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Prediction of the geomagnetic storm associated Dst index
using an artificial neural network algorithm

Samuel Kugblenu, Satoshi Taguchi, and Takashi Okuzawa

Department of Electronic Engineering, University of Electro-Communications, Tokyo 182-8585, Japan

(Received July 5, 1997; Revised March 19, 1999; Accepted March 20, 1999)

In order to enhance the reproduction of the recovery phase Dst index of a geomagnetic storm which has been
shown by previous studies to be poorly reproduced when compared with the initial and main phases, an artificial
neural network with one hidden layer and error back-propagation learning has been developed. Three hourly Dst
values before the minimum Dst in the main phase in addition to solar wind data of IMF southward-component Bs,
the total strength Bt and the square root of the dynamic pressure,

√
nV 2, for the minimum Dst , i.e., information on

the main phase was used to train the network. Twenty carefully selected storms from 1972–1982 were used for the
training, and the performance of the trained network was then tested with three storms of different Dst strengths
outside the training data set. Extremely good agreement between the measured Dst and the modeled Dst has been
obtained for the recovery phase. The correlation coefficient between the predicted and observed Dst is more than
0.95. The average relative variance is 0.1 or less, which means that more than 90% of the observed Dst variance is
predictable in our model. Our neural network model suggests that the minimum Dst of a storm is significant in the
storm recovery process.

1. Introduction
The development of a magnetic storm is best identified at

low latitudes by large decreases in the H component of the
Earth’s magnetic field, and consequently in the Dst index,
a quantity derived and introduced by Sugiura (1964) as a
measure of the magnetic disturbance level on the Earth.
Geomagnetic storms, illustrated by Dst , typically have

three phases: initial, main, and recovery phases. The initial
phase is caused by an increased solar wind dynamic pres-
sure acting on the magnetosphere. The increased pressure
compresses the dayside magnetosphere, forcing the magne-
topause current closer to the Earth, and at the same time
increasing it. The magnitude of the initial phase has been
shown to be proportional to the square root of the solar wind
dynamic pressure,

√
nV 2 (Ogilvie et al., 1968; Siscoe et al.,

1968), where n is the solar wind density and V , the solar
wind speed.
The main phase is due to an increase in energetic ions

and electrons in the inner magnetosphere, where they be-
come trapped on closed magnetic field lines and drift around
the Earth, thus creating the ring current. The storm-time
ring current has been shown to consist of solar wind ions
and ionospheric-origin ions. H+ ions carry the major frac-
tion of energy in the ring current almost throughout the
storm, but O+ ions prevail near the maximum of the main
phase, particularly for large storms (Gloeckler andHamilton,
1987; Hamilton et al., 1988). Recent studies (Daglis, 1997;
Hamilton, 1997) have confirmed the significant contribution
of O+ ions to the minimum Dst value; that is, the minimum
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Dst shows a remarkable correlation with fractional O+ con-
centration which can attain values as large as 70% for storms
with Dst ≤ −300 nT. The main phase was also found to be
associated with sustained southward IMF-Bz (Rostoker and
Fälthammar, 1967).
Charge exchange and Coulomb scattering have both been

identified asmajor loss processes responsible for the decay of
the ring current during the recovery phase of storms (Smith
and Bewtra, 1978; Fok et al., 1991). Typical H+ and O+

lifetimes for each of these two processes are comparable to
days, characteristic of the slow recovery in Dst following the
main phase of a storm. However, since the charge-exchange
lifetime ofO+ is considerably shorter than theH+ lifetime for
ring current energies (≥40 keV), Smith and Bewtra (1978)
have suggested that increased O+ influences the decay rate
of the ring current.
Many different methods (Baker, 1986) have been used for

predicting geomagnetic storms, such as ordinary statistical
methods (which include visual correlation analyses as well),
linear filtering and artificial intelligence methods. Most of
these relationships are based on parameter studies in a cause-
and-effect manner. Solar wind parameters constitute the
causal variables, while geomagnetic indices (Dst , AE , AL ,
or AU ) are the designated effect variables.
Burton et al. (1975) proposed an empirical linear relation-

