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Abstract

Background: A crucial factor in mitigating respiratory viral outbreaks is early determination of the duration of the

incubation period and, accordingly, the required quarantine time for potentially exposed individuals. At the time of

the COVID-19 pandemic, optimization of quarantine regimes becomes paramount for public health, societal well-

being, and global economy. However, biological factors that determine the duration of the virus incubation period

remain poorly understood.

Results: We demonstrate a strong positive correlation between the length of the incubation period and disease

severity for a wide range of human pathogenic viruses. Using a machine learning approach, we develop a

predictive model that accurately estimates, solely from several virus genome features, in particular, the number of

protein-coding genes and the GC content, the incubation time ranges for diverse human pathogenic RNA viruses

including SARS-CoV-2. The predictive approach described here can directly help in establishing the appropriate

quarantine durations and thus facilitate controlling future outbreaks.

Conclusions: The length of the incubation period in viral diseases strongly correlates with disease severity, emphasizing

the biological and epidemiological importance of the incubation period. Perhaps, surprisingly, incubation times of

pathogenic RNA viruses can be accurately predicted solely from generic features of virus genomes. Elucidation of the

biological underpinnings of the connections between these features and disease progression can be expected to reveal

key aspects of virus pathogenesis.
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Background
The recent outbreak of the novel SARS-CoV-2 corona-

virus and the resulting COVID-19 disease has led to an

unprecedented worldwide emergency [1]. Per the World

Health Organization (WHO) recommendations, numer-

ous countries have taken severe preventive measures to

combat and stem the spread of the virus. A key effective

measure recommended by the WHO in viral outbreaks

is enforcing a period of quarantine on individuals that

are suspected to have come in contact with the causative

agent until they are proven clean of infection [2, 3]. The

length of the quarantine depends on the time from virus

exposure to the emergence of symptoms, i.e., the incuba-

tion period. The duration of the incubation period is

specific to the causative virus [4]. Underestimation of

the incubation time could lead to infected individuals

being prematurely released from quarantine and spread-

ing the disease, whereas overestimation can have a de-

bilitating economic impact and cause detrimental

psychological effects [5]. Therefore, knowledge of the
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range and upper limit of a virus incubation period is

crucial to effectively combat and prevent outbreaks while

minimizing the negative consequences of the quarantine.

The length of the incubation period varies both across

and within virus families [4]. Investigation of different

incubation periods within a single virus species has

shown that in some cases, a longer incubation period

corresponds to less severe symptoms [6, 7] whereas

others demonstrate the opposite trend [8]. However, to

our knowledge, the association between the incubation

period and severity across different human viral diseases

has not been studied systematically. Further, genomic

features (if any) that correlate with the incubation time

are currently unknown. There is therefore a vital need

for a comprehensive investigation of viral incubation

periods and for methods that predict the incubation pe-

riods of emerging viruses. If such methods are devel-

oped, they can be deployed in future virus outbreaks for

early, accurate inference of the incubation period and

immediate implementation of optimized quarantining

interventions that will mitigate the spread of the virus

while minimizing the negative societal impact [9].

Here, we comprehensively assess the incubation pe-

riods of different viruses that cause human diseases. We

find that, when comparing across different virus species,

a longer virus incubation period is significantly associ-

ated with a more severe disease presentation. This trend

is maintained within and across virus families, regardless

of the affected tissue, and is especially strong among cor-

onaviruses, and overall, for human respiratory diseases.

For an in-depth examination and construction of a pre-

dictive model, we narrowed our focus to respiratory,

non-segmented, single-strand RNA (ssRNA) viruses and

analyzed different genomic characteristics of these vi-

ruses. We identified features that are predictive of the

incubation time and are generalizable across virus fam-

ilies. Based on these features, we developed an elastic

net regression model that predicts virus incubation pe-

riods. We extensively validated the robustness of this

model and the selected features for the prediction of the

incubation time across diverse viruses and virus families,

to enable accurate early estimation of the incubation

period for future outbreaks.

