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Abstract 13 

Degradation tests with radio or stable isotope labeled compounds enable the detection of the formation of 14 

non-extractable residues (NER). In PBT and vPvB assessment, remobilisable NER are considered as a 15 

potential risk while biogenic NER from incorporation of labeled carbon into microbial biomass are treated 16 

as degradation products. Relationships between yield, released CO2 (as indicator of microbial activity and 17 

mineralization) and microbial growth can be used to estimate the formation of biogenic NER. We provide a 18 

new approach for calculation of potential substrate transformation to microbial biomass (theoretical yield) 19 

based on Gibbs free energy and microbially available electrons. We compare estimated theoretical yields 20 

of biotechnological substrates and of chemicals of environmental concern with experimentally determined 21 

yields for validation of the presented approach. A five-compartment dynamic model is applied to simulate 22 

experiments of 
13

C-labeled 2,4-D and ibuprofen turnover. The results show that bioNER increases with 23 

time, and that most bioNER originates from microbial proteins. Simulations with pre-calculated input data 24 

demonstrate that pre-calculation of yields reduces the number of fit parameters considerably, increases 25 

confidence in fitted kinetic data and reduces the uncertainty of the simulation results.  26 

 27 

Key words: bound residues, modeling, Gibbs free energy, pesticides, carbon conversion, carbon 28 

turnover, microbial biomass, Nernst, NER assessment, OECD tests.  29 
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Introduction  35 

Degradation is a key parameter in risk assessment and registration of industrial chemicals, veterinary 36 

medicinal products and pesticides.
1-5

 Microbial degradability tests are often performed with radio-labeled 37 

tracer compounds. Guidelines have been developed for fate assessment in water, sediments and soil, 38 

e.g., OECD 304, 307, 308 and 309.
6-9

 For the interpretation of results, concepts for modeling the turnover 39 

kinetics have been developed.
10,11

 Unfortunately, there is still no robust and reliable way to predict the fate 40 

of organic molecules in environmental matrices in terms of biotic transformation, mineralization, 41 

conversion to microbial biomass and the formation of so-called non-extractable residues (NER).
12

 42 

Chemicals may persist in the environment due to several reasons. Relatively well studied is the 43 

persistence due to limited bioavailability. Chemicals being strongly adsorbed or sequestered in soil and 44 

sediments are often not available for biodegradation.
12-15

 Examples are the five- or six-ring polycyclic 45 

aromatic hydrocarbons. Chemicals newly introduced to the biosphere may persist due to the absence of 46 

enzymes capable of transforming such compounds. However, after some time for adaptation microbes 47 

can “learn” to degrade recalcitrant compounds.
16

 A third reason for persistence is that chemicals are poor 48 

growth substrates because they do not provide energy, carbon or nutrients to microbes under the specific 49 

environmental conditions. For example, alkanes have persisted over millions of years in reservoirs where 50 

no suitable electron acceptor (oxygen) was available. Under aerobic conditions, alkanes are excellent 51 

substrates with higher microbial biomass yields than glucose.
17,18

 For chlorinated solvents, e.g. 52 

trichloroethylene (TCE), the opposite was observed: the chemical provides no energy to microbes under 53 

aerobic conditions and is therefore quite persistent, while it can be reductively dehalogenated as electron 54 

acceptor in anaerobic groundwater.
19

 Another reason for persistence of chemicals can be toxic or 55 

inhibitory effects on the microorganisms.
20,21

 56 

In the PBT assessment of industrial chemicals and of veterinary pharmaceuticals, NER are differentiated 57 

into remobilisable and irreversibly bound fractions. The irreversibly bound fraction is assessed as a 58 

potential removal pathway, while the remobilisable fraction is considered a potential risk for the 59 

environment.
5
 Remobilisable NER are sequestered compounds (type I NER) and covalently bound parent 60 

compounds or metabolites (NER type II), which may be slowly released. The third fraction is labeled 61 

carbon, or other essential elements like nitrogen, transferred to living or dead biomass and eventually 62 
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fixed in soil organic matter (SOM) derived from decaying microbial biomass (type III NER). These biogenic 63 

NER (bioNER) do not constitute any risk.
12

 There is thus a need to distinguish harmless, irreversibly 64 

bound bioNER from potentially toxic and remobilisable NER (i.e., type I and type II NER) in the risk 65 

assessment of chemicals.  66 

Determining the microbial biomass yield derived from degradation of a chemical sheds light into the ‘black 67 

box’ of NER. The microbial yield is defined as mass of microbes that can grow on a given amount of 68 

substrate (unit g microbial biomass dry weight per g substrate, g g
-1

).
18

 However, most studies with 69 

labeled carbon compounds typically express results as g C per g C, and we report these values with their 70 

original unit. The unit conversion is shown in the SI. The yield multiplied by the enzymatic substrate 71 

removal determines the growth rate of a microbe. High yield can therefore be an indication for the 72 

biodegradability of a substrate. Several methods to estimate theoretical microbial yields of a substrate 73 

from its energy of formation (Gibbs free energy) have been developed.
22-26

  74 

The yield can be used to predict the likely range of bioNER formed during degradation of environmental 75 

chemicals. We i) provide a relationship between formation of bioNER, CO2 release and yield; ii) present a 76 