ship for predicting the Dst index from the knowledge of the
solar wind velocity, density, and the southward component
of IMF. In particular, Burton et al. developed an equation
for the rate of change of pressure corrected Dst , showing that
it was a balance between injection and decay out of the ring
current. They found that decay rate for the recovery phase
depends on the present strength of the ring current (Dst ).
The method of linear filtering prediction was used by
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Iyemori et al. (1979) to predict geomagnetic-storm indices.
This technique allows one to empirically determine the most
general linear relationship between a solar wind input func-
tion and a geomagnetic disturbance output function, tak-
ing time delays and frequency response into consideration
(Clauer, 1986). Iyemori et al. (1979), and Iyemori andMaeda
(1980) used IMF-Bz as an input function, and their output
function was one of the geomagnetic indices, Dst , AE , AL ,
and AU . They concluded that using a single input solar-wind
function is not enough to predict completely a geomagnetic
disturbance based on the assumption of a linear system. They
attributed this inability to a possible nonlinear response of the
magnetosphere.
Artificial neural network (ANN) models enjoyed a resur-

gence in popularity as a prediction tool during the late 1980s,
as a consequence of the discovery of the backpropagation of
errors learning algorithm. One of the most unique property
of these ANNs is their ability to generalize to new situa-
tions after having been trained on a number of examples of
a relationship. They can then induce a complete relation-
ship that interpolates and extrapolates from the examples.
ANNs therefore offer the possibility to study large complex
nonlinear systems of highly inter-correlated data.
Several ANN models (e.g., Freeman et al., 1993;

Lundstedt and Wintoft, 1994; Gleisner et al., 1996) have
shown good performance for the reproduction of Dst . Al-
though the reproduction of the initial and main phases was
excellent, there was somewhat difficulty in reproducing the
recovery phase well. In this study, in order to enhance the
recovery phase reproduction, we use a feed forward multi-
layer neural network with error-backpropagation learning al-
gorithm. This network is trained using three hourly values
before the minimum Dst in the main phase designated as
Dst (−1), Dst (−2), and Dst (−3), in addition to solar wind
parameters for the minimum Dst , i.e., the magnetic field
strength Bt, the southward IMF component Bs and the solar
wind dynamic pressure

√
nV 2. In other words, we used in-

formation only on the main phase for the network training.
This trained network is able to reproduce the recovery phase
with high accuracy.

2. Artificial Neural Networks
ANNs make up a new approach to the computation that

involves developing mathematical structures with learning
ability. This approach is the result of academic investiga-
tions to model the human nervous system learning. ANN
is essentially a group of interconnected computing elements
(i.e., neurons).
The multi-layer feed-forward error backpropagation algo-

rithm (Hertz et al., 1991, for detail) was used in this study.
This network belongs to the class of supervised networks,
i.e., it learns from known answers. Typically, the network is
arranged in layers of neurons (nodes), where every neuron
in a layer computes the sum of its inputs and passes this sum
through a nonlinear function (an activation function) as its
output. Each neuron has only one output, but this output
is multiplied by a weighting factor if it is to be used as an
input to another neuron (in a next higher layer). There are
no connections among neurons in the same layer.
Figure 1 shows a typical three layer network structure. The

Fig. 1. A three-layered neural network.

input, hidden, and output layers are denoted by k, j , and i ,
respectively. For a given pattern, μ, a neuron j in the hidden
layer receives, from a neuron k in the input layer, a net input
signal given by

xμ

j =
∑

k

w jkξ
μ

k + bk (1)

where ξ
μ

k is the input signal fed to neuron k in the input layer,
and w jk is the connection strength between neuron j in the
hidden layer and neuron k in the input layer, while bk is a bias
connected to the input layer. The bias is an additional input
to a neuron that serves to normalize its output, and normally
has a constant activation of 1.
The output Vj produced by the j th neuron in the hidden

layer is related to the activation value for that neuron, by a
transfer function gh(x) which will be defined later, in such a
way as

V μ

j = gh(x
μ

j ) = gh

(
∑

k

w jkξ
μ

k + bk

)
. (2)

A neuron i in the output layer receives this signal from the
neuron j in the hidden layer as input, and similarly produces
an output, Oμ

i , which is related to the activation value for that
neuron, by a transfer function go(x) (which will be assumed
to be the same form of gh(x) in this paper)

Oμ

i = go(x
μ

i ) = go

(
∑

j

Wi j V
μ

j + b j

)
. (3)

