. Indeed, as
stated before, EHOMO determines the nucleophilic ability of compound and
hence the possibility of reaction by attack of such a strong electrophile as the
OH radical. Thus, compounds with higher value of EHOMO are more reactive
with OH radical (Kušić et al., 2009).

Considering these results, EHOMO was the most used and the most useful
descriptor to estimate the oxidation of organic compounds in the environ-
ment. Only constitutional, geometric, geometric-topological, and quantum-
chemical descriptors were used, but the number of equations is low.

3.5.2.2 Abiotic Degradation in the Atmosphere. Organic compounds
emitted or formed in the troposphere are removed by physical processes
such as wet and dry deposition, and by chemical transformation processes
that include reaction with photochemically generated oxidants such as hy-
droxyl radicals and ozone at day time, and nitrate radicals at night time
(Güsten, 1999; Meylan and Howard, 2003; Pompe and Veber, 2001). Reac-
tion with chlorine atoms can also be significant due to their high concen-
trations in the atmosphere (Long and Niu, 2007; Meng et al., 2005). Güsten
et al. (1995) reviewed the tropospheric degradation of chemicals and found
that the great majority of published models were only developed for single
chemical class and a small number of chemicals.

Only four equations were found to predict the persistence of several
persistent organic pollutants (POP) in the atmosphere, and they are related
to four different environmental parameters (Table S9).
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Atmospheric half-life (T1/2) is one of the criteria commonly used to
study air persistence and long-range transport (LRT) potentials of organic
compounds. The mean atmospheric half-lives (Mean T1/2) of 59 POP were
satisfactorily correlated (r2 = 0.841; Table S9) to two global WHIM descriptors
(Ku and Tu), and to two topological descriptors (mean information content
index on the distance degree equality IED,deq and Kier flexibility index ø).
The WHIM descriptors were the most relevant ones, highlighting that 3D
size Tu, and shape Ku have opposite role in determining the persistence of
compounds (Tu has a negative sign in the regression and Ku has a positive
sign). The same relationship was obtained for the maximum half-lives (Max
T1/2), but the results were slightly less satisfactory than for mean half-lives
(mean T1/2; r2 = 0.826; Table S9; Gramatica et al., 2001).

A principal component analysis performed on the same data allowed the
development of an atmospheric persistence index (API), and a LRT index.
The API was correlated to nH (this highlights the importance of the number of
hydrogen atoms in the molecule influencing the hydroxyl-radical reaction),
and to three WHIM descriptors (Ve, η2e and θ2e; r2 = 0.897; Table S9). The
LRT index was well correlated to MW and to two directional WHIM (λ2e and
λ1p; r2 = 0.952; Table S9; Gramatica et al., 2001).

Only two equations were found to estimate the photodegradation of
PAH, PCDD, and PCDF in the atmosphere (Table S9). The predicted pho-
todegradation half-lives T1/2p of 11 PAH on aerosols (r2 = 0.960; Chen et al.,
2001b), and 75 PCDD and PCDF on fly ashes (r2 = 0.704; Niu et al., 2004)
were mainly correlated to EHOMO, ELUMO, MW, and α (Table S9). Increasing
MW values of the PCDD and PCDF leads to increase half-life values; on the
contrary, PAH with great MW values tend to photolyze fast. The PAH, PCDD,
and PCDF with small absolute electronegativity (EN) values and large abso-
lute (EHOMO – ELUMO) values tend to have lower T1/2p (Chen et al., 2001b;
Niu et al., 2004).

In the atmosphere, the oxidation of organic compounds is mainly due
to reactions with OH, O3, NO3, and Cl atoms, and in particular, the reaction
with the OH radical is the major chemical loss process for the majority of
organic compounds emitted into the troposphere (Medven et al., 1996; Sabljic
and Peijnenburg, 2001). Twenty-nine equations were found to estimate the
oxidation reaction rate constants of organic compounds in the atmosphere,
the highest number being for reaction with OH (Table S9). The equations
involve from 1 to 10 descriptors, and were developed for miscellaneous
organic compounds, but not, for example, for PCB or pesticides.