new and pathway-independent method to estimate yields from thermodynamics combined with an 77 

approach to account for the electrons usable by degrading microbes; iii) confirm the yield estimates by 78 

comparison to results derived with existing methods
23

 and to measured yields of easily degradable 79 

carbohydrates, pesticides and other chemicals of environmental concern. iv) Finally, we use the estimated 80 

yields as input to the simulation of 2,4-D and ibuprofen biodegradation under formation of microbial 81 

biomass, study the performance of the simulation, and compare pre-calculated kinetic parameters with 82 

data derived by pure model fit. Data were provided from experimental degradation studies with multi-83 

labeled compounds (
14

C, 
13

C) in soil.
27-29

 84 

 85 

Methods 86 

Theoretical background 87 

Enzymatic reactions are typically described by the Michaelis-Menten equation:
30,31

 88 
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 X
aK

a
v

dt

dm

M

×
+

×= max        (eq. 1)   89 

where m is the mass of chemical substrate metabolized (g), X is the bacterial mass (g bacteria), t is time 90 

(d), vmax (g substrate g bacteria
-1

 d
-1

) is the maximal substrate consumption rate, a is the chemical activity 91 

of the substrate (equivalent to the truly dissolved concentration) (g m
-3

);
32

 KM (g m
-3

) is the chemical 92 

activity at which the substrate consumption rate is half of its maximum (half saturation or Michaelis-93 

Menten constant). 94 

The yield Y (g g
-1

) connects metabolism and growth:   95 

 Yv ×= maxmaxµ         (eq. 2) 96 

where µmax is the maximum growth rate (d
-1

). Microbes use part of the energy gained from the substrate 97 

for growth, and part for maintenance purposes. Experimentally observed net yields equal the true yield 98 

minus cell decay. Introducing a term for cell decay or maintenance into the Monod equation for microbial 99 

growth leads to eq. 3:
33

  100 

 XbX
aK

a

dt

dX

M

×−×
+

= maxµ
       (eq. 3) 101 

where dX/dt is the change of microbial biomass with time (g microbial biomass dw per day), and b is the 102 

decay rate of microbes (death rate, d
-1

). For the calculation of the fate of chemicals in soils or sediments, a 103 

two-compartment-sorption model
34,35

 calculating rapid (adsorption) and slow (sequestration) kinetics was 104 

combined with the equations for microbial metabolism and growth (eqs. 1 and 3).
12,36

 The complete model 105 

is described in the Supporting Information (SI). 106 

 107 

Carbon budget and calculation of bioNER  108 

Few experimental studies deliver compound concentrations and biomass formation in a resolution that 109 

allows fitting of dynamic models to the data. In degradation studies according to OECD guidelines, only 110 

the fractions of NER, CO2 and metabolites at the end of the experiment are reported.
37

 Some general 111 
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rules and patterns can be derived concerning the distribution of the initially applied labeled carbon and the 112 

formation of biomass (here all units are g C).  113 

We define S as the total mineralized substrate, S is initial amount of labeled carbon minus non-114 

metabolized parent compound minus intermediate metabolites and minus NER
I,II

. NER
I,II 

denotes non-115 

extractable residues due to sequestration (I) and co-valent binding (II).
12

 The biomass produced from 116 

mineralization of the substrate is per definition the yield, hence, as long as growth alone is considered, X = 117 

Y S. The remaining labeled carbon is oxidized to carbon dioxide, thus CO2 = (1-Y) S. Under these 118 

assumptions, the ratio of X to CO2 is  119 

 
[ ]
[ ] )1(2 Y

Y

CO

X

−
=        (eq. 4) 120 

The labeled carbon fixed in biomass due to substrate mineralization is part of the bioNER. Eq. 4 does not 121 

take decay of biomass into consideration. Earlier long-term studies
38-40

 over 224 days showed that 122 

microbial necromass is a significant source of non-living soil organic matter. In these experiments, 123 

approximately 40% of the labeled carbon initially fixed in biomass X (mainly the protein fraction) turned 124 

into SOM (which also is part of bioNER) and 10% remained within living biomass X. It follows that for t → 125 

∞ the fraction f (approximately 0.5) of the decaying X turns into bioNER, and 1- f forms CO2.
40

 The 126 

resulting ratio of bioNER to CO2 in long-term experiments with decomposition of dead biomass (and 127 

neglecting slow decomposition of SOM to CO2) is 128 

 
[ ]
[ ] YfY

Yf

CO

bioNER

×−+−
×

=
)1()1(2

      (eq. 5) 129 

 130 

Yield estimates 131 

The microbial yield of a substrate can be estimated from thermodynamics or from empirical equations. 132 

Approaches for yield estimation have been presented and tested by a number of researchers.
22-24, 26,41

 The 133 

approaches of McCarty
23

 and Xiao and vanBriesen
26

 require information on the metabolic pathway of the 134 

compound, which is often not given for environmental chemicals' degradation. Therefore, we based our 135 

estimates of yields on a modified approach of Diekert
22

, which uses the Gibbs free energy of formation 136 
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and the structural formula. We modified the method by specifying how much of the formation energy can 137 

be used by microbes.  138 

 139 

Microbial Turnover to Biomass (MTB) - a pathway-independent thermodynamic yield estimation method   140 