The biases in the equations, bk and b j , can be omitted
as they can be considered as an extra input of unit value
connected to all units in the network. The final net output for
an input pattern μ, (μ = 1, . . . , p) can be then described by

Oμ

i = go
(∑

Wi j gh
(∑

w jkξ
μ

k

))
. (4)

Activation functions for the hidden layers are needed to in-
troduce nonlinearity into the network. Without nonlinear-
ity, hidden layers would not make networks more powerful
than just simple perceptrons (which do not have any hid-
den layers, only input and output layers). A composition of
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linear functions is again a linear function. It is the nonlin-
earity (i.e., the capability to represent nonlinear functions)
that makes multi-layer networks so powerful. Almost any
nonlinear function is applicable. For backpropagation learn-
ing, however, it must be differentiable and saturating at both
extremes. Sigmoid functions such as the logistic and hyper-
bolic tangent functions, and the Gaussian function are the
most common choices. If the transfer functions were chosen
to be linear, then the network would become identical to a
linear filter (Iyemori et al., 1979). A backpropagation net
with nonlinear transfer functions could be thus regarded as
a nonlinear generalization of a linear filter (see Gleisner and
Lundstedt, 1997).
The steepness of the logistic sigmoid can be modified by a

slope parameter σ . The more general sigmoid function (with
range between 0 and 1) is given by

g(x) = gh(x) = go(x) = 1

1 + exp(−σ x)
(5)

with its derivative as

g′(x) = σg(x)[1 − g(x)]. (6)

The slope may be determined such that the sigmoid function
achieves a particular desired value for a given value of x , the
input (Fausett, 1994). In the present study σ has been set to
4 for nonlinear multiregression analysis (Ichikawa, 1993).
The training of a network by backpropagation involves

three stages: the feedforward of the input training pattern,
the calculation and backpropagation of the associated error,
and the adjustment of theweights. After training, application
of the net involves only the computations of the feedforward
phase. In order to train the network, input is shown to the net
together with the corresponding known output, and if there
exists a relation between the input, ξ

μ

k , and the output, Oμ

i ,
the net learns by adjusting the weights until an optimum set
of weights that minimizes the network error is found and the
network then converges.
The network error, E , which is defined as the sum of the

individual errors over a number of examples, is given by

E = 1

2

p∑

μ=1

Nout∑

i=1

(T μ

i − Oμ

i )2 (7)

where T μ

i is the target or desired output (i = 1, . . . , Nout).
Substituting (4) for the net output, Oμ

i , we have

E = 1

2

p∑

μ=1

Nout∑

i=1

[
T μ

i − g

(
∑

j

Wi j g

(
∑

k

w jkξ
μ

k

))]2

.

(8)
At the completion of a pass through the entire data set,

all the nodes change their weights based on the accumulated
derivatives of the error with respect to each weight. These
weight changes move the weights in such a direction that
the error declines most quickly. The standard learning al-
gorithm which updates the weights can be expressed by the
gradient descent rule, which means that each weight, say,
wpq , changes by an amount �wpq which is proportional to
the gradient of the error E at the present location.

For the hidden-to-output connections, the gradient descent
rule gives the change in weight as

W new
i j = W old

i j + �Wi j (9)

where

�Wi j = −η
∂E

∂Wi j
(10)

and η stands for the learning rate. Similarly, the weight
change for the input-to-hidden connections, is given by

wnew
jk = wold

jk + �w jk, (11)

where

�w jk = −η
∂E

∂w jk
= −η

∑

μ

∂E

∂V μ

j

∂V μ

j

∂w jk
. (12)

3. Data and Training
The neural network software used for this work was orig-

inally developed by Ichikawa (1993). The network structure
is flexible to configure since all parameters are commuta-
tive. Our model is a feed forward multi-layer network with
error-backpropagation learning, and applied as a nonlinear,
multi-variable least squares algorithm.
For both network training and prediction, we used the