Among the 15 QSAR related to the reaction rates with OH in the atmo-
sphere, kA,OH, eight relationships were developed using only one descriptor
(Table S9). The EHOMO allowed good estimate of kA,OH of various com-
pounds (r2 > 0.749; Bartolotti and Edney, 1994; Güsten et al., 1995), and
the ionization potential IP was well correlated to the kA,OH of 15 hydrocar-
bons and fluorinated hydrocarbons (r2 = 0.846; Percival et al., 1995), and
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of aromatic and aliphatic compounds (r2 > 0.902; Güsten et al., 1984; Table
S9). Oberg (2005) found that the main sources of variation of kA,OH were
directly linked to four constitutional descriptors: number of aromatic bonds
(NAB), NDB, nH, and nX. For Bakken and Jurs (1999), the rate constants
kA,OH of 52 unsaturated hydrocarbons were estimated using five topologi-
cal descriptors: number of sp2 hybridized carbon atoms (2SP2, 3SP2) and
molecular distance edge (MDE-13, MDE-23, MDE-34), encoding information
concerning attack sites for the radical, branching information, and steric con-
siderations (r2 = 0.868; Table S9). This is consistent with the reaction center
for radical reactions which is often an unsaturated carbon. Then, they de-
veloped a second relation using computational neural networks (CNN). It
showed correlation with miscellaneous descriptors: one constitutional (num-
ber of multiple-multiple carbon bonds MCB), one topological (PND), one
geometric-electronic (FPSA-3), and two quantum-chemical (ELUMO and EN).
PND encodes information on branching of the molecules, and quantum-
chemical descriptors encode the energetics of the reactant molecular orbitals
that will be involved in the reaction. Then, using a very large dataset of 281
miscellaneous compounds, they found a ten-descriptor linear relationship
involving two constitutional (NAB, number of lone pairs (NLP)), six topolog-
ical (3SP2, MDE-14, PND, sum of weighted paths starting from heteroatoms
WTPT-3, path-three κ index 3κ , 3χ), and two quantum-chemical descriptors
(ELUMO, EN). The CNN model involved three constitutional (nC, NDB, NSB),
three topological (1SP2, MDE-33, WTPT-3), one geometric (GEOM-3), one
geometric-electronic (CHAA-3), and two quantum-chemical (EHOMO, Hard)
descriptors (r2 = 0.876; Table S9). Using descriptors of the different cate-
gories, kA,OH of various organic chemicals was correctly correlated to some
constitutional (MW, number of atoms in the molecule (NAT), nC, nHD, nOH,
NoRING, unsaturation index (UI)), and geometric (WHIM descriptors) and/or
topological (information index) descriptors (r2 > 0.733; Table S9; Gramatica
et al., 1999a). The rate constants of 14 alkylnaphthalene, as for it, depended
on MW, and on quantum-chemical (CCR, EE, EHOMO, ELUMO, QCave, QH

+,
TE, μ, α) descriptors (r2 = 0.879; Table S9; Long and Niu, 2007). Finally,
using PLS regression, Medven et al. (1996) showed that five descriptors had
more pronounced influence than the others on the kA,OH of 57 unsaturated
hydrocarbons: EHOMO, ELUMO, Hard, average number of alkyl substituents
per unsaturated bond (nAlk), and number of carbon atoms in unsaturated
bonds (nCub). Among these, EHOMO was the most influential, which is in ac-
cordance with the assumed mechanism of electrophilic addition to multiple
bonds in which the singly occupied molecular orbital (SOMO) of the elec-
trophilic radical predominantly interacts with the HOMO of the unsaturated
chemical, which means that chemicals with low values of EHOMO are more
reactive. Two other descriptors, Hard and ELUMO, have a strong influence
on the reactivity of unsaturated compounds with hydroxyl radical. Again,
chemicals with lower values of both descriptors are more reactive. Thus a
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small HOMO-LUMO energy gap has a positive effect on the reactivity of
unsaturated chemicals with hydroxyl radical. This result can be rationalized
within the framework of the frontier molecular orbital theory: the SOMO of
the electrophilic radical also interacts with the LUMO of unsaturated chem-
icals, and this interaction has a significant effect on reactivity. As expected,
the reactivity of unsaturated chemicals increases with the number of carbon
atoms in unsaturated bonds or potential reactive centers. Furthermore, the
degree of alkyl substitution on unsaturated bonds (nAlk) also has a positive
effect on reactivity.

Klamt (1993) proposed to divide the rate constants of degradation of
various organic compounds by hydroxyl radicals considering three subre-
actions: (a) the OH addition to carbon-carbon double bonds (kadd

C), which
depended on the charge-limited effective HOMO energy at H atom (ECHH);
(b) the addition to aromatic rings (kar

C), which depended on the energy-
weighted effective HOMO energy at atom H (EEHH) and on the energy
required to deform the molecule in a way to enable the OH-addition (�def

C);
and (c) the hydrogen abstraction from aliphatic carbon atoms (kabs

H), which
depended on ECHH. They obtained very good results (r2 > 0.954; Table S9).
For 13 halogenated compounds, an hologram method was used to predict
half-life of the hydroxyl radical with substituted aromatic compounds: the
generated fragments include atoms, bonds, connections, hydrogen atoms,
donor and acceptor atoms, and the chiral center (Vrtacnik and Voda, 2003).

The QSAR developed by Atkinson (1987), though widely used to es-
timate the OH reaction rates, were not considered in this study, as they
involve an experimental descriptor: the sum of the electrophilic substituent
constants.