Results
Association between incubation period and disease

severity

We first curated the information on incubation periods

for viral human diseases, where such data were available

(41 viruses, Additional file 1: Table 1). To gain further

insight into the relevance of the viral incubation periods

to human disease, we investigated the relationship be-

tween viral incubation periods and disease severity. We

classified diseases as severe or mild, based on the

severity of the symptoms and associated death rate, fol-

lowing the descriptions of health organizations where

applicable (see the “Methods” section for details). We

found that, although the incubation periods vary sub-

stantially for the set of viruses collected, both within and

across families, the viruses that cause severe disease pre-

sentations tend to have significantly longer incubation

periods (Fig. 1a, p value 1.1e−5). This trend is strongest

when considering all 41 viruses and diseases (Fig. 1b),

but holds for both ssRNA and double-strand DNA

(dsDNA) viruses separately (Fig. 2c). Furthermore, this

trend is significant when considering the two largest

viral families in this set, Coronaviridae and Herpesviri-

dae (Fig. 1d), and among diseases associated with a par-

ticular tissue type (Fig. 1e). The biology behind the

relationship between incubation period duration and dis-

ease severity warrants further exploration, but the sig-

nificant association identified here between these two

disease-related variables stresses the importance of the

incubation period duration for both fundamental under-

standing of the diseases and practical health care issues.

Prediction of incubation time from genomic features

We next sought to develop a model that would facilitate

prediction of incubation periods solely from genomic

features. To our knowledge, this is the first attempt to

predict incubation periods from virus genomes. Given

the considerable variability observed in the incubation

periods among viruses that infect different tissues and

those with different genome types (Fig. 1c, e), we sought

to focus on a relatively homogenous subset of virus fam-

ilies, to minimize the risk of confounding the prediction

with features of no direct relevance. To this end, we fo-

cused on non-segmented ssRNA viruses that cause re-

spiratory infections, which is the largest group of human

viruses that are relatively homogenous biologically but

show considerable variation in their incubation periods

(Additional file 1: Table 1). Although the predictor is

built on a limited set of 14 viruses, there is a sufficient

number of genomes to train the model (n = 3604

strains). Given that the quarantine time is defined as the

upper limit of the virus incubation time, we extracted

the upper estimates of the incubation periods for all vi-

ruses in the analyzed set (Additional file 1: Table S2, see

the “Methods” section for details).

To train a model with the dataset in hand, we required

a set of features that potentially could be predictive of

the incubation times. Given that this is the first attempt,

to the best of our knowledge, to identify such features,

we were not aware of any established mechanistic rela-

tionships between characteristics of virus genomes and

incubation periods. Thus, we selected features that are

easily derived from the viral genomes and could be rele-

vant for the incubation period (see the “Methods”
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section for details). We constructed 8 such features

(Fig. 2a), based on the complete genome nucleotide se-

quences and within-population genome alignments of all

sequenced strains of each virus (Additional files 1 and 2,

see the “Methods” section for details). In addition to

these 8 features, we also assessed CpG islands as a po-

tential feature, because some viruses, such as hepatitis B

virus (HBV), have been shown to contain varied distri-

butions of CpG islands across different strains [10]. Fur-

thermore, CpG avoidance has been reported for diverse

RNA viruses including coronaviruses [11, 12], possibly

as a result of selection against recognition by the Zinc-

finger Antiviral Protein (ZAP) which binds to CpG mo-

tifs [13]. However, the extent of CpG suppression ap-

pears to be largely uniform among RNA viruses [11].

Moreover, using standard criteria [14], we did not find

any CpG islands in our virus set, making it unlikely that

derivations of this feature would help incubation period

prediction beyond the impact of the GC content. Ana-

lysis of the pairwise associations between the 8 features

(Fig. 2a) confirmed some previously reported connec-

tions, such as the negative correlation between genome

length and mutation rate [15] and the positive correl-

ation between GC content and codon adaptation index

[16] (CAI) (Fig. 2 a,b). Strikingly, our findings indicate

that the mutation rate of SARS-CoV-2 is substantially

lower than those of other human coronaviruses (CoV),

including its closest human-infecting relative, SARS-

CoV (with an average of 1.4e−3 and 7.8e−5 transitions

per branch point per nucleotide for SARS-CoV and

Fig. 1 The incubation periods of viruses causing severe and mild human diseases. a Incubation periods (y-axis, log-scaled) of 41 human pathogenic

viruses. The circle size corresponds to the length of the incubation period (the size scale is provided in the inset), and the colors correspond to the

