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Abstract: Metal-organic frameworks (MOFs) have been widely researched as drug delivery systems
due to their intrinsic porous structures. Herein, machine learning (ML) technologies were applied
for the screening of MOFs with high drug loading capacity. To achieve this, first, a comprehensive
dataset was gathered, including 40 data points from more than 100 different publications. The organic
linkers, metal ions, and the functional groups, as well as the surface area and the pore volume
of the investigated MOFs, were chosen as the model’s inputs, and the output was the ibuprofen
(IBU) loading capacity. Thereafter, various advanced and powerful machine learning algorithms,
such as support vector regression (SVR), random forest (RF), adaptive boosting (AdaBoost), and
categorical boosting (CatBoost), were employed to predict the ibuprofen loading capacity of MOFs.
The coefficient of determination (R2) of 0.70, 0.72, 0.66, and 0.76 were obtained for the SVR, RF,
AdaBoost, and CatBoost approaches, respectively. Among all the algorithms, CatBoost was the
most reliable, exhibiting superior performance regarding the sparse matrices and categorical features.
Shapley additive explanations (SHAP) analysis was employed to explore the impact of the eigenvalues
of the model’s outputs. Our initial results indicate that this methodology is a well generalized,
straightforward, and cost-effective method that can be applied not only for the prediction of IBU
loading capacity, but also in many other biomaterials projects.

Keywords: MOFs; ibuprofen loading capacity; properties prediction; machine learning;
CatBoost algorithm

1. Introduction

Research on metal-organic frameworks (MOFs) has drawn widespread attention, as
evidenced by the significant increase in related publications [1]. MOFs are a novel class
of hybrid functional materials, self-assembled from various organic linkers and metal
ions/clusters [2,3] (as shown in Figure 1). MOFs usually possess desirable physicochemical
properties, such as porous structures, stability, low toxicity, and modification possibil-
ities. Hence, their popularizing applications include the storage of materials [4,5], gas
separation [6,7], sensing [8], catalysis [9,10], purification [11], bio-imaging [12], and drug
delivery [13–15]. Since MIL-101 was explored for the first time in 2006 by Ferey et al., MOFs
have exhibited tremendous potentials as drug delivery systems [16].

The extraordinary properties and characteristics of MOFs mentioned above give them
a significant role in drug delivery. Their strengths are apparent: firstly, their versatile struc-
tures endow them with multiple functionalities and stimuli-responsive drug-controlled
release [17,18]. Secondly, their weak coordination bonds result in the biodegradability of
MOFs [19]. Thirdly, the large specific surface areas and high porosity are beneficial for high
loading capacity [19,20]. Fourthly, and most importantly, is that MOFs can be used as drug
nano-vehicles for the treatment of various diseases, including cancer [21,22].
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Figure 1. The schematic diagram of metal-organic frameworks (MOFs). The combination of various 
available clusters or inorganic metal ions (Fe, Cr, Zn, and so on) and organic linkers (1,4−Benzenedi-
carboxylate, Benzene−1,3,5−tricarboxylate, gamma−Cyclodextrin (γ−CD), and so on), which are suit-
able with a framework topology, can contribute to differently designed porous MOFs. 

The extraordinary properties and characteristics of MOFs mentioned above give 
them a significant role in drug delivery. Their strengths are apparent: firstly, their versatile 
structures endow them with multiple functionalities and stimuli-responsive drug-con-
trolled release [17,18]. Secondly, their weak coordination bonds result in the biodegrada-
bility of MOFs [19]. Thirdly, the large specific surface areas and high porosity are benefi-
cial for high loading capacity [19,20]. Fourthly, and most importantly, is that MOFs can 
be used as drug nano-vehicles for the treatment of various diseases, including cancer 
[21,22]. 