Two equations are reported for the reaction rates with ozone, kA,O3,
and quantum-chemical descriptors were found to be the best predictors in
both cases (Table S9). For 117 miscellaneous compounds, all descriptors of
the QSAR were quantum-chemical (average electrophilic reaction index for
a C atom AERC, EHOMO, fractional hydrogen bonding donor ability of the
molecule FHDCA(1), maximum exchange energy for a C C bond MaxC C,
maximum electron-electron repulsion for a C C bond MaxeeC-C, minimum
(> 0.1) bond order of a C atom MinC; r2 = 0.870; Table S9). The relationship
encodes chemical features which are important in the reaction of organic
compounds with ozone, that is, information about formation of transition
state, cleavage of the chemical bonds, and different conformational changes.
The MaxC-C and MaxeeC-C characterize intramolecular energy distribution
and may be related to the conformational changes or atomic reactivity in
the molecule (Pompe and Veber, 2001). The other quantum-chemical de-
scriptors that were used to predict kA,O3 were EHOMO, AERC which represents
the interactions between the frontier orbitals of the reacting compounds,
and the MinC that relates to the strength of intramolecular bonding inter-
actions, and therefore to the stability of the molecule or its conformational
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flexibility (Sannigrahi, 1992). The FHDCA(1) can describe polar interactions
between molecules as well as their chemical reactivity (Pompe and Veber,
2001). Among the quantum-chemical (EHOMO – ELUMO gap), constitutional
(MW, number of conjugated double bonds nAB, number of isolated double
bonds nDB), topological (Moran autocorrelation lag (7) weighted by atomic
Sanderson electronegativities (MATS7e), and geometric-electronic (R auto-
correlation of lag 3 weighted by atomic Sanderson electronegativities (R3e))
descriptors that allow the prediction of kA,O3 of 125 miscellaneous com-
pounds, the best descriptor was the EHOMO – ELUMO gap. As stated before,
this is an important stability index reflecting molecule reactivity as well as
polarization: the more reactive chemicals have a smaller gap. The infor-
mation regarding attack sites for ozone is provided by the constitutional
descriptors highlighting the relevance of the double bonds for the molecular
cleavage by ozone. Charge distribution factors, in addition to dimensional
aspects, are encoded by the different kinds of autocorrelation descriptors
selected, all weighted by the atomic electronegativity of Sanderson (Gramat-
ica et al., 2003; Table S9).

Eight equations allowing estimate of the rate constants for the reaction
with NO3, kNO3, were inventoried in Table S9. The kNO3 are essentially and
correctly predicted by EHOMO and/or ELUMO (r2 > 0.677; Table S9; Güsten
et al., 1995; Long and Niu, 2007; Müller and Klein, 1991), though the mech-
anism of NO3 radical addition is complex and that it’s maybe not possible
to model its reactivity by one single descriptor (Güsten et al., 1995). The
relationship developed by Long and Niu (2007) for 14 alkylnaphthalene in-
volved, in addition to ELUMO and EHOMO, constitutional (MW) and quantum-
chemical (QCave, QH

+, total energy TE, standard heat of formation �Hf, μ)
descriptors (r2 = 0.817; Table S9). For 58 aliphatic compounds, the kNO3 is
correlated to constitutional (NAT, nHD, UI), and geometric WHIM (Du, λ1s)
descriptors (r2 = 0.840), and for 16 aromatics, kNO3 was correlated to two
constitutional (MW, hydrophilic factor (HY)), and one topological (mean in-
formation content index on the distance degree equality IED,deq) descriptors
(r2 = 0.978; Table S9; Gramatica et al., 1999a). Sabljic and Güsten (1990)
developed two relationships linking kNO3 to the ionization potential (IP):
one for 62 aliphatic compounds and one for seven benzene derivatives. For
the aliphatic compounds, the correlation was significant (r2 = 0.927; Table
S9) but chloroalkenes compounds needed to be approximate by the parent
hydrocarbon molecule because of lack of ionization energy in the study.
For benzene derivatives, good correlation (r2 = 0.883; Table S9) was found
excluding two outliers (tetraline and methoxybenzene), however the dataset
was limited.

Only one equation was found to estimate the reaction rate of organic
compounds with chlorine kCl (Table S9). For 14 alkylnaphthalene, kCl was
again mainly found to depend on energies of orbital (EHOMO, ELUMO), but
also on QCave, QH

+, and μ (r2 = 0.944; Table S9; Long and Niu, 2007).
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As a summary, EHOMO was the most relevant descriptor to estimate
the oxidation of organic compounds in the atmosphere. No geometric-
topological and no electro-topological descriptors were involved in the
equations.