The approach considers that a substrate can be utilized for anabolism and catabolism:  141 

 N = Nanabolic + Ncatabolic  = 1/Y       (eq. 6) 142 

where N is the nutritional value (g substrate needed per g microorganism formed), the inverse of yield Y:  143 

 

catabolicanabolic YYY

111
+=         (eq. 7) 144 

 145 

Anabolism  146 

The yield associated to anabolism is 147 

 

SC

Cc
anabolic

Mf

Mn
Y

×
×

=    [g microbial biomass dw g
-1

 substrate]   (eq. 8) 148 

where nc is mol C per mol substrate, MC and MS are the molar masses of carbon (index C) and of 149 

substrate (index S), respectively, and fC is fraction of C in bacterial dry weight (default 0.53 g carbon g
-1

 150 

microbial biomass dw).
 23

 151 

 152 

Catabolism 153 

The yield due to catabolic energy gain can be calculated in five steps.  154 

Step i) Free energy of the reaction: The free energy of the reaction (change of Gibbs free energy, kJ mol
-1

) 155 

is the sum of the Gibbs free energy of formation of products minus educts:  156 

 ∑∑ ∆−∆=∆ '0'0'0

eductsfproductsfr GGG       (eq. 9) 157 
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where G
0
’ is the Gibbs free energy (subscript f for formation, r for reaction) at standard-state conditions (1 158 

mol L
-1

, indicated by superscript 0) and at a pH of 7 (indicated by superscript ‘). At activities differing from 159 

1 mol L
-1

, the change of Gibbs free energy of the reaction ∆Gr’ is   160 

 
[ ]
[ ] 








+∆=∆

educts

products
RTGG rr ln'0'       (eq. 10) 161 

where R (8.314 J mol
-1

 K
-1

) is the universal gas constant and T (K) is the absolute temperature.  162 

Step ii) Electron transfer during the reaction (Nernst equation): The Nernst equation states that the change 163 

of Gibbs free energy ∆Gr is related to the number of electrons n transferred during the reaction, and the 164 

redox potential E (V) of the reaction:  165 

 EFnGr ××=∆          (eq. 11) 166 

where F is the Faraday constant. The number of electrons n transferred in the reaction can be calculated 167 

from the change of the oxidation state (OS) of carbon during the reaction,  168 

n = (OSProduct - OSSubstrate) x nC        (eq. 12) 169 

where nC is again the carbon atoms in the substrate (mol C per mol substrate) which is the same as the 170 

moles of CO2-molecules formed during complete mineralization. The oxidation state of carbon in the 171 

substrate is:  172 

 

C

Substrate
n

ClSPNOH
OS

×+×+×−×+×+×−
=

123321
   (eq. 13) 173 

where the letters stand for the number of the respective atoms in the molecule. After complete oxidation to 174 

CO2, the carbon in the product has the oxidation state 4, hence OSProduct = +4. 175 

Step iii) Energy available for the microbe: During biological oxidation, the organisms can use only some 176 

types of electron transfers. The free energy of the reaction is thus the upper limit (“maximum”) for the 177 

energy that can be provided by the chemical. The maximum energy gained by the organism during 178 

catabolism may be considerably lower than that. As a general rule, when compounds containing hydrogen 179 

atoms connected to carbon atoms are oxidized to CO2 and H2O, the electrons transferred in this reaction 180 
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are available for microbes to gain energy, i.e. 2 electrons per C−H bond. Thus the number of electron 181 

transfers that can at least be used by microorganisms in a redox reaction is nbio ≥ 2 x H (only H bound to C 182 

atoms are counted). Subsequently, the minimum energy available for ATP synthesis by an organism 183 

(∆G’bio) is:   184 

 
'' r

bio
bio G

n

n
G ∆=∆         (eq. 14) 185 

Step iv) ATP production: With an efficiency of 40% of the microbial catabolism,
22

 the synthesis of 1 mol 186 

ATP from 1 mol ADP requires 80 kJ (the Gibbs free energy of the reaction is -32 kJ mol
-1

).
41

 Thus, the 187 

microbes can generate β mol ATP per mol substrate:  188 

 
kJ/mol80

'

−
∆

= bioG
β         (eq. 15) 189 

Step v) Catabolic energy is used for the formation of new cell material: The produced ATP provides the 190 

energy to form new cell material.
41

 YATP  is the microbial biomass dw that can be formed per mol ATP.
41

 191 

Diekert
22

 provided a range from 2 (CO2) to 12 (glucose) g microbial biomass dw per mol ATP. Hence, we 192 

use the value of 5 g microbial biomass dw mol
-1

 ATP as default for xenobiotic chemicals, but higher values 193 

for compounds similar to glucose (for details, see SI). The yield due to catabolic energy gain can finally be 194 

calculated by  195 

 

S

ATP
catabolic

M

Y
Y

×
=
β

   [g microbial biomass dw  g
-1

 substrate]   (eq. 16) 196 

 197 

The five steps can be summarized in one equation:  198 

 

S

ATP

'

bio

S

ATP

kJ/mol80 M

YG

n

n

M

Y
Y r
catabolic ×

−
∆

×=
×

=
β

    (eq. 17) 199 

 200 
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The more detailed approaches of McCarty
23
 and Xiao and vanBriesen