The number of new MOFs in private and public databases is growing exponentially 
[23], and conducting experiments is the most time-consuming and costly process in inves-
tigating the drug loading capacity of MOFs [24,25]. Furthermore, the achieved efficiency 
in batch-wise studies of MOFs’ drug loading capacity using artificial synthesis cannot be 
scaled up for industrial applications [25]. Thus, increasingly more efficient ways have 
been established to predict the drug loading capacity of MOFs. Notably, machine learning 
(ML) has been developed to solve these knotty problems. Compared with traditional 
methods, ML can decrease the calculation time significantly by utilizing the cloud disk 
workstations and servers [26]. ML has been employed to predict the methane adsorption 
capacity [27–29], water stability [30], toxicity [31,32], and hydrogen storage ability [33–35] 
of MOFs. To the best of our knowledge, no study has been conducted in which ML meth-
ods are employed to predict the drug loading capacity of MOFs. As a drug model, ibu-
profen has been widely employed in the research regarding drug delivery systems. Fur-
thermore, the data on ibuprofen loading capacity accounts for the majority of the data on 
the drug loading capacity of MOFs. In our study, we aimed to predict the drug loading 
capacity of MOFs using machine learning. Ibuprofen has been chosen as a model drug. 
We believe that ML can also be employed to predict the anticancer drug loading capacity 
of nanocarriers, with an adequate dataset. 

Herein, the main contributions and novelty of the investigation consisted in employ-
ing the integration algorithm to predict the nonlinear IBU loading capacity of MOFs. First, 

Figure 1. The schematic diagram of metal-organic frameworks (MOFs). The combination of var-
ious available clusters or inorganic metal ions (Fe, Cr, Zn, and so on) and organic linkers (1,4-
Benzenedicarboxylate, Benzene-1,3,5-tricarboxylate, gamma-Cyclodextrin (γ-CD), and so on), which are
suitable with a framework topology, can contribute to differently designed porous MOFs.

The number of new MOFs in private and public databases is growing exponen-
tially [23], and conducting experiments is the most time-consuming and costly process
in investigating the drug loading capacity of MOFs [24,25]. Furthermore, the achieved
efficiency in batch-wise studies of MOFs’ drug loading capacity using artificial synthesis
cannot be scaled up for industrial applications [25]. Thus, increasingly more efficient
ways have been established to predict the drug loading capacity of MOFs. Notably, ma-
chine learning (ML) has been developed to solve these knotty problems. Compared with
traditional methods, ML can decrease the calculation time significantly by utilizing the
cloud disk workstations and servers [26]. ML has been employed to predict the methane
adsorption capacity [27–29], water stability [30], toxicity [31,32], and hydrogen storage
ability [33–35] of MOFs. To the best of our knowledge, no study has been conducted in
which ML methods are employed to predict the drug loading capacity of MOFs. As a
drug model, ibuprofen has been widely employed in the research regarding drug delivery
systems. Furthermore, the data on ibuprofen loading capacity accounts for the majority of
the data on the drug loading capacity of MOFs. In our study, we aimed to predict the drug
loading capacity of MOFs using machine learning. Ibuprofen has been chosen as a model
drug. We believe that ML can also be employed to predict the anticancer drug loading
capacity of nanocarriers, with an adequate dataset.

Herein, the main contributions and novelty of the investigation consisted in employing
the integration algorithm to predict the nonlinear IBU loading capacity of MOFs. First, we
gathered 40 data points, which included the organic linkers, metal ions, and the functional
groups, as well as the surface area, pore volume, and IBU loading capacity of different
MOFs from more than 100 different publications. Then, we developed different powerful
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models for predicting IBU loading capacity, such as categorical boosting (CatBoost) [36],
support vector regression (SVR) [37], random forest (RF) [38], and adaptive boosting
(AdaBoost) [39]. Internally, these supervised learning methods are robust to outliers, have
a low risk of overfitting, and are straightforward to use [17]. Finally, we employed the
CatBoost algorithm to predict the IBU loading capacity of MOFs by means of a comprehensive
assessment among all the methods. In parallel, it has a better performance estimation of the
good R Squared (R2) and the root mean square error (RMSE) than other models and more
conveniently regulates the most distinguished parameters. Furthermore, the importance of
the feature effects was analyzed in terms of IBU loading capacity using the Shapley additive
explanations (SHAP). This revealed that some features can influence prospective targets.