3.5.2.3 Abiotic Degradation on Vegetation. Few QSAR studies are re-
lated to the degradation of organic compounds on the surface of plants,
and only two equations were found for PCDD and PCDF (Table S9). The
photodegradation half-lives T1/2v of 42 PCDF adsorbed to spruce needle sur-
faces (Niu et al., 2005) was mainly correlated to EHOMO, ELUMO, MW, TE,
and α (r2 = 0.740; Table S9). But, the stability of PCDF was also shown to
increase with the increase in chlorine atoms in the parent molecules, and
PCDF with high (ELUMO – EHOMO) values tend to be more stable and difficult
to be degraded. For 10 PCDD and PCDF dissolved in cuticular wax from
Prunus laurocerasus leaves exposed to sunlight, the degradation rates kv

mainly depended on qCl, but the rates also increased with MW and α. PCDD
and PCDF with large values of ELUMO, EHOMO, and ELUMO – EHOMO tend to
have low kv, however the dataset was limited (r2 = 0.958; Table S9; Chen
et al., 2001a).

3.6 Absorption by Plants Processes

Organic compounds present in soil, water and air may be taken up by plants
(Paterson et al., 1994). The chemical can be transferred to the vegetation from
the soil and/or water by uptake through the roots (i.e., symplastic way),
from the atmosphere by their aboveground parts after wet or dry deposition,
or following rain-splash in which soil particles are dispersed onto the leaf
surfaces following the impact of raindrops on the soil surface (Hiatt, 1998;
McKone and Maddalena, 2007; Paterson et al., 1994; Sabljic et al., 1990).
For atmospheric contaminants, the predominant initial site of interception is
the plant cuticle, and the adsorption on the cuticles is the first step of the
transfer of volatile and nonvolatile organic compounds to plant (Chaumat
et al., 1992; Hiatt, 1998; Welke et al., 1998).

Twenty-six QSAR allowing the estimation of the parameters describing
the absorption of organic compounds by plants are reported in Table S10.
The absorption can be estimated with the bioconcentration factor BCF (ratio
between the contaminant concentration in the plant tissue and the concen-
tration in soil), the bioconcentration ratio BCR (the ratio of a tissue concen-
tration to the concentration in a relevant exposure medium), the cuticle-air
partition coefficient Kca, the cuticle-water partition coefficient KCW, the poly-
mer matrix membrane-water partition coefficient KMXw, the permeability of
the cuticle P, and the sorbed amount by the plant cuticle Q. In most cases,
a single descriptor was used to predict these environmental parameters,
the maximum being five descriptors. The equations were developed for a
wide diversity of organic compounds but mainly with very limited datasets
(Table S10).
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The BCF (in zucchini) of several POP were correlated to nCl (except
for PCB), which is related to the hydrophobicity of the molecule. However,
the best correlations were found using combinations of GETAWAY, VolSurf,
and quantum-chemical descriptors (r2 > 0.918; Table S10; Bordás et al.,
2011): POP taken up preferentially from soil are characterized by high values
of ELUMO – EHOMO, VOH2 and HB5O (two VolSurf descriptors), and low
values of Z-component, GETAWAY (H4p and H5e), and VolSurf (BV31OH2,
D3DRY, D6DRY, H5e, W4O) descriptors.

The MCI were involved in six of the 26 relationships: the BCR of sev-
eral miscellaneous compounds for aboveground plant-soil bioconcentration,
root-soil bioconcentration, and plant-air bioconcentration were well corre-
lated with 1χ and the polar correction factors of Meylan et al. (1992; r2 >

0.780; Table S10; Dowdy and McKone, 1997). Similarly, for 14 alcohols, the
Kca (of tomato cuticle) was well correlated to 1χ (r2 = 0.868; Table S10;
Welke et al., 1998). For 47 organic chemicals, the KCW was correctly esti-
mated using 3χv and nOHaliph (r2 = 0.984; Table S10). The KCW are primarily
influenced by the size of the molecule, which is described by 3χv: larger
molecules show a higher affinity for cuticles than smaller ones. However,
it has to be underlined that not all parts of a molecule contribute equally
to its affinity for plant cuticles. The major contribution is from chlorine sub-
stituents, hydrocarbon chains, and benzene rings. Another factor controlling
the magnitude of KCW is the presence of aliphatic hydroxy groups. The nega-
tive regression coefficient of nOHaliph shows that the association with cuticles
decreases with the presence of aliphatic hydroxy groups. Compared with
the main factor, the size of the molecule, nOHaliph can be viewed only as
a fine-tuning element for the affinity of organic chemicals for plant cuticles
(Sabljic, 1991; Sabljic et al., 1990).

For 5 phenylurea herbicides, significant relationships between KCW, Q,
or P (for tomato and pepper), and the steric descriptors �D and �S were
found (r2 > 0.943; Table S10), but the number of data used in the regression
is very low. As observed for the 47 organic chemicals (Sabljic et al., 1990),
the overall dimension of the phenylurea molecules reflected by the steric
descriptors is an important factor for cuticular adsorption. Within the same
chemical family, penetration in plant tissues is greater for chemicals well
adsorbed to cuticles (Chaumat et al., 1992).