OMNI data set from the database of the National Space
Science Data Center of NASA and the WDC-2 Data Cen-
ter of Kyoto University. These data sets consist of hourly
averages of the solar wind plasma and IMF data from var-
ious spacecraft. Hourly average of Dst is also available in
these databases. For the storm selection, we required that
the storm be preceded by a relatively quiet period of Dst ac-
tivity. Storms with large and sustained southward IMF were
given priority in the selection process, as well as sudden in-
creases in the velocity of solar wind, mostly above 450 km/s.
Selection of storm events was, however, limited owing to in-
completeness of solar wind data. Twenty storms of different
intensities with Dst ≤ −30 nT were selected from the years
of 1972, 1973, 1974, 1975, 1977, 1978, 1979, 1981, and
1982. These are shown in Table 1.
Table 1 also shows the hour and values of the minimum

Dst (peak value) for the 20 storms (column 2). When the
solar wind data set corresponding to the minimum value of
Dst is not available in the database, the nearest hour having
a complete data set was taken. This hour is indicated in
column 3, where the hour is different from that of column 2
for November 1, 1972, April 25, 1979, and September 26,
1982 storm events.
The minimum Dst peak value has been used in ring cur-

rent energization studies. Pudovkin et al. (1985) used the
hourly Dst peak value to study the relationship of the ring
current energy to solar wind functions and to calculate the
characteristics decay time. For our network training, there-
fore, we made a data set consisting of minimum Dst value in
the main phase for each storm, which we designate Dst (0),
the corresponding solar wind data (IMF total stength Bt, IMF
southward component Bs, and dynamic pressure

√
nV 2) for

that hour, and 3 consecutive preceding hourly Dst values in
themain phase. These Dst values are designated by Dst (−1),
Dst (−2), and Dst (−3). The Dst (0) value is shown to the net
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Table 1. List of storms used for network training.

Date Hour of Dst min . Hour used for training

November 1, 1972 08 (−199 nT) 02 (−103 nT)

March 19, 1973 18 (−84 nT) 18

April 1, 1973 22 (−211 nT) 22

July 6, 1974 06 (−204 nT) 06

November 17, 1975 20 (−89 nT) 20

January 30, 1977 22 (−95 nT) 22

November 26, 1977 00 (−87 nT) 00

December 11, 1977 11 (−112 nT) 11

August 4, 1978 11 (−32 nT) 11

August 28, 1978 09 (−226 nT) 09

September 6, 1978 09 (−56 nT) 09

September 29, 1978 10 (−224 nT) 10

April 4, 1979 03 (−202 nT) 03

April 25, 1979 14 (−149 nT) 13 (−136 nT)

June 7, 1979 06 (−40 nT) 06

September 18, 1979 15 (−158 nT) 15

April 13, 1981 06 (−311 nT) 06

July 25, 1981 20 (−226 nT) 20

March 2, 1982 05 (−211 nT) 05

September 26, 1982 18 (−187 nT) 15 (−164 nT)

as the known output parameter. A data set for one storm thus
consists of a six parameter input and a corresponding one pa-
rameter output. This is presented to the net during training.
For prediction, we used the six parameters with no corre-
sponding output parameter. This includes three preceeding
previous Dst values and the solar wind data set for each hour
of a storm event.
Determination of the number of hidden nodes is a difficult

task. Although some techniques have been used by different
authors (e.g., Lundstedt and Wintoft, 1994), no established
methods exist. We have therefore applied different network
architectures with various number of hidden nodes and learn-
ing rates to the network during training in order to determine
the best such parameters. A compromise for the best fit has
been found to be 7 nodes for the hidden layer and 0.15 for
the learning rate η. This learning rate is the best among an
applicable range of 0.05 to 0.2.

4. Network Prediction
4.1 December 19, 1980 storm event
Our purpose is to reproduce the Dst index for the recov-

ery phase using data from the main phase, nevertheless we
apply our trained ANN to the period starting with several
hours before the beginning of the initial phase. A sudden in-
crease in the Dst plot at 29th hour (05:00 UT, December 19)
defines the beginning of the initial phase of the storm. The

initial phase lasted for roughly about 10 hours. This was fol-
lowed by a very rapid decrease in Dst reaching its minimum
approximately in the 42nd hour (18:00 UT, December 19).
This constitutes the main phase. The Dst index then began
a rapid recovery at first, followed by a long and slow one
until the 119th hour. The Dst minimummarks the beginning
of the recovery phase during which the ring current decays.
This event has 119 data points.
Figure 2 shows the prediction result for the storm of De-