26
 estimate β dependent on the 201 

biochemical pathway. Knowledge of the pathway is not required in the method presented because all 202 

substrate used for catabolic yield is completely oxidized to CO2.  203 

 204 

Choice of compounds for yield estimation  205 

The estimation of yields is commonly applied in biotechnology or wastewater treatment. In environmental 206 

chemistry, it has been used by Helbling et al.
42

 to estimate the yields of two pesticides and by Yuan and 207 

vanBriesen
43

 to estimate the yield of two chelating agents. First, we investigated the performance and the 208 

variance of results of the estimation methods with common substrates in biotechnological applications, for 209 

which measured yields are widely available. Second, we applied the method to a set of chemicals of 210 

environmental concern. The selection of chemicals for this study was based on: i) availability of measured 211 

data on bioNER (2,4-D, ibuprofen), ii) availability of biomass yield data (nitrilotriacetic acid [NTA], linuron, 212 

carbofuran, toluene), iii) knowledge on specific degradation pathways, electron acceptors or persistence 213 

(pentachlorophenol PCP, carbon tetrachloride, trichloroethene, DDT), and iv) availability of Gibbs free 214 

energies of formation (Table S2).  215 

 216 

Brief description of experiments  217 

Nowak et al.
27,28

 thoroughly balanced the formation of bioNER in a fate study with the 
13

C-labeled 218 

pesticide 2,4-D and the medical drug ibuprofen in soil. The authors also analysed the amount of 
13

C 219 

converted to total amino acids (tAA), total fatty and phospholipid fatty acids (PLFA). The tAA increased 220 

over time although the PLFA as marker for living biomass declined already after one (2,4-D) to three 221 

(ibuprofen) weeks. The details of the turnover experiments are provided in Nowak et al.
27,28

; the results of 222 

the experiments are shown in Tables S9 and S10.  223 

 224 

Description of simulations 225 
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2,4-D and ibuprofen experiments were simulated to confirm the relation between yield and bioNER 226 

formation. For a detailed description of model and input data see SI S2. The model is composed of five 227 

compartments describing the five possible states of labeled carbon: dissolved (D), adsorbed (A), 228 

sequestered (S) state, or (following metabolism) carbon dioxide (CO2) and living and dead biomass (X and 229 

Xdead). The model was implemented as a set of ordinary differential equations (ODEs) in MATLAB. The 230 

model was also successfully implemented in Microsoft Excel and produced equal results. The calculated 231 

sum of living and dead biomass was considered to be bioNER, and the sum of sequestered fraction and 232 

bioNER was compared to measured total NER. No kinetic data were available to separately simulate the 233 

formation of type II NER. Hence, any type II NER formed in the experiments were considered to be 234 

included in the sequestered compartment of the model. The calculated labeled carbon in the dissolved 235 

and adsorbed compartment was compared to the measured extractable labeled carbon. 236 

 237 

Calculation and fitting of input parameters 238 

Input parameters for the simulations were derived as follows. The initial amount of 
13

C was assumed to be 239 

distributed between the dissolved and solid phase according to the soil-water distribution coefficient (Kd). 240 

The sequestered fraction was assumed to be equal to the NER measured at t = 0 and corrected by the 241 

reported recovery. NER(t = 0) was subtracted from the calculated 
13

C present in the solid phase to yield 242 

the adsorbed fraction.  243 

 244 
We adjusted the input parameters step-wise, similar to Rein et al.

36
:  245 

Step i) Yield: Calculation with the MTB method. 246 

Step ii) Death rate b: Towards the end of the experiments, the substrate is used up and the microbes 247 

decline. Then 248 

 ln ���������	
��
�	��
�� ≈ −�	�        (eq. 18) 249 

where X here is the measured concentration of microbial biomass; it is calculated from the measured 250 

PLFA times a factor of 20 (5% content of PLFA in native biomass). 251 

Step iii) Growth: During the initial growth phase the microbial growth can be described as  252 

 ln ���������	�����
�	��
�� = �� − ���	       (eq. 19) 253 
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The resulting growth rate µ at given time t is used to estimate µmax (SI 3.2).  254 

Step iv) Half-saturation constant: For 2,4-D, a literature value for the ratio µmax/KM is given in Tuxen et 255 

al.
44

. For ibuprofen, KM was fitted using the CO2 development as criterion.  256 

Step v) Initial degrader biomass: X(0) was adjusted to fit the peak biomass concentration and the lag 257 

phase. The sum of root mean square errors (RMSE) was used to describe the “goodness-of-fit” (SI S3.3).  258 

 259 

During the model calibration against the 2,4-D data we found that the sequestration (slow adsorption, 260 

leading to NER) of the labeled carbon of 2,4-D was better described by using the KOC of 2,4-261 

dichlorophenol (2,4-DCP) instead of the KOC of the parent compound 2,4-D. 2,4-DCP is the transformation 262 

product of 2,4-D and has a KOC much higher than 2,4-D. For the rapid adsorption (part of the extractable 263 