Figure 2 shows the flow chart and investigational approach of IBU loading capacity
analyses. The testing dataset (hold-out data) is the input to the model, and the RMSE and
R2 are used for the performance assessment of the model.
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Figure 2. The flow chart of the research approach for the prediction of the IBU loading capacity of MOFs.

2. Materials and Methods
2.1. Data Acquisition

Relevant publications were thoroughly searched using authoritative institutions such
as the Web of Science, Google Scholar, PubMed, Scopus, and others. We screened and
extracted literature regarding MOF ibuprofen loading capacity studies from these search
sites. The keywords for our literature search were: “metal organic framework”, and “drug
loading”. Then, more than 100 records were retrieved from all the different search sites and
narrowed down to 40 documents involving metal-centered ions, atomic clusters, organic
material-linked ligands, functional groups, and IBU loading capacity of different MOFs.
A matrix was used in which a row represented the category of MOFs, and the column
represented the structural feature (as shown in Table 1; the complete dataset can be found
in Supplementary Materials).
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Table 1. Sample of partial data and the predicted target (IBU loading capacity) list.

MOFs Metal Ions Organic
Linkers

Surface Area
m2/g

Pore Volume
cm3/g

IBU Loading
Capacity g/g Reference

MIL-100 Cr BDC 3340 1.160 0.350 [16]
MIL-101 Cr BDC 5510 2.020 0.140 [16]

MIL-53(Cr) Cr BDC 1500 1.600 0.220 [40]
UMCM-1 Zn BDC, BTC 4764 2.280 1.360 [41]

MIL-100(Fe) Fe BDC 1900 0.590 0.330 [42]
[Zn(BDC)(H2O)2]n Zn BDC, DABCO 1545 0.669 0.445 [43]

MIL-53 Fe BDC 954 0.479 0.231 [44]
. . . . . . . . . ... ... ... . . .

CD-MOF-1 K γ-CD 1220 0.493 0.274 [44]
MIL-47 V BDC 729 0.270 0.120 [45]
MIL-53 Cr BDC 864 0.290 0.190 [45]

Abbreviations: 1,4-Benzenedicarboxylate (BDC), Benzene-1,3,5-tricarboxylate (BTC), 1,4-Diazabicyclo [2.2.2]octane
(DABCO), gamma-Cyclodextrin (γ-CD).

2.2. Data Processing

The collected data should be preprocessed before being input into the model to
minimize the errors in model prediction, including missing value patching [46,47], feature
scaling/selection [27,48], and discretization [33,49]. More specifically, to reduce the effect
of the smallest and largest values on the model (for instance, the code ‘sur-area’ covers a
range of surface area from 51.78 to 5510 m2/g), these values should be normalized [48,50]
according to Equation (1).

x′ =
x− xmin

xmax − xmin
(1)

where x is the original eigenvalue or the encoded assigned value, and xmax and xmin are
the maximum and minimum values in the eigenvalue dataset [27,49].

The data was preprocessed to deliver the eigenvector corresponding to the MOFs,
which constituted the dataset for the model computation. The encoding was used in terms
of the variables/features, indicating their presence or absence in a specific MOF. At the same
time, this operation can convert the variables into a binary form that is quickly recognized
by machine learning algorithms [33,36], and it can avoid a large number of decimals leading
to a lengthy computation. In addition, the missing data must be filled and normalized
for the next training model when analyzing the pore volume and specific surface area
information. In this study, the interpolation polynomial was used to complement the
missing data of pore volume and specific surface area with the original data regarding IBU
loading capacity to create the new dataset. Then, the dataset was coded and input into the
algorithm. The dataset was split into training and testing datasets using an allocation ratio
of 0.8 and 0.2. It should be noted that the testing dataset was not used for model training,
but rather as a final model verification.

2.3. Methodology

The CatBoost algorithm is Categorical Features+Gradient Boosting [51], based on the
GBDT algorithm. It is an improved gradient boosting decision tree algorithm and an open-
source and modern gradient boosting library [49,52]. It uses multiple weak learners, which are
then combined into an assembled algorithm of solid learners [53]. Furthermore, it cannot only
deal with intrinsically heterogeneous problems, but it can also handle categorical features [47].
This method avoids the dependence on data sorting, and is known as greedy target-based
statistics, abbreviated as Greedy TS [51], and it is formulated as Equation (2).

x̂i
k =

∑n
j=1 I{xi

j=xi
k}

.yj

∑n
j=1 I{xj=xi

k}
(2)
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where I is the indicator function and xi
k is the i-th subtype features of the k-th training sample.