cember 19, 1980 compared with observed Dst . The solid
and broken lines represent the observation and prediction,
respectively. Good agreement between the measured Dst

and the predicted one exists in the recovery phase.
The recovery phase, which is more dependent on the in-

ternal processes of the magnetosphere, is bound to be repre-
sented by the Dst history. The minimum Dst should also be
well reproduced since main phase data were used in training
the network. The initial phase appears to bewell reproduced,
but this is not the general trend as is shown later by the poor
fitting of the initial phase in Fig. 5. However, it is interesting
to reproduce somewhat the Dst jump at the beginning of the
initial phase. Considering that there is often a gradual de-
crease in the dynamic pressure during the main phase where
Dst decreases, we speculate that the network can learn some
relation between the variations of dynamic pressure and Dst

and produce the Dst increase in accordance with a sharp in-
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Fig. 2. Observed and predicted Dst plot of December 19, 1980 storm.
The horizontal axis represents time from the beginning of December 18,
1980.

Fig. 3. Correlation plot of predicted Dst and observed Dst of December
19, 1980 storm.

crease in the dynamic pressure for the initial phase.
Figure 3 shows correlation between the network prediction

output and the target for the recovery phase, i.e., a period of
time from the 18th hour of December 19 to the 23th hour of
December 22. The correlation coefficient for this interval is
0.98. We also calculated the average relative variance (ARV),
i.e., the mean squares error normalized by the variance of the
data,

ARV =
∑N

t=1 (D(t) − O(t))2
∑N

t=1 (D(t) − 〈D〉)2 (13)

and the root mean squares error (RMSE):

RMSE =
[
1

N

N∑

t=1

(D(t) − O(t))2
]1/2

(14)

for the same interval, where D(t), 〈D〉 and O(t) denote ob-
served, its averaged, and predicted Dst , respectively. ARV is
0.04, which means that 96 percent of the observed Dst vari-
ance is predictable from both solar wind and Dst history. The
value of RMSE is 11 nT, which is very small compared with
the lowest peak value of Dst . This storm event has been also

Fig. 4. Observed and predicted Dst plot of April 25–26, 1989 storm. The
horizontal axis represents time from the 3rd hour of April 25, 1989.

Fig. 5. Observed and predicted Dst plot of May 8–12, 1981 storm. The
horizontal axis represents time from the biginning of May 8, 1981.

studied by Lundstedt and Wintoft (1994) for Dst network
prediction. Our model shows much better performance in
the recovery phase.
4.2 April 25–26, 1989 storm event
April 25–26, 1989 storm event (Fig. 4) began at the 7th

hour of the 25th day of April, 1989. From a value of+13 nT,
Dst decreased sharply to a low value of −118 nT to com-
prise the first stage of a two-stage main phase (Kamide et
al., 1998). The Dst index then increased briefly to a value
of −94 nT (due to a rise in IMF-Bz at that hour) before fi-
nally falling to the minimum value of −132 nT. The Dst

index began a disturbed, long-lasting and slow recovery un-
til the 85th hour, which we defined as the end of the recovery
phase. In this case, we selected 93 data points, and obtained
good agreement between measured and predicted Dst . The
correlation coefficient between the measured and predicted
Dst over the recovery phase duration is 0.96. The diagnostic
parameter ARV has been calculated to be 0.1, indicating that
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90 percent of the observed Dst variance is predictable. The
value of RMSE is 5.5 nT.
4.3 May 8–12, 1981 storm event
As shown in Fig. 5, this storm event has two distinct min-

ima. The main phase started around the 25th hour of the
event, and fell rapidly to the first minimum of −120 nT. The
recovery phase started with the northward turning of the IMF
until about the 62th hour, when the IMF turned southward
again to produce another main phase. This was again fol-
lowed by another northward turning of the IMF to produce
the consequent recovery phase.
We used 117 data points to reproduce this storm. Figure 5

illustrates our result. The coefficient of correlation has been
calculated to be 0.96. The RMSE becomes 11 nT and the
ARV has been found to be 0.07; that is, 93% of the storm is
predictable.