Platts and Abraham (2002) used the LSER approach to estimate the KMXw

for tomato of 62 volatile organic compounds, and found very good result
(r2 = 0.981; Table S10). They concluded that the cuticular matrix interacts
more through pi- and n-electron pairs, is rather less polar/polarizable and
basic, and much less acidic than bulk water, and that cavities are much more
easily formed in cuticle than in water.

Finally, a PLS analysis was performed to determine the main descriptors
involved in the estimation of the Rhizopus oryzae cell-wall water partition
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coefficients of only 3 PAH. MW was the principal contributing descriptor, fol-
lowed by the total information content index with neighborhood symmetry
of one-order TIC1 (Ma et al., 2011).

As a conclusion, descriptors related to the size of the organic compounds
(3χv, steric descriptors such as �S and �D, and the number of chlorine
atoms) were the most relevant ones to estimate their absorption by plants.

4. SYNTHESIS AND DISCUSSION

For the first time, a comprehensive review of QSAR focused on several
processes driving the fate of organic compounds in the environment was
done. Six main processes were considered: water dissolution, dissociation,
volatilization, retention, degradation, and absorption by higher plants. These
main processes were then subdivided in 23 environmental subprocesses as
shown in Table S2. We chose to focus our work on QSAR based on struc-
tural molecular descriptors because QSAR based on KOW or SW, for example,
are prone to experimental errors in the input variables, which can result in
some statistical problems (Lohninger, 1994; Nguyen et al., 2005; Sabljic and
Piver, 1992). Overall, 790 QSAR equations involving 686 different molecu-
lar descriptors allowing the assessment of 90 environmental parameters are
presented here (Tables S1–S10). The equations were developed for a wide
diversity of organic compounds including pesticides, PAH, PCB, PCDD, phar-
maceuticals, and hormones. However it has to be underlined that almost no
pesticide was up to now included in the development of QSAR for pKa,
vapor pressures, KH, KOA, or adsorption on sediments. Similarly, most of the
QSAR related to abiotic degradation were developed for restricted classes of
organic compounds (Tables S3–S10).

Figure 1 shows the number of equations found for each of the 23 en-
vironmental processes (Table S2). The highest number of equations, 145
equations (i.e., 18.3% of the total number of equations), was developed to
predict the dissociation of organic compounds (pKa). A fairly large number
of equations were found to predict the KOW (115; i.e., 14.5%), and the ad-
sorption of compounds on the soils (102; i.e., 12.9%) as well. The number
of equations to predict biodegradation and solubility in water (SW) were
also important, being 75 (i.e., 9.5%) and 65 (i.e., 8.2%), respectively. On
the contrary, there were only one equation for the soil desorption of organic
compounds, two equations for the degradation of compounds on vegetation,
four equations for the nonlinear adsorption, and six equations to predict the
potential of transfer to groundwater. To the best of our knowledge, there is
neither QSAR to estimate the formation of nonextractable (bound) residues,
known as an important dissipation route of pesticides and other organic com-
pounds in soil matrices (Barriuso et al., 2008), nor to estimate the potential of
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FIGURE 1. Number of equations found for the main processes governing the fate of organic
compounds in the environment (see Table S2).

transfer of organic compounds to surface water. This might be explained by
the fact that the estimation of the transfer of organic compounds to ground
and surface water is often addressed by mass balance models, which are
mechanistic (Mackay et al., 2003).

The descriptors that were the most used in the 790 equations are sum-
marized in Figure 2. Twenty-two descriptors were involved in more than 10
equations: nine were quantum-chemical descriptors related to the energies
(CCR, EE, EHOMO, ELUMO, q−, QH

+, TE, α, μ), eight were topological and they
were all MCI (0χ , 0χv, 1χ , 1χv, 2χ , 2χv, 3χv, 3χv

c), three were geometric re-
lated to the surface and the volume of the compounds (TSA, VdW, Vm), and
two were constitutional (MW and nCl). The most used descriptor is EHOMO,
which is involved in 80 (i.e., 10%) equations, followed by α in 68 (i.e., 8.6%)
equations, ELUMO in 58 (i.e., 7.3%) equations, MW in 57 (i.e., 7.2%) equations,
μ in 46 (i.e., 5.8%) equations, and 1χv in 44 (i.e., 5.6%) equations. The nCl,
VdW, Vm, TSA, 0χ , 0χv, 1χ , 2χ , 2χv, 3χv, 3χv

c, CCR, EE, q−, QH
+, and TE

descriptors were included in 11–41 (i.e., 1.4 to 5.4%) equations (Figure 2).
The remaining descriptors of Table S1 were mainly found only in one or two
equations.