virus family. Severe diseases are indicated with a black border. b Comparison of the incubation periods (y-axis, log-scaled) between viruses causing

mild (blue) vs. severe (red) human diseases, considering all 41 viruses collected. c Comparison of the incubation periods (y-axis, log-scaled) between

viruses causing mild (blue) vs. severe (red) human disease, for ssRNA and dsDNA viruses. d Comparison of the incubation periods (y-axis, log-scaled)

between viruses causing mild (blue) vs. severe (red) human disease, for large virus families. e Comparison of the incubation periods (y-axis, log-scaled)

between viruses causing mild (blue) vs. severe (red) human disease, for diseases associated with distinct tissues. All indicated P values are for the one

sided rank-sum test
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SARS-CoV-2, respectively; Fig. 2b, see the “Methods”

section for details). Preliminary reports on SARS-CoV-2

genome evolution indicate a similar trend [17].

We then sought to select features to be used for a pre-

dictive model of the incubation time. To avoid con-

founding the model with features that are primarily

driven by virus family, we formally quantified whether a

given feature is significantly associated with the family

identity. To this end, we applied two complementary ap-

proaches, namely, analysis of variance (ANOVA) and an

empirical, non-parametric test, to estimate, for each

feature, whether it varies more across virus families than

within each family (see the “Methods” section for de-

tails). The results obtained with the two approaches

were equivalent, demonstrating that half of the consid-

ered features varied more between families than within

families, and therefore might confound the model

(Fig. 2c). We denote such features family-specific. By

contrast, the incubation time was not significantly asso-

ciated with virus family (Fig. 2d), supporting selection of

features that are not family-specific to train a model; we

denote such features family-generic. Four other features

Fig. 2 Genomic features of ssRNA viruses causing respiratory infections. a Pairwise correlation matrix across all features. A description of feature construction is

given in the “Methods” section. Each circle indicates Spearman’s correlation coefficient (ρ) between two features. The colors represent the rank-correlation

coefficients (red indicates positive correlation and blue indicates negative correlation), and the circle sizes correspond to significance (p value), where significant

correlations (p value < 0.05) are circled in black. b Scatter plots illustrating the relationships between features across four virus families. c Estimation of the

features’ association with the virus family, based on p values (−log-scaled) from two tests applied (see the “Methods” section for details). The cutoff (p value =

0.05) is indicated with a dashed line. Lower values correspond to features that are not significantly associated with a virus family. d Boxplot and overlaid dot

plot of the incubation periods across viral families. e Dot plots of different features across virus families

Gussow et al. BMC Biology          (2020) 18:186 Page 4 of 12



were found to be family-generic: GC content of the virus

genome, variance of the number of different nucleotides

observed per position in the alignment of the virus

strains, number of protein-coding genes in the virus gen-

ome, and CAI of the virus coding sequence (Fig. 2e).

Thus, these four features were included in the model.

Next, we divided the analyzed dataset into training

and test sets. To maintain a large, diverse, and independ-

ent test set that spans multiple virus families, we se-

lected the 7 human-infecting viruses of the family

Coronaviridae as the training set. By training on a single

viral family, we allow for a test set with the largest pos-

sible number of families, encompassing high genomic di-

versity and allowing for a comprehensive evaluation of

the model. Moreover, coronaviruses include viruses with

both high and low incubation periods, providing a good

representation of the range of incubation period values.

Thus, we trained an elastic net model on the 7 human-

infecting viruses of the family Coronaviridae (Fig. 3a),

using the four family-generic features. We found that

this model, which was trained on a single viral family,

generalized well to viruses from the three other families

(Fig. 3b). The test mean absolute error was 1.63 days

(Fig. 3b), attesting to a close estimation of the upper

limit of the incubation time in an independent data set.

Moreover, the model predictions strongly correlated

with the ranks of the assigned incubation periods in the

test set (Spearman’s ρ = 0.91, p value = 0.005).

Fig. 3 Assessment of the elastic net model for virus incubation time prediction. a A scatter plot of the incubation periods of the CoV training set

compared to the model predictions, with the model R2 in the upper left corner. b A scatter plot of the incubation periods of the test set compared to

the model predictions. The box in the bottom right corner contains Spearman’s ρ between the predictions and the true values, the p value of the

Spearman’s ρ, the model R2, and the mean absolute error (MAE). c A heatmap of the coefficients of each feature using different training sets. d A bar

plot of the model performance metrics using different subsets of training and testing data, with the number of samples in the testing data for each

subset indicated. e A scatter plot of the incubation periods of the test set compared to the model predictions when SARS-CoV-2 is left out of training.