13
C), the KOC of 2,4-D was kept. It is well known that chlorinated phenols tend to form abiotic NER,

12
 thus 264 

the better fit of the 2,4-DCP KOC may provide an indication for NER type II bonding via covalent bonds 265 

triggered by oxidative coupling. The most appropriate way to accommodate this change would be the 266 

inclusion of step-wise degradation (e.g., 2,4-D to 2,4-DCP to CO2), but this increase in model complexity 267 

would not be justified by the available data. 268 

 269 

Uncertainty analysis and parameter identification  270 

Aside pre-calculation, two optimization routines were used for calibration of vmax, KOC, X(0), Y, and KM 271 

(only for ibuprofen). The Pattern Search optimization function is an algorithm that finds local minima from 272 

a mesh around the initial values and stops when the optimization function cannot be further minimized.
45

 273 

The Bayesian optimization method DiffeRential Evolution Adaptive Metropolis algorithm (DREAM(ZS))
46,47

 274 

uses the Bayesian framework and also allows for the assessment of uncertainties related to the parameter 275 

estimates and the model predictions. The Bayesian optimization was done with and without Y as a pre-276 

calculated parameter in order to assess the effect of its inclusion on the parameter estimation and on the 277 

uncertainty of the model predictions. For further details on the parameter settings see the SI (S4).  278 

 279 

Results  280 

Comparison of yield estimates 281 
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Table 1 and Table 2 list the observed and estimated yields of substrates relevant to biotechnology (unit g 282 

C g
-1

 C) and of chemicals of environmental concern (unit g microbial biomass dw g
-1

 substrate). The 283 

biotechnological substrates are easily degradable compounds for which experimental yield data are 284 

available.
48

 Both the TEEM2
23

 and the presented MTB yield estimation methods give relatively close 285 

estimates with a mean absolute error (MAE) of less than 0.1 g C g
-1

 C. Few experimental yield data are 286 

available for chemicals of environmental concern. The estimates are less accurate, with the highest 287 

deviation for linuron, which had a very low measured yield.
42 

Despite its simplicity, the MTB method overall 288 

gave results with lower deviation compared to TEEM2 for the chemicals of environmental concern.  289 

 290 

<Table 1> 291 

<Table 2> 292 

 293 

Dynamic model simulations 294 

Figure 1 shows the experimental and the simulation results for 
13

CO2, extractable 
13

C (dissolved and 295 

adsorbed) and non-extractable 
13

C (which is the sum of 
13

C-label sequestered and in living or dead 296 

biomass). For both compounds, the model with pre-calculated input data is able to reasonably describe 297 

the fate of 
13

C in the different compartments. However, CO2 and NER are predicted to increase at an 298 

earlier time point than observed. For 2,4-D, this can be seen already at the first data points, whereas for 299 

ibuprofen it is evident after 28 days. Based on the Michaelis-Menten equation, it was assumed that the 300 

formation of CO2 and new biomass occurs as soon as the labeled compound is transformed. In reality, 301 

internal storage of metabolites and HCO3¯ delays the release of CO2. This may be overcome by the 302 

introduction of new parameters; only, this would considerably increase model complexity which was not 303 

desired. In the beginning of the simulation, most NER are sequestered, but towards the end of the 304 

simulation, the NER originate mainly from living and dead biomass.  305 

The experimentally determined extractable 
13

C-ibuprofen was declining within four weeks (Fig. 1b). The 306 

extractable 
13

C-label had initially similar values but remained relatively high throughout the experiment. 307 

After 90 days, 13.4% of the 
13

C was detected in the solvent-extractable portion, but only 0.5% was 
13

C-308 
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ibuprofen (Girardi et al.
29

, Table S10). This indicates rapid formation of transformation products and 309 

incomplete mineralization with only little 2-hydroxy-ibuprofen (Table S10).  310 

 311 

Figure 2 depicts the simulated living biomass (X), dead biomass (Xdead) and the sum of both. This is 312 

compared to the measured 
13

C in PLFA multiplied with a factor 20 as a marker for living biomass (5% 313 

PLFA content), and to the measured 
13

C-label in tAA. Living biomass contains about 50% proteins (amino 314 

acids), hence also tAA multiplied with a factor of two was plotted. It can be seen that PLFA/0.05 and 315 

tAA/0.5 as well as the simulated sum of X and Xdead are close until day 4 (2,4-D, Fig. 2a) or day 14 316 

(ibuprofen, Fig. 2b), as long as the living biomass predominates.  Later PLFA declines, which indicates a 317 

decline of living biomass X. The dotted line in Figure 2 is the decay halftime (ln 2 / b) after maximum 318 

measured PLFA. The line indicates where >50% of microbes have died. From this point, the simulated 319 

sum of X and Xdead is much closer to tAA than to tAA/0.5. In decaying microbes, labile constituents like 320 

sugars and fatty acids are turned over first and the more stable amino acids (tAA) in proteins persist (also 321 

see SI S2.13).
39,40

 Thus, towards the end of the simulation, the sum of X and Xdead is dominated by 322 

proteins and should be compared to tAA and not to tAA/0.5.  323 

 324 

Calculated bioNER versus measured tAA  325 

The measured 
13

CO2 release in the 2,4-D experiment was 57.6% of the initially applied 
13

C (SI Table S9), 326 

and the calculated yield of 2,4-D was 0.28 g 
13

C g
-1

 
13

C. Using these values in the equation for the ratio of 327 

biomass growth to CO2 production (eq. 4) we calculated that 22% of the applied 
13