Finally, the descriptors the most frequently used to estimate environ-
mental processes are summarized in Figure 3 (a descriptor involved in sev-
eral different process will be considered as generic). Nineteen descriptors
were found to be involved in six or more processes (Figure 3): twelve
were quantum-chemical (EE, EHOMO, ELUMO, HOF, q−, qC, QH

+, TE, α, �Gs,
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FIGURE 2. Molecular descriptors that are the most frequently used to assess the parameters
related to the main processes governing the fate of organic compounds in the environment
(see Tables S1 and S2).

FIGURE 3. Molecular descriptors allowing the assessment of the highest diversity of environ-
mental processes (see Tables S1–S10).
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�Hf, μ), four were topological (1χ , 1χv, 2χv, 3χv), two were constitutional
(MW, nCl) and one was geometric (Vm). Fifteen of these 19 descriptors were
among the 22 most used descriptors (Table S1, Figure 1); the four remaining
descriptors are HOF, qC-, �Gs, and �Hf. In particular, the five most generic
descriptors were also the five most used descriptors: EHOMO, α, ELUMO, μ,
and MW, and among them, EHOMO was the most used descriptor and one of
those that allowed the assessment of the highest diversity of environmental
processes (Figures 2 and 3).

The overall synthesis of the results that are reviewed in this work
showed that, in general, an increase in the absolute values of EHOMO led
to a decrease in KOW, adsorption on soils, redox reactions in soils, water and
sediments, photodegradation in the atmosphere, and degradation on the veg-
etation. On the contrary an increase in the absolute values of EHOMO led to
an increase in biodegradation and BCF (Tables S3–S10). Similar results were
found for ELUMO, except that an increase in the absolute values of ELUMO

involved an increase in photolysis and atmospheric oxidation of organic
compounds (there was no clear relationship between ELUMO and biodegra-
dation or BCF; Tables S3–S10). Orbitals play a major role in a lot of chemical
reactions and they are also responsible for the formation of many charge-
transfer complexes. The EHOMO is directly related to the ionization potential
and characterizes the susceptibility of the molecule toward electrophilic at-
tack (Karelson et al., 1996). EHOMO also represents the proton acceptance
ability in forming hydrogen bond, while ELUMO represents the proton dona-
tion ability in forming hydrogen bond. Therefore, the compounds with large
value of EHOMO and ELUMO tend to donate or accept protons easily (Chen
et al., 2002a; Colón et al., 2006; Zhou et al., 2005). This could explain why
EHOMO and ELUMO were rather good descriptors for estimating several pro-
cesses such as adsorption, biodegradation, photolysis, redox reactions, and
degradation in the atmosphere.

The two quantum-chemical descriptors, α and μ, also allowed the es-
timate of a wide diversity of environmental processes (Figure 3; Table S2).
They were especially used to assess partition properties such as SW, KOW, PL,
PS, KH, KOA, and adsorption on soils and sediments (Tables S3, S4, S6, and
S7). An increase in α was related to an increase in KOW, KOA, redox reactions
and degradation on vegetation; and to a decrease in SW, vapor pressure and
photodegradation in the atmosphere (Tables S3 to S10). The bigger the α is,
the more hydrophobic the molecules are (Chen et al., 1996; Katritzky et al.,
1998; Shi et al., 2012; Yang et al., 2007). An increase in μ was found to
increase KOA, COD, atmospheric photodegradation, and degradation on the
vegetation, but to decrease KOW, vapor pressure, adsorption and reduction
reactions. As indicated before, molecules with larger μ tend to transfer from
octanol phase to water phase, to volatilize and to sorb less because inter-
molecular dipole-dipole interactions and dipole-induced dipole interactions
are in direct proportion to μ2. A larger dipole would imply greater dipole
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interactions with the polar water molecules (Chen et al., 1996a; Dai et al.,
2000; Shi et al., 2012; Zeng et al., 2007).

The last of the five most used and generic descriptor is MW (Figures 2
and 3; Tables S3, S4, S6–S9). An increase in MW is correlated with an increase
in KOW, KOA, adsorption on soils, reduction reactions, degradation on vege-
tation, and to a decrease in SW, vapor pressure, biodegradation, photolysis,
and persistence in the atmosphere.

Finally, the MCI 1χv was also a useful descriptor (Tables S3, S4, S6 to
S8). Solubility in water and vapor pressure decrease when 1χv increases. On
the contrary, KOW, KOA, and adsorption on soils increase with 1χv. Several
other MCI (0χ , 2χv, 3χv) were involved in the estimate of partition properties
and biodegradation (Tables S3, S4, S6–S8, S10).