The box in the top left corner shows the model’s performance metrics
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Specifically, for the virus with the longest known incuba-

tion period, measles, the longest incubation time, 9.7

days, was predicted. Although measles was assigned an

upper limit incubation period of 14 days in our data, the

majority of the available reports are indeed in the range

of 9–12 days [18]. The second longest incubation

period was also correctly assigned to respiratory syn-

cytial virus (RSV), with a prediction of 9.1 days,

closely approximating an assigned period of 8 days in

our data. For parainfluenza viruses 1–3, the model

predicted 7.3, 4.9, and 6.2 days, respectively, closely

approximating the assigned 6 days. Metapneumovirus

was similarly accurately predicted to have a 6.5-day

incubation period, within half a day of its assigned 6

days. Finally, the shortest incubation time predicted

was correctly assigned to rhinovirus, with a prediction

of a 1.2-day incubation period. Although rhinovirus

was assigned a 4-day incubation period in our data,

most of the cases show symptoms within 1 day [19].

Exploration of the model indicated that the stron-

gest predictive features were the number of protein-

coding genes and GC content, with higher values in

either feature corresponding to a longer incubation

time (Fig. 3c). Elucidation of the mechanisms behind

these associations will require extensive experimental

work. A straightforward, even if, likely, over-simplified

explanation could be that the larger number of genes

to be translated by the virus lengthens its replication

cycle, under the assumption that the number of trans-

lation initiation events and/or subgenomic RNAs that

need to be transcribed are rate-limiting factors in

virus reproduction. Similarly, a higher GC content

leads to the formation of stable secondary structures

in the virus RNA, with higher kinetic barriers that

the ribosome then needs to disrupt during translation,

resulting in longer translation times [20]. Thus, one

possible explanation for the association between the

number of protein-coding genes and the GC content

and longer incubation periods is that the longer cu-

mulative translation time extends the replication cycle

and, consequently, the incubation period. Alternatively

or additionally, extra genes could contribute to more

complex interactions of the virus with the host organ-

ism, resulting in longer incubation times. In particu-

lar, the highly virulent coronaviruses with long

characteristic incubation periods encode additional,

accessory proteins compared to low virulence viruses

that have shorter incubation times [21, 22]. The

accessory genes are dispensable for virus reproduction

in cell culture and have been implicated in virus-host

interactions [23]. Some of these additional genes en-

code proteins containing distinct immunoglobulin-like

domains, which is compatible with roles in interac-

tions with the immune system of the host [24].

To assess the robustness of the selected features, we

tested models trained with different partitioning of the

data into train and test sets. We found that these

changes did not significantly change the performance of

the models, further attesting to the robustness of the sig-

nal obtained using the four family-generic features

(Fig. 3d). By contrast, a model trained with family-

specific features does not generalize to the test set, and

one trained using a mixture of family-generic and

family-specific features disregards the latter by nullifying

their coefficients (Additional file 1: Figure S1), further

demonstrating the efficacy of relying on family-generic

features only. The coefficients assigned to the family-

generic features did not vary substantially across differ-

ent training sets, confirming that the method is not par-

ticularly sensitive to the data used for training (Fig. 3c).

Nevertheless, the high performance of the model that is

trained exclusively on CoV seems to suggest that this

virus family provides a good representation of the de-

pendencies of the incubation period on genomic fea-

tures, and/or that training on a single family is

preferable given the small dataset and the possibility of

confounding effects.