C-label was fixed in the 328 

biomass. The measured tAA was at 23.3% (SI Table S9). For ibuprofen, with a measured 
13

CO2-release 329 

of 45.2% (Table S10) and a calculated yield of 0.43 g 
13

C g
-1

 
13

C, the calculated 
13

C-label in biomass was 330 

34% (measured tAA: 28.4%). In the case of these two experiments, the measured 
13

C-label within amino 331 

acids (tAA) was remarkably constant towards the end of the experimental period, and there was no need 332 

to consider turnover of dead biomass. The calculated 
13

C-label fixed in bioNER with eq. 5 was 9.4% (2,4-333 

D) and 12.4% (ibuprofen). Once the fraction of  bioNER is known from Y and CO2, the potentially 334 

remobilisable NER type I and type II can be quantified from the total NER. In the PBT/vPvB assessment of 335 
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chemicals, the bioNER fraction can be subtracted from the total NER and counted as degraded. In a 336 

follow-up study, we used this method to estimate the bioNER for 40 chemicals of environmental concern.
49

  337 

 338 

<Figure 1> 339 

<Figure 2> 340 

 341 

Discussion 342 

Yield estimates 343 

We presented the new MTB approach for estimation of microbial biomass yields. Considering the 344 

variability of the experimental data, this approach showed fairly similar deviations from experimental yield 345 

data in comparison to the more advanced and widely applied TEEM2 approach
23

, without the need for 346 

specific information about the catabolic pathway, primary oxidation processes or N sources. For 347 

environmentally relevant chemicals and pesticides the deviation of the experimental yields is even lower 348 

than estimated with the MTB . The MTB approach can be applied for many tasks, e.g. yield assessment in 349 

biological wastewater treatment or maximum transfer of labeled carbon into microbial biomass and 350 

bioNER assessment, as shown with the simulations. Yield estimates can thus contribute to an improved 351 

risk assessment of environmentally relevant chemicals. The method may be added as a module in 352 

biodegradation databases (like EAWAG-BBD/PPS http://eawag-bbd.ethz.ch/, KEGG 353 

http://www.genome.jp/) and QSAR approaches (like ChemProp www.ufz.de/ecochem/chemprop or EPI 354 

suite https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface). Combined with 355 

the unified model for sorption and biodegradation (Kästner et al.
12

, Rein et al.
36

, and this study) the MTB 356 

yield estimation method can be used for modeling the entire turnover process of a chemical in the 357 

environment. 358 

 359 

Comparison to other findings 360 
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Yield estimations are rarely applied to chemicals of environmental concern. One exception is the study of 361 

Helbling et al.
42

 with linuron and carbofuran. The estimated theoretical yields for carbofuran are 0.51 g g
-1

 362 

(MTB method) or 0.59 g g
-1

 (TEEM2 method) and 0.41 g C g
-1

 C = 0.50 g g
-1

 with the related adapted 363 

TEEM1 method.
42

 The experimentally determined yield of carbofuran was 0.52 g g
-1

 (0.42 g C g
-1

 C). The 364 

experimental yields obtained for linuron in the Helbling et al.
42

 study were very low (0.06 g C g
-1

 C = 0.05 g 365 

g
-1

) despite a theoretical yield similar to carbofuran (0.40 g C g
-1

 C = 0.33 g g
-1

). Maximum growth rates 366 

µmax were determined to be 7.8 d
-1

 (carbofuran) and 1.3 d
-1

 (linuron), corresponding to a vmax = 15.1 and 367 

26.4 g (g d)
-1

, respectively.  368 

Kinetic parameters and yields of polycyclic aromatic hydrocarbons PAH have been determined in several 369 

studies. Wick et al.
50

 grew Mycobacterium sp. LB501T on solid anthracene and obtained yields between 370 

0.158 and 0.196 g g
-1

 and vmax of 18.4 g (g d)
-1

 . Adam et al.
51

 found for the growth of three degrader 371 

strains on phenanthrene the same yield of 0.21 g g
-1

, with vmax from 12 to 18 g (g d)
-1

. Rein et al.
36

 tested 372 

growth of Mycobacterium sp. on phenanthrene and pyrene and found yields from 0.20 to 0.32 g g
-1

 and 373 

vmax from 8 to 10 g (g d)
-1

. Toräng et al.
52

 estimated a yield of about 0.3 g C g
-1

 C for the degradation of U-374 

ring-labeled phenoxy-acetic acids (MCPP and 2,4-D) using the 
14

C-MPN (most probable number).
53

  375 

Most of the experimental yields (Table 2) are lower while vmax-values and growth rates are higher than 376 

those obtained here (Table 3), and there could be several reasons for this: In these studies, known pure 377 

degrader strains were tested under optimal nutrient conditions, which explains the faster growth and the 378 

lower KM-values compared to the studies simulated here, in which natural microbial communities were 379 

used according to the OECD guidelines. Compound turnover and the related yields in experiments with 380 

natural inoculum and multiple substrates may be lower than single-strain/single-substrate experiments due 381 

to the enrichment of metabolites (incomplete mineralization) or to the use of multiple carbon sources 382 

derived from dissolved organic carbon or SOM.
31,42

 383 

 384 

Uncertainty analysis and parameter identification  385 

The pre-calculated model input parameters were compared to those fitted by the DREAM(ZS) and the 386 