This review also showed that the combination of descriptors belonging
to different categories improves the estimate of the different environmental
parameters, probably because it allows to consider simultaneously different
representations and properties of the molecule (Basak et al., 1997; Boethling
and Sabljic, 1989; Güsten et al., 1991; Huibers and Katritzky, 1998; Kim et al.,
2007; Liang and Gallagher, 1998; Lü et al., 2007; Makino, 1998; Reddy and
Locke, 1994a; Sabljic et al., 1989; Schüürmann, 1995; Sudhakaran and Amy,
2013; Xie et al., 2008; Tables S3–S9). Therefore, one could hypothesize that
the combination of the five descriptors that were identified as the most used
and most generic ones will be pretty much helpful to develop the next
generation of QSAR to predict a range of environmental parameters for a
wide diversity of organic compounds.

5. CONCLUSION

A tremendously high number of organic compounds having a wide diversity
are still released in the environment. Although it is well known that some of
them will cause environmental and health problems in a near future, they
cannot be studied on a case by case basis because it is time consuming
and cost prohibitive. Therefore, in order to overcome this problem, a lot
of QSAR allowing the prediction of the fate of organic compounds in the
environment from their molecular properties were developed. This review is
the first comprehensive synthesis of QSAR focused on the principal processes
governing the behavior of organic compounds in the different compartments
of the environment, and using only structural molecular descriptors.

The most important numbers of equations were found for pKa, KOW,
adsorption to soils and biodegradation parameters. A lack of QSAR was
observed to estimate the desorption, nonequilibrium adsorption, adsorp-
tion nonlinearity, potential of transfer to water (especially surface water), or
nonextractable residues formation. Five molecular descriptors (energies of
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orbitals EHOMO and ELUMO, polarizability α, dipole moment μ and molec-
ular weight (MW)) were especially used in the 790 equations, and also in-
volved in the assessment of the highest diversity of environmental processes.
Further QSAR development should therefore pay a particular attention to
these descriptors. In addition, the combination of descriptors belonging to
different categories (e.g., constitutional, topological, quantum-chemical) was
generally found to improve the predictions of the environmental parameters
as it simultaneously considers different representations and properties of the
molecule.

In order to facilitate the broader application of the QSAR in organic
compounds risks assessment, it is important to define criteria of acceptability
of these predicting models, improving their validation, defining their accu-
racy, and defining and checking their applicability domain (range of cases
for which prediction can be made; Boethling and Costanza, 2010; Gramatica,
2007; Hermens et al., 1995; Jaworska et al., 2005). The use of QSAR for regula-
tory purposes has been increasing steadily (Cronin et al., 2003; Mackay et al.,
2003). This review is delivering relevant QSAR equations to predict the fate
of a wide diversity of compounds in the environment. In a near future the de-
velopment and the implementation of highly powerful QSAR may offer an in-
valuable insight in various stages of the hazard and risk assessment processes.

ACKNOWLEDGMENTS

The authors acknowledge the anonymous reviewers for their constructive
comments.

SUPPLEMENTAL MATERIAL

Supplemental data for this article can be accessed on the publisher’s website.

REFERENCES

Abraham, M. H. (1993). Hydrogen bonding. XXVII. Solvation parameters for func-
tionally substituted aromatic compounds and heterocyclic compounds, from
gas-liquid chromatographic data. Journal of Chromatography 644, 95–139.

Abraham, M. H., and McGowan, J. C. (1987). The use of characteristic volumes
to measure cavity terms in reversed phase liquid chromatography. Chro-
matographia 23, 243–246.

Arp, H. P. H., Breedveld, G. D., and Cornelissen, G. (2009). Estimating the in situ
sediment-porewater distribution of PAHs and chlorinated aromatic hydrocar-
bons in anthropogenic impacted sediments. Environmental Science and Tech-
nology 43, 5576–5585.

http://www.dx.doi.org/10.1080/10643389.2014.955627


QSAR to Predict the Fate of Organic Compounds 1353

Atkinson, R. (1987). A structure-activity relationship for the estimation of rate con-
stants for the gas-phase reactions of OH radicals with organic compounds.
International Journal of Chemical Kinetics 19, 799–828.

Bahnick, D. A., and Doucette, W. J. (1988). Use of molecular connectivity indices
to estimate soil sorption coefficients for organic chemicals. Chemosphere 17,
1703–1715.

Baker, J. R., Gamberger, D., Mihelcic, J. R., and Sabljic, A. (2004). Evaluation of
artificial intelligence based models for chemical biodegradability prediction.
Molecules 9, 989–1004.

Baker, J. R., Mihelcic, J. R., Luehrs, D. C., and Hickey, J.P. (1997). Evaluation of
estimation methods for organic carbon normalized sorption coefficients. Water
Environment Research 69, 136–145.

Baker, J. R., Mihelcic, J. R., and Sabljic, A. (2001). Reliable QSAR for estimating
Koc for persistent organic pollutants: correlation with molecular connectivity
indices. Chemosphere 45, 213–221.