To evaluate the utility of our model, we examined how

this method would have performed during the early

stages of the current COVID-19 pandemic. To this end,

we removed SARS-CoV-2 from the training data and

trained the model on the remaining 6 CoV only, with

the caveat that this training set is poorly balanced as it

contains only 2 viruses with incubation times longer

than 3 days and, therefore, might underestimate when

predicting viruses with long incubation times. The incu-

bation period of SARS-CoV-2 is still being determined,

with the recommended quarantine time conservatively

set at 14 days. Recent reports indicate that the vast ma-

jority of symptomatic patients develop symptoms within

10.5 days, generally, within 5 days [25, 26]. Despite hav-

ing trained the model on an imbalanced training set

biased towards shorter incubation periods, the model

predicts an incubation period of 8.8 days for SARS-CoV-

2, correctly placing SARS-CoV-2 in the upper range of

incubation periods and predicting an incubation period

duration during which current research indicates the

majority of symptomatic patients will have shown symp-

toms. Moreover, a recent meta-analysis that examined

reported SARS-CoV-2 incubation periods across 18

studies concluded that the quarantine time should be

shortened to 7 days [27]. Clearly, the estimate provided

by the model could have been useful in mitigating the

COVID-19 pandemic (Fig. 3e; similar analysis for the

other CoV is provided in Additional file 1: Figure S2).

We further expanded the approach to facilitate an

interval prediction, to provide for the prediction of the

full range of incubation periods for a novel virus. Given
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that there is no consensus as to how to define standard

errors or confidence intervals for elastic net regression

models [28–30], we introduce an empirical evaluation of

lower and upper ranges of the interval of the incubation

period (see the “Methods” section for details). We find

that the model is predictive of these intervals, in both

the training set (Fig. 4a) and the test set (Fig. 4b, permu-

tation test p value < 1e−3). On average, the predicted

range captures 54% of the true range for viruses in the

test set; at least, 30% of the true range is covered for all

viruses in the test set, and at least 50% is covered in five

of the seven viruses. The average absolute deviation is

1.6 days from the lower incubation range and 1.8 days

from the upper incubation range.

Given the success of the model when applied to re-

spiratory viruses, we sought to examine whether the

genomic characteristics and model that was effective for

respiratory diseases would be generalizable to non-

Fig. 4 Interval evaluation for the predicted incubation period. a True (blue) and predicted (orange) intervals for the coronaviruses in the training set. b True

(blue) and predicted (orange) intervals for the viruses in the test set. c True (blue) and predicted (orange) intervals for the viruses causing hemorrhagic fever. The

blue (true) circles denote the mode value of the reported incubations periods, and the orange (predicted) circles denote the incubation period predicted by

the original model (as in Fig. 3)
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respiratory viruses. Given that the model construction

and evaluation was limited to respiratory viruses, an

evaluation on other diseases or types of viruses may be

confounded by the different tissue types. To mitigate

possible confounders resulting from genome structure

and affected tissue types, we focused on non-segmented

ssRNA viruses of the families Filoviridae (negative-sense

RNA viruses) and Flaviviridae (positive-sense RNA vi-

ruses) that cause hemorrhagic fevers. The hemorrhagic

fever viruses were selected because they consist of a

large enough set of viruses that are not associated with a

specific tissue, and thus appear to be less likely to intro-

duce bias in evaluation. Indeed, the model accurately

predicted the incubation period of these viruses, includ-

ing 3 types of Ebola viruses, Marburg virus, dengue

virus, yellow fever virus, and tick-borne encephalitis

virus (Fig. 4c, Spearman rho = 0.76, p value = 0.05).

Discussion
The emergence of novel viruses that can cause pandemics

remains a major threat to human health as compellingly

demonstrated by the COVID-19 pandemic. A major chal-

lenge in dealing with such outbreaks is the initial lack of

biological and clinical knowledge of the infectious agent,

which can lead to potentially avoidable fatalities until the

causative agent is thoroughly characterized. Therefore, to

mitigate emerging outbreaks, rapid estimation of the incu-

bation period of novel viruses is vital, in order to define

the appropriate quarantine period and to estimate the rate

of virus spread. Furthermore, we show here that the

length of the incubation period in human viral diseases

significantly correlates with the disease severity which fur-

ther underlines the importance of the accurate prediction

of the incubation time.

With recent advances in sequencing technology, gen-

omic sequences of multiple isolates of novel viruses be-

come available shortly after the virus emerges. Here, we

comprehensively examined genomic features that could

be predictive of the virus incubation times of human

pathogenic ssRNA viruses and identified four family-

generic features that consistently predict the incubation

periods with high accuracy. Using these features, we de-

veloped a robust model that is predictive of incubation

times for respiratory ssRNA viruses, the most common

cause of viral pandemics [31]. Despite having been

trained and evaluated on respiratory ssRNA viruses only,

our model was found to be predictive also of the incuba-

tion periods of viruses that cause hemorrhagic fevers.