Pattern Search algorithms (Table 3). For 2,4-D, the fitted yields are higher than the pre-calculated one. 387 
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Conversely, fitted yields for ibuprofen are substantially lower than the pre-calculated theoretical yield, 388 

which may be again an indication of incomplete mineralization of ibuprofen. Both vmax and KM derived by 389 

the DREAM(ZS) algorithm are clearly higher than the pre-calculated values and those derived by the 390 

Pattern Search algorithm, and this affects also the µmax-values. However, the ratio between vmax and KM, 391 

which is effectively determining metabolism (eq. 1), is for 2,4-D comparable amongst all four methods. For 392 

ibuprofen this ratio is higher for the DREAM(ZS) algorithm but within a factor of two of the values derived by 393 

the other methods. The DREAM(ZS) algorithm returned KOC-values for the 2,4-D simulation that are very 394 

close to the KOC of 2,4-DCP. The value found with the Pattern Search algorithm is in between the KOC-395 

values of 2,4-D and 2,4-DCP. A large disagreement between fitted and pre-calculated values is observed 396 

for the KOC of ibuprofen, where the pre-calculated value was obtained by a regression equation
54

. Without 397 

exception, the pre-calculated parameters are within the 95% credibility interval given by the DREAM(ZS) 398 

method. This gives additional confidence to the identified system kinetics.  399 

A simultaneous fit of all parameters, as it is often done (for example, Brimo et al.
55

), can produce a better 400 

fit to experimental data. This was also the case in our simulations, where the RMSE of the simulated 401 

results was lower when the input parameters were fitted (Table 3). Still, estimating the yield with an 402 

independent method showed some advantages for the simulation. The parameter identifiability improved, 403 

as can be seen from a decrease of the correlation between the fit parameters (Table S7). Using the 404 

criteria of Frutiger et al.
56

 (r < 0.7, σ/µ< 0.5), all parameters were identifiable via model calibration to the 405 

2,4-D data. For ibuprofen, only Y, KOC, and KM but not vmax and X(0) were identifiable (Table S8) (details in 406 

SI section S4). The largest effect was seen on the uncertainty of the prediction: omitting Y from the fit 407 

procedure greatly reduced the uncertainty in the model predictions, as shown by the width of the 95
th
-408 

percentile credibility interval (Figures S5-S8), in particular for NER and X. Importantly, as we showed in 409 

this study, the knowledge of the yield gives insight into the degradation processes. It is now possible to 410 

elucidate the nature of non-extractable residues by a combination of novel analytics, basic principles, and 411 

dynamic simulation.  412 

 413 

<Table 3> 414 

 415 
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Tables  574 

Table 1. Comparison of yield estimates (g biomass carbon g
-1

 substrate carbon, g C g
-1 

C) using the 575 

TEEM2
23

 and the MTB methods for biotechnological substrates. AE is absolute error and MAE is mean 576 

absolute error. Measured yields are taken from ref. 48.  577 

Biotech. substrates  

 

Measured TEEM2 AE MTB AE 

Acetate— 0.41 0.40 0.01 0.47 0.05 

Citrate
3— 0.365 0.34 0.025 0.29 0.075 

Ethanol 0.53 0.67 0.14 0.60 0.07 

Formaldehyde 0.47 0.51 0.04 0.58 0.11 

Glucose 0.61 0.48 0.13 0.61 0.0 

Glycerol 0.67 0.55 0.12 0.62 0.05 

Glyoxylate 0.22 0.27 0.05 0.27 0.05 

Methanol 0.54 0.56 0.02 0.66 0.12 

Propionate— 0.48 0.47 0.01 0.50 0.02 

Pyruvate— 0.32 0.39 0.07 0.39 0.07 

MAE   0.0615  0.0615 

 578 
579 
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Table 2. Comparison of yield estimates (g microbial biomass dw g
-1

 substrate, g g
-1

) using the TEEM2
23

 580 

and the MTB methods for chemicals of environmental concern. AE is absolute error and MAE is mean 581 

absolute error.  582 

Environmental chemicals  Observed TEEM2 AE MTB AE Reference for 

observed Y 

2,4-D (
12

C) 

2,4-D (
13

C ring-labeled) 

0.25 

0.18; 0.25  

0.39 

 

0.14 

 

0.23 

 

0.02 

 

57
  

This study; 
52

 

2,4-DCP 0.30 0.41 0.11 0.21 0.09 
57 

Benzene 0.71 0.84 0.13 0.65 0.06 
58 

Carbofuran 0.52 0.59 0.07 0.51 0.01 
42 

Carbon tetrachloride  0   0  Persistent 

DDT  0.42  0.25   

Ibuprofen (
12

C) 

Ibuprofen (
13

C ring-labeled) 

0.43 

0.39  

0.61 

 

0.18 

  

0.62 

 

0.19 

 

This study  

28
  

Linuron 0.05 0.33 0.28 0.32 0.27 
42 

Nitrilotriacetic acid 0.23 0.23 0.00 0.27 0.04 
43 

Pentachlorophenol  0.19  0  Persistent 
16

 