To reduce the differences in data structure and distribution between the training
and testing dataset for feature averages and to reduce conditional bias, this algorithm
randomly sorts all samples and then takes the values of particular categorical features.
The preferred features and the priority weight coefficients are added as prior distribution
terms [47,54]. The CatBoost algorithm uses a Greedy TS to consider combinations. It
utilizes a relatively novel method of computing leaf node values in such a way (oblivious
trees, symmetric trees) that it avoids the problem of overfitting that can occur with direct
computation in multiple dataset arrangements [25]. The improved Greedy TS is shown
in Equation (3), which reduces the effect of noisy and low-frequency category data on the
data distribution [55].

x̂i
k =

∑n
j=1 I{xj=xi

k}
.yj + β·p

∑n
j=1 I{xj=xi

k}
+ β

(3)

where p is the added prior, and β is the weight of the primary, and its value is usually
a coefficient greater than 0 [36]. Adding the initial probability term in the equation is a
common practice for the small number of feature classes, reducing noisy data, and in the
regression analysis, the initial term can be taken as the average of the dataset labels [54].

Assessing the algorithm requires quantifying the prediction errors, and it is critical to
observe its uncertainty in a practical versus theoretical context. Many evaluation metrics exist
for machine learning to quantify the magnitude of errors in the predictions of experimental
data and intelligent models [54]. According to the algorithm, R Squared (R2), root mean
squared error (RMSE), and mean absolute error (MAE) are the most trusted criteria. This time,
R2 and RMSE are set as the evaluation metrics of the performance of IBU loading capacity;
the smallest RMSE and largest R2 indicate better prediction performance of the model.

Equations (4) and (5) define the mathematical formulation of these measurement
criteria [25]. They determine the mechanisms of errors in the predictive correlation of MOFs’
attributes based on machine learning and estimated IBU loading capacity performance.

R2 = 1−
∑N

j=1

(
xexp − xcal

)2

j

∑N
j=1

(
xexp − xcal

)2

j

(4)

The R2 determines the model prediction accuracy results. xexp is the experimental value,
and xcal is the actual predicted value. As the predicted target gets closer to the experimental
value, the R2 tends to be close to 1, indicating the better performance of the model prediction.
Meanwhile, the RMSE statistically analyzes the error dispersion of the predictions.

RMSE =

(
1
N

N

∑
j=1

(
xexp − xcal

)2

j

)0.5

(5)

2.4. Computational Modeling

We utilized the learner model trees and iterations parameters with the smallest RMSE
as the hyperparameters used in the model by comparing the RMSE of the training and
testing dataset. Then, the R2 was obtained after the testing dataset as input into the model.
This was conducted to evaluate the accuracy of the algorithm, which was used for the
validation process. Lastly, the RMSE and R2 were compared for each testing dataset, and
the correlative hyperparameters were used in the model.

The approach to the model evaluation and operation is illustrated in Figure 3. The
chart determines a series of combinations of tuning hyperparameters, called N configura-
tions, based on the type and size of the data. Hyperparameters are described as adjusting
sliders. The dataset is partitioned into K-folds, and the model is trained for each fold
and configuration with cross-validation (CV). Each configuration’s average performance
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is judged by means of the testing dataset. The preferred model is generated on the en-
tire dataset based on the best configuration. Using the grid search, the implementation
and evaluation of the best configuration are optimistic, and the optimal parameters are
preserved as much as possible [46].
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Figure 3. The schematic figure of the analysis pipeline showing the integrated algorithmic regression
and evaluation mechanism.