Thus, the four genomic features that we identified as be-

ing family-generic allow for robust prediction of incuba-

tion periods for vastly different diseases caused by

viruses that belong to different phyla [32]. Future ad-

vances based on this work can be expected to expand

the model and feature search to additional sets of viruses

and should comprehensively evaluate the effects of dif-

ferent confounders on the prediction, such as segmented

genomes (for example, the influenza genome) and differ-

ences in the tissue tropism.

We also investigated the links between incubation pe-

riods of different disease-causing viruses and the disease

severity and found that viruses with long incubation pe-

riods tend to cause severe disease. Although the rela-

tionship between incubation periods and disease severity

has been assessed previously for specific viral diseases

[6–8], to our knowledge, this connection has not been

studied systematically across a large collection of human

pathogenic viruses. This signal is robust across different

viral families and disease types, including coronaviruses.

To date, the study of virus incubation periods has been

largely limited to human viruses. It remains to be ex-

plored whether the incubation periods of animal viruses

correlate with those of human viruses. If there are robust

correlations, these could provide additional avenues to

investigate the effect of the incubation period on viral

pathogenicity and infectivity in an evolutionary context,

and perhaps, contribute to the development of early in-

terventions for potential zoonotic viruses. Furthermore,

such investigation could help with uncovering new coro-

naviruses with high pathogenic and zoonotic potential.

The underlying molecular and biological mechanisms

of the dependencies between the family-generic genomic

features, the incubation times, and disease severity re-

main to be directly and functionally investigated. One

contributing factor could be a direct mechanistic con-

nection between increased translation times in viruses

with many genes and high GC content and longer incu-

bation periods. Additionally, longer incubation periods

are indicative of complex virus-host interactions that

consequently present with more severe disease symp-

toms. This explanation is compatible with the observa-

tions in coronaviruses, whereby the highly virulent

strains with long characteristic incubation periods en-

code several accessory proteins [21, 22] that are missing

in viruses causing milder disease and have been impli-

cated in virus-host interactions [23]. The domain con-

tent of some of these accessory proteins, indeed, seems

to implicate them in interactions with the host immune

system [24]. Another possible explanation is, simply, that

a longer incubation period can lead to delayed medical

intervention, so that by the time clinical symptoms ap-

pear, the medical intervention is less effective, and the

disease presents as more severe. However, confirming or

dispelling any of these hypotheses requires extensive

virological experimentation.

Conclusions
We demonstrated a robust association between virus in-

cubation times and the severity of disease presentation
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and identified a set of viral genomic features that is

highly predictive of incubation times. To our knowledge,

this work is the first to demonstrate that incubation pe-

riods of respiratory ssRNA viruses can be accurately pre-

dicted by genome analysis alone. The model established

through this work and the genomic features that were

used for training can directly facilitate early and accurate

estimation of the required quarantine time for future

pandemics and help the responsible agencies set initial

guidelines accordingly. Furthermore, these results have

clear applications for controlling the spread of emergent

ssRNA respiratory viruses, the most common cause of

pandemics. Future work can expand this method to en-

compass additional virus families of interest and aid in

mitigating the effect of potentially deadly zoonotic

outbreaks.

Methods
Incubation period and severity assignment

The incubation time for each of the strains of each of

the 41 viruses was collected from the literature (Add-

itional file 1: Table S2). As incubation periods vary,

where possible, the upper limit was used, and a consen-

sus of reports was followed. The only exception to this is

SARS-CoV-2. Although more data is needed to assess

the incubation period of SARS-CoV-2, we set the dur-

ation to 14 days given the recommended quarantine

times [2]. We note that there are small variations in re-

ports of the incubation times, and the assigned values

represent the best approximation. Changing the assigned

incubation times within the range of reports maintains a

similarly high performance of the trained model (Add-

itional file 1: Figure S2).