Bakken, G. A., and Jurs, P. C. (1999). Prediction of hydroxyl rate constants from
molecular structure. Journal of Chemical Information and Computer Science
39, 1064–1075.

Barriuso, E., Benoit, P., and Dubus, I. G. (2008). Formation of pesticide nonex-
tractable (bound) residues in soil: magnitude, controlling factors and reversibil-
ity. Environmental Science and Technology 42, 1845–1854.

Bartolotti, L. J., and Edney, E. O. (1994). Investigation of the correlation between
the energy of the highest occupied molecular orbital (HOMO) and the loga-
rithm of the OH rate constant of hydrofluorocarbons and hydrofluoroethers.
International Journal of Chemical Kinetics 26, 913–920.

Basak, S. C. (1999). Information theoretic indices of neighborhood complexity and
their application. In Topological Indices and Related Descriptors in QSAR and
QSPR; Devillers, J., and Balaban, A.T., Eds.; Gordon and Breach Science Pub-
lishers: The Netherlands 1999; pp 563–593.

Basak, S. C., Gute, B. D., and Grunwald, G. D. (1996). A comparative study of
topological and geometrical parameters in estimating normal boiling point and
octanol/water partition coefficient. Journal of Chemical Information and Com-
puter Sciences 36, 1054–1060.

Basak, S. C., Gute, B. D., and Grunwald, G. D. (1997). Use of topostructural,
topochemical, and geometric parameters in the prediction of vapor pressure: a
hierarchical QSAR approach. Journal of Chemical Information and Computer
Sciences 37, 651–655.

Beasley, K. K., Gieg, L. M., Suflita, J. M., and Nanny, M. A. (2009). Polarizability and
spin density correlate with the relative anaerobic biodegradability of alkylaro-
matic hydrocarbons. Environmental Science and Technology 43, 1995–2000.

Beigel, C., Barriuso, E., and Di Pietro, L. (1997). Time dependency of triticonazole
fungicide sorption and consequences for diffusion in soil. Journal of Environ-
mental Quality 26, 1503–1510.

Berger, B. M., and Wolfe, N. L. (1996). Hydrolysis and biodegradation of sulfonylurea
herbicides in aqueous buffers and anaerobic water-sediment systems: assess-
ing fate pathways using molecular descriptors. Environmental Toxicology and
Chemistry 15, 1500–1507.



1354 L. Mamy et al.

Berger, B. M., Müller, M., and Eing, A. (2001). Quantitative structure-transformation
relationships of phenylurea herbicides. Pest Management Science 57, 1043–1054.

Berger, B. M., Müller, M., and Eing, A. (2002). Quantitative structure-transformation
relationships of sulfonylurea herbicides. Pest Management Science 58, 724–735.

Bhhatarai, B., and Gramatica, P. (2011). Modelling physico-chemical properties of
(benzo)triazoles, and screening for environmental partitioning. Water Research
45, 1463–1471.

Blockeel, H., Dzeroski, S., Kompare, B., Kramer, S., Pfahringer, B., and Van Laer, W.
(2004). Experiments in predicting biodegradability. Applied Artificial Intelligence
18, 157–181.

Bodor, N., and Buchwald, P. (1997). Molecular size based approach to estimate
partition properties for organic solutes. Journal of Physical Chemistry B 101,
3404–3412.

Bodor, N., Gabanyi, Z., and Wong, C.-K. (1989). A new method for the estimation
of partition coefficient. Journal of American Chemical Society 111, 3783–3786.

Boethling, R. S. (1986). Application of molecular topology to quantitative structure-
biodegradability relationships. Environmental Toxicology and Chemistry 5,
797–806.

Boethling, R. S., and Costanza, J. (2010). Domain of EPI suite biotransformation
models. SAR and QSAR in Environmental Research 21, 415–443.

Boethling, R. S., Howard, P. H., Meylan, W., Stiteler, W., Beauman, J., and Tirado,
N. (1994). Group-contribution method for predicting probability and rate of
aerobic biodegradation. Environmental Science and Technology 28, 459–465.

Boethling, R. S., and Sabljic, A. (1989). Screening-level model for aerobic biodegrad-
ability based on a survey of expert knowledge. Environmental Science and
Technology 23, 672–679.
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Güsten, H., Horvatic, D., and Sabljic, A. (1991). Modelling n-octanol/water partition
coefficients by molecular topology: polycyclic aromatic hydrocarbons and their
alkyl derivatives. Chemosphere 23, 199–213.
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contribution methods to estimate water solubility of organic chemicals. Chemo-
sphere 30, 2061–2077.
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Türker Saçan, M., and Balcioğlu, I. A. (1996). Prediction of the soil sorption coeffi-
cient of organic pollutants by the characteristic root index model. Chemosphere
32, 1993–2001.
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