3. Results and Discussion
3.1. The Screening of Correlation Parameters

The applicability of the model is optimized to deliver as much important information
as possible from the limited dataset. The error can be further reduced by comparing the
goodness-of-fit of the training and testing scores. Then different combinations of parameters
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are set using K-fold cross-validation, including the number of decision trees, the learning
rate, and the iterations. For instance, when the learning rate is a constant, it can match
and tune different decision trees and different iterations separately. The various iterations
and decision trees, combined with the grid search, are cycled to compare the RMSE until
the smallest error corresponding to the parameter combinations is obtained. Finally, these
parameter combinations are utilized as the model deterministic parameter of callback.

3.2. The Comparison of Different Machine Learning Algorithms

The prediction results obtained from the CatBoost, SVR, RF, and AdaBoost algorithms
are shown in Figures 4–7, respectively, where the red line is the ideal prediction line which
can visually evaluate the performance of the predictions. It reflects that the results are
densely distributed on both sides of the ideal line. Moreover, the analysis of the results of
the CatBoost algorithm show that the RMSE is around 9.81%. The R Squared (R2) of the
testing dataset is 0.76.
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Table 2 shows the R2 and RMSE of the different algorithms mentioned above, indi-
cating that the CatBoost algorithm had the best performance among the four algorithms.

Table 2. Comparison of R2 and RMSE of different algorithms.

Algorithm R2 RMSE (%)

AdaBoost 0.66 12.10
SVR 0.70 10.53
RF 0.72 9.62

CatBoost 0.76 9.81

The interpretability of the model is becoming an important research trend in machine
learning. SHAP “https://shap.readthedocs.io/en/latest/index.html (accessed on 16 June
2022)” originates from a cooperative game theory, where all the features are described as
“contributors”. It is also a “model explanation” package that can explain the outputs of
any machine learning model References. For instance, the model generates a prediction for
each MOF sample of the IBU loading capacity, and the values of SHAP are the contribution
index assigned to each feature in the example. Moreover, the greatest strength of the SHAP
is that it intuitively reflects the different influent weights of each element in the samples.

https://shap.readthedocs.io/en/latest/index.html
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Then, the features are ranked according to the average absolute value of SHAP, which is the
most crucial feature of the model. Meanwhile, this interpretation method is also essential to
verify predictions obtained by the model, which are determined by a correct understanding
of each feature’s significance.

In this study, the model was well trained to show a satisfactory predictive performance.
It offered the SHAP value of the top 10 variables that had the most significant influence
on the model predictions, as shown in Figure 8, along with its calculated values in a
descending order. In Figure 8, the row represents a feature with the value of SHAP on the
bottom horizontal coordinate. We analyzed the distribution of SHAP values for each feature
according to different features at the vertical coordinate. The overlapping points fluctuate
on the vertical coordinates, and many samples are clustered around the zero centerlines
when the features are less important to the model. Additionally, the outstanding features are
ranked according to their importance and prioritization, such as specific surface area (sur-
area), pore volume (P-volume), 1,4-Benzenedicarboxylate (BDC), etc. More prominently,
specific surface area and pore volume influence the model’s outputs more than the other
features, based on the SHAP.
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Figure 9 reveals the top two feature combinations of the specific surface area (sur-area)
and pore volume (P-volume). The values of SHAP gradually increase along the main
diagonal. This indicates that the interaction coefficient between them is positive, and this
combined feature effect is similar to the extrapolation of a single feature effect, which means
that their effect becomes significant in the model.
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Notably, some dots on the bottom are not crucial for most of the dataset. However,
they may be necessary for a small fraction of the dataset for the reason that the results in
the formation represent the global variables, not the local variables.

3.3. Discussion

Herein, we used different ML algorithms to predict the IBU loading capacity of
MOFs based on their structural properties parameters. This method is called “supervised”
learning in the field of machine learning. Specifically, the SVR, RF, Adaboost, and Catboost
algorithms were involved in supervised learning. In “supervised learning”, the algorithm
learns from the labeled examples with the known outcome and generalizes predictions on
future data where the result is unknown.