5. Discussion
Recently, Gleisner et al. (1996) have shown that the solar

wind history for 18–24 hours, which is a longer time window
than our 3 hours, is needed as input to a trained network in
order to reproduce all phases of a geomagnetic storm. They
developed a time-delay feed forward neural network based
on a temporal sequence of solar wind data. Their networks
showed better performance with larger temporal size of the
input data sequence, and were able to reproduce 85% of the
Dst variance, which is quite an improvement on the earlier
work of Lundstedt andWintoft (1994). In our model 90% of
Dst have been reproduced, at least, for the recovery phase of
the three storm events.
The use of previous Dst values as input has been suggested

by Lundstedt andWintoft (1994) as another way to model all
phases of the magnetic storm. However, as the measured Dst

is not instantaneously available, they proposed the use of the
predicted Dst a few hours back in time as input to the net. It
is noted that Freeman et al. (1993) had already used previous
Dst data together with solar wind inputs to predict 1-hour
ahead Dst for input to their Magnetospheric Specification
and Forecast Model (MSFM). For input to their network,
they used the hourly averages of the IMF-B, Bz, the solar
wind pressure, and Dst values for the four previous hours.
Their output is the 1-hour ahead Dst value.
Our model is consistent with the linear autoregressive

moving average (ARMA) filter assumption that geomagnetic
activity O , can be described as a function of a time series of
both solar activity I , and the previous geomagnetic activity,

Ot = F(It−1, It−2, . . . , It−TI , Ot−1, Ot−2, . . . , Ot−TS)

(15)
where TI is the system memory for solar wind inputs, and TS
is thememory for previousmagnetospheric states. Nonlinear
generalizations of this filter have been referred to as state-
input space models (Vassiliadis et al., 1995). The linear
autoregressive moving average (ARMA) filter is extensively
discussed by Detman and Vassiliadis (1997). A direct ANN
equivalent is the Elman recurrent network.
Wu and Lundstedt (1996), attempting to reproduce the

recovery phase which was difficult to model with the net-
works of Lundstedt and Wintoft (1994), used Elman recur-
rent networks. The Elman network is an extension of the

multi-layer backpropagation networks with an addition of a
feedback connection from hidden to input layers which al-
lows the network to both detect and generate time-varying
patterns. Their Elman network model obtained a relatively
high correlation coefficient, i.e., 0.91, for a very long period
of Dst (900 hours). For each storm period, however, their
model does not always give a good fit to the observations.
Our model uses three hours of observed Dst history, whilst
their model depends on the feedback element to generate the
decay rate; our network is updated with previously measured
data, and in their case, it is updated with previously predicted
data.
Vassiliadis et al. (1996) presented a method that converts

an ARMA model to a physical model, namely, a nonlinear
damped oscillator. This is expressed as a second order dif-
ferential equation in terms of the Dst index as

d2Dst

dt2
+ ν

dDst

dt
+ �2Dst = αEy (16)

where the model parameters ν, � and α are determined lo-
cally for many different levels of activity of Dst and Ey , the
input of solar-wind electric field. Our model can be con-
sidered as a neural net generalization of such category of
second-order differential equation.
The number of previous hourly Dst values included beside

the solar wind data as input to the network may be signifi-
cant in the modeling of the current Dst . Training sequences
with one and two Dst values did not produce good fits to the
observed data (not shown here). The use of one Dst value
as input produces overfitting (more positive) in the recovery
phase, while the inclusion of two Dst values produces un-
derfitting. The length of Dst history may be an indication of
the timescale of the dissipation processes that determine the
magnetospheric system memory.
We have used IMF-Bt as input to our net, and investigated

its effect on the network output. We found that deficiency of
the Bt parameter in the input leads to poor modeling of the
initial stage of the recovery phase, implying that this stage
is associated with IMF-Bt. Prediction is therefore improved
with Bt as input.

6. Conclusion
To reproduce the recovery phase Dst index we have devel-

oped a model by training the ANN with the Dst minimum,
three hourly Dst values before the minimum in the main
phase, and the solar wind data for the Dst minimum. This
model has greatly enhanced the recovery phase reproduc-
tion. This suggests that a process producing minimum Dst

of a storm is significant in the storm recovery process. This
may be related to the suggestion that the increased O+ which
dominates the ring current during stormmaximum influences
the decay rate of the ring current (Smith and Bewtra, 1978).
Further work would be needed for the decisive reason for
the significance of the Dst minimum for the storm recovery
process.
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