Phenanthrene 0.21 0.82 0.61 0.53 0.32 
51 

Pyrene 0.32 0.54 0.22 0.44 0.12 
36 

Trichloroethene  0.16  0.11  Persistent 

Toluene 0.71 0.86 0.15 0.69 0.02 
58 

MAE   0.189  0.114  

 583 
584 
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Table 3. Input and fit parameters used for the simulation of degradation experiments of 2,4-D and 585 

ibuprofen described in Nowak et al.
27,28

 and Girardi et al.
29

. Parameter values highlighted in bold were not 586 

fitted but pre-calculated. 587 

Parameter  unit Manual w/ 

pre-estimated 

yield 

Pattern Search 

w/o pre-

estimated yield 

DREAM w/ pre-

estimated yield 

(95% credibility 

interval) 

DREAM w/o 

pre-estimated 

yield 

(95% 

credibility 

interval) 

2,4-D      

Y g 
13

C biomass (g 

13
C substrate)

-1
 

0.28
a
 0.36 0.28

a
 0.31 (0.21; 

0.52) 

b d
-1

 0.05
b
 0.05

b
 0.05

b
 0.05

b
 

µmax 

 

g 
13

C biomass (g 

13
C substrate d)

-1
 

1.1
c
 1.43 1.61 (0.38; 2.72) 1.73 (0.40; 

3.85) 

vmax/KM m
-3

 (g
13

C d)
-1

 2.72
d
 2.08

d
 2.72

d
  2.47

d
 (1.45; 

3.61) 

X(0) g m
-3

 0.172 0.28 0.87 (0.16; 1.34) 0.88 (0.16; 

1.4) 

KOC L kg
-1

 2,4-D: 71.4
e
; 

2,4-DCP: 689
f
 

300 655 (218; 977) 668 (506; 836) 

sum 

RMSE 
g 

g 
13

C m
-3

 5.57 1.56 2.17 2.13 

Ibuprofen      

Y g 
13

C biomass (g 

13
C substrate)

-1
 

0.43
a
 0.28 0.43

a
 0.32 (0.11; 

0.53) 

b d
-1

 0.03
b
 0.03

b
 0.03

b
 0.03

b
 

µmax  g 
13

C biomass (g 0.50
c
 0.28 1.41 (0.18; 4.1) 1.34 (0.12; 
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13

C substrate d)
-1

 3.7) 

X(0)  g m
-3

 0.069 1.2 0.69 (0.05; 1.3) 0.62 (0.05, 

1.3) 

vmax/KM 

 

m
-3

 (g
13

C d)
-1

 0.39 0.35 0.51 (0.10; 2.4) 0.67 (0.12; 

2.7) 

KOC 

 

 L kg
-1

 108
h
 552 558 (83.8; 788) 546 (99.3; 

789) 

sum 

RMSE 
g 

g 
13

C m
-3

 4.62 1.89 2.86 2.97 

a: estimated with MTB method; conversion factor 2,4-D = 0.822 and ibuprofen = 1.41 for conversion to g 588 
microbial biomass dw per g substrate; b: from slope of ln X at the end of the experiment; c: from slope of 589 
ln X in the initial growth phase; d: KM of 2,4-D was calculated

52
; e: KOC of 2,4-D (estimated

54
) was used for 590 

rapid adsorption; f: KOC of 2,4-DCP (estimated
54

) was used for slow adsorption (sequestration); g 591 
description of sum RMSE see SI S3.3; h: estimated

54
 592 

  593 
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Figure legends: 594 

Figure 1. Measured and simulated 
13

C-label distribution. A) Top: 
13

C6-2,4-D, and B) bottom: 
13

C6-595 

ibuprofen. Symbols show measured data, curves show the simulated turnover. Symbols: CO2 (black 596 

square), NER (grey circle), extractable 
13

C-label (dark grey triangle), and added compound, i.e., ibuprofen 597 

or 2,4-D (black circle). Curves: Sequestered (black dashed (
_ _

)), extractable compound (dark grey (
_
)), 598 

CO2 (black (
_
)), and living biomass + dead biomass + sequestered compound (=NER) (light grey). Error 599 

bars show the standard deviation of the measurements as reported by Girardi et al.
29

 and Nowak et 600 

al.
27,28

. 601 

 602 
 603 
Figure 2. Simulations results for the growth of biomass. A) Top: 

13
C6-2,4-D and B) bottom: 

13
C6-ibuprofen. 604 

Symbols show measured data, curves show simulation of the formation of living and dead biomass. 605 

Symbols: Phospholipid fatty acids (PLFA; black circles), total amino acids (tAA; dark grey squares), and 606 

total amino acids multiplied with a factor of two to yield total dead and alive biomass (empty squares). 607 

Curves: Concentration of living biomass X (black), concentration of dead biomass Xdead (light grey), and 608 

concentration of living and dead biomass X + Xdead (dark grey).  Error bars show the standard deviation of 609 

the measurements as reported by Nowak et al.
27,28

.The dotted vertical line is the halftime of decay (ln 2 / 610 

b) after maximum measured PLFA and indicates were > 50% of tAA is necromass. 611 
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 612 

 613 
 614 
Figure 1  615 
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 616 

 617 
Figure 2 618 
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