Training and comparing different algorithms is critical for developing preferred re-
sults and adopting suitable predicted algorithms. We noted that different algorithms had
multiple performances on various issues; thus, better-suited algorithms exist for the prob-
lems considered in this work. More specifically, the performance estimation revealed that
CatBoost had greater superiority in the sparse matrices and could match other advanced
machine learning methods among the four algorithms. Its most unique strength is that
it processes the categorical features during the training rather than during the features
preprocessing stage. In other words, it reduces the need for significant hyperparameter
tuning, minimizes the possibility of over-fitting, and makes the model more universal.

In the traditional GBDT algorithm, the most straightforward approach is to replace
the categorical features with the average of the corresponding labels [52]. In the decision
tree, the average value of the label will be used as the criterion for node splitting [51]. This
approach has a disadvantage: features usually contain more information than labels, and
if the average of the labels is forced to represent the features, the problem of conditional
bias will occur when the data structures of the training and testing dataset are distributed
differently [54,55]. Herein, the CatBoost algorithm cannot only solve the above problem,
but it can also improve the performance of the model regarding prediction bias.

Finally, the data of MOFs collected from the structure library “http://www.chemsoon.
com.cn/ (accessed on 15 May 2022)” was input into the trained model for screening the
MOFs with a higher IBU loading capacity. Meanwhile, the predictions of IBU loading
capacity are obtained according to this approach, and the results are shown in Table 3. As
shown in the last column of the table, the results indicate that the IBU loading capacity

http://www.chemsoon.com.cn/
http://www.chemsoon.com.cn/
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in the collected data is in the range of 0.31–0.54 (g/g). Among these, MIL-101(Cr) has the
highest IBU loading capacity, and we also found that its pore volume and surface area were
the most prominent for the drug loading capacity. Then, we combined the conclusions
from the SHAP value that pore volume and surface area have the greatest effect on the
predictions. Therefore, this step verifies the reliability of our method of using ML to predict
the IBU loading capacity and provides ideas for other bio-nanomaterial studies.

Table 3. The predictions of IBU loading capacity are based on the improved model and the
structural library.

MOFs Metal Ions Organic Linkers The Predictions of IBU
Loading Capacity (g/g)

NH2-MIL-101(Fe) Fe BDC 0.4999
UIO-66-F4 Zr BDC 0.3091

UIO-66-(SH)2 Zr BDC 0.3176
NO2-UIO-66 Zr BDC 0.3361
MOF-74(Ni) Ni BDC 0.3160

NH2-MIL-101(Cr) Cr BDC 0.4965
MIL-101(Cr) Cr BDC 0.5408

UIO-66 Ni BDC 0.3285
NH2-UIO-66 Ni BDC 0.3197

Abbreviation: 1,4-Benzenedicarboxylate (BDC).

In the future, we can collect more data and develop our own database. In the database,
we will utilize ML algorithms to train more MOFs on structural data. Then, we can predict
additional physicochemical properties. Furthermore, the model’s performance is expected
to further improve if more datasets of MOFs are included, which is consistent with the
properties of machine learning. At the same time, we also hope that these predictions will
be experimentally validated in future studies.

4. Conclusions

In this study, we have demonstrated that the Catboost algorithm, incorporating both
training and testing data, could serve as an efficient preliminary tool for predicting the IBU
loading capacity of MOFs. The good performance of the model suggests that the prediction
of the screening of MOFs with high IBU loading capacity has been obtained and evaluated,
with the expected effects. Meanwhile, the combined effects between two features were
visualized by SHAP dependence plots. The results reveal the strength of feature interactions
in the used dataset, which are essential in the IBU loading capacity of MOFs. Moreover,
we used the AL algorithm to fill the gap in machine learning to predict the IBU loading
capacity of MOFs. The improvement in the model also provides a valuable reference for
predicting other MOFs’ structural properties. In future studies, we can include more datasets
or databases and access even better ensemble algorithms and deep learning networks. We
will use these AI methods to fully train the physicochemical properties of bionanomaterials
to predict their structures more widely and accurately. With these efforts, it is believed that
additional researchers can cooperate more effectively to push for the next frontier of AI
combined with the structure of MOFs, accelerating further biomaterial development.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering9100517/s1, Table S1: Hyperparameter and optimal
value for each machine ML model; Table S2: Sample of partial data and the predicted target (IBU
loading capacity) list.
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