The rationale for the selected incubation times for the

14 ssRNA respiratory viruses used in model construction

and assessment was as follows:

a 229E-CoV (n = 25), HKU1-CoV (n = 39), NL63-CoV

(n = 60), and OC43-CoV (n = 161). For these

coronaviruses, which are causative agents of

common colds, a 3-day incubation period was

assigned, following the majority of reports [33, 34].

b MERS-CoV (n = 284). A 14-day incubation period

was assigned to MERS-CoV, per previous reports

[35].

c SARS-CoV (n = 273). The estimates show 13 days

as an upper limit in the majority of reports [4, 36].

d SARS-CoV-2 (n = 92). Although more data is

needed to assess the incubation period of SARS-

CoV-2, we set the duration to 14 days given the

recommended quarantine times [2].

e Measles virus (n = 213). There is a considerable

range of reported incubation periods, with the

majority of reports indicating 9–12 days and some

reports going several days beyond that. Thus, we

set the incubation period to 14 days [18].

f Respiratory syncytial virus (RSV, n = 1595). For

RSV, the incubation period was set to 8 days, in

accordance with the higher range of the majority

of reports [37].

g Parainfluenza (n = 43, 58, and 345 for

parainfluenza 1, 2, and 3, respectively). The

parainfluenza incubation period was consistently

reported to be between 2 and 6 days and therefore

was assigned the upper limit of 6 days [4].

h Rhinovirus (n = 244). Per previous reports, a 4-day

incubation period was assigned to rhinovirus [4].

i Metapneumovirus (n = 162). Six days was assigned

to human metapneumovirus, given the commonly

reported range of 4–6 days [38].

We also assigned each of the 41 viruses with a binary

severity annotation, of either severe or mild. Diseases

with extreme immune responses, fevers, or other ex-

treme symptoms were considered severe, along with dis-

eases with high death rates. Diseases that cause mild

respiratory symptoms or diseases that are otherwise be-

nign were considered mild. In cases where either the

Centers for Disease Control and Prevention (CDC) or

the WHO explicitly described a disease as either severe

or mild, that description was applied as the severity an-

notation. The disease presentations and severity deter-

mined, along with the rationale for the determined

severity, are detailed in Additional file 1: Table S2.

Each of the 41 viruses was also classified by its symp-

toms and affected tissues, based on CDC and WHO de-

scriptions, falling into one of these categories: central

nervous system (CNS), fever, gastro, gastro/CNS,

hemorrhagic fever, immune system, liver, skin, and swol-

len glands.

Sequence datasets

Reference genome sequences and GenBank files were

downloaded from the NCBI [39] for each virus (Add-

itional file 1: Table S1, Additional file 2). For each virus,

additional strains were downloaded from the NCBI and

aligned using Mafft [40] v7.407 with default parameters,

resulting in an alignment file for all strains belonging to

each of the 14 viruses (Additional file 3). For each virus,

all available strains were downloaded. Phylogenetic trees

were generated for each virus based on the alignment

using FastTree [41, 42] with the “-nt” parameter.

Genomic features

The following genomic features with potential links to

viral replication time and efficiency were evaluated:
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a Genome length. The number of nucleotides in the

reference genome sequence. Rationale: The length

of the genome might correlate with virus

reproduction time.

b Number of genes. The number of genes in the

reference genome’s associated GenBank file. We

verified for each virus that there were no

undetected genes within its genome using

MetaGeneMark [43] gene prediction software.

Rationale: The number of genes might correlate

with the total time spent on translation in the viral

lifecycle and, thus, with the reproduction time.

c Positive or negative strand RNA. Whether the RNA

virus is positive strand or negative strand. This

was set to 1 if the virus has a positive strand

genome and to 0 if it has a negative strand

genome. Rationale: The positive- or negative-sense

RNA might correlate with the time required to

begin translation; negative ssRNA viruses require

an additional stage to synthesize the positive-sense

antigenome before translation, and accordingly,

could correlate with the reproduction time.

d Codon adaptation index (CAI). The CAI was used

to analyze the codon usage bias of each virus in

comparison to human. The CAI was calculated by

concatenating all the coding sequences (CDS) in each

virus reference genome GenBank file and using the

Biopython [44, 45] software package (version 1.74)

implementation, with the CodonAdaptationIndex class

set to a reference human codon usage table [46].

Rationale: The codon adaptation index could correlate

with translation efficiency and thus with the viral

reproduction time.

e GC content. This was calculated for each reference

genome using Biopython [44]. Rationale: GC

content could correlate with translation times [20]

and thus with the reproduction time.

f Mutation rate. Raw mutation rates were

estimated per each virus genome alignment,

without accounting for selection bias, by

detecting the ancestral base for every base in

the genome for every non-leaf node in the tree

using maximum parsimony. Then, at each

branch point, the transitions between both sides

of the branch were counted, and the average

count was then divided by the length of the

genome for the final estimate. Rationale: The

mutation rates could correlate with the

reproduction time [47].

g Average and variance of the changes in each

position of the alignment. The change in alignment

position is defined as the number of different values

observed in each position of the virus alignment,

divided by the number of strains in the alignment. The

average and variance of these values are used as

features. Rationale: The position change mean and

variance might correlate with the translation efficiency

and regulation among different genomic regions and,

thus, with the viral incubation period.

Features that rely on the multiple sequence alignment

of different strains of the same virus were always nor-

malized by the number of strains available, in order to

avoid biases that could result from different strain

counts per virus.

CpG islands were searched for in each reference gen-

ome using a Python implementation (https://github.

com/lucasnell/TaJoCGI) with standard criteria [14].

However, none was found in any of the analyzed virus

genomes.

Evaluation of the specificity of the features for virus

families

We sought to evaluate, for each feature, whether it is asso-

ciated with the identity of the virus family which would be

a potential confounder to the model. We hence searched

for features whose variance within each virus family was

not significantly smaller than its overall variance. To this

end, each feature was evaluated using two methods.

The first method is a one-way analysis of variance

(ANOVA). One-way ANOVA tests the null hypothesis

that the means of the measurement variable are the

same for the different categories of data, against the al-

ternative hypothesis that they are not all the same.

Hence, lower assigned p values signify that the null hy-

pothesis is rejected and that different viral families have

different population means with respect to each feature.

We therefore consider features assigned with a p value

greater than 0.05, for which we could accept the null hy-

pothesis, and could not conclude that the feature mean

was associated with the viral family. The ANOVA test

was implemented in Python using the f_oneway function

in the SciPy [48] package.

The ANOVA test assumes that the samples are inde-

pendent, taken from normally distributed populations

with equal standard deviations between the groups.

These assumptions, which must be satisfied for the asso-

ciated p value to be valid, are not guaranteed and are dif-

ficult to evaluate. We hence implemented a second,

empirical test, which is not parametric and does not rely

on any assumptions. This empirical test evaluates, for a

given feature, if its variance within virus families is

smaller than would be observed by random assignment

of families to viruses. We reason that a feature which is

associated with the virus family would have significantly

smaller variance within the true family assignment than

within a random family assignment. The null hypothesis

is that the variance of the features within each family is

Gussow et al. BMC Biology          (2020) 18:186 Page 10 of 12

https://github.com/lucasnell/TaJoCGI
https://github.com/lucasnell/TaJoCGI


similar to the variance across families, and the alterna-

tive hypothesis is that the variance of the features within

each family is smaller than the variance across families.

To perform the empirical test, the feature variance

within each virus family is calculated and averaged.

Next, the feature values are randomly permuted 1000

times and the same calculation is performed, to generate

a null distribution. Let the number of times the variance

of the permuted values is less than the variance of the

real values be X. The p value is calculated as (X + 1)/

(1000 + 1). Thus, a lower p value indicates that the fea-

ture’s within-family variance is smaller than our null ex-

pectation. We search for features with a p value greater

than 0.05, for which we conclude that the variance

within the actual families is not smaller than that within

randomly assigned families. This evaluation does not ne-

cessarily indicate that the family-specific features are

poor predictors, rather, that, with the data available, it

would not be possible to discern whether the signal from

these features is primarily driven by the variation be-

tween virus families.

Elastic net model

The elastic net method [49] is a generalization of LASSO

using Ridge regression shrinkage, where the naïve esti-

mator β̂ is a minimizer of the criterion L(λ1, λ2, β) by:

β̂ ¼ argminβðLðλ1; λ2; βÞÞ

¼ argminβðjjy − Xβjj2 þ λ1jjβjj1 þ λ2jjβjj
2
Þ

for any fixed, non-negative λ1, λ2. Elastic net was

chosen because it has characteristics of both LASSO and

Ridge regression, which are controlled by the penalties

coefficients, thus outperforming other regularization and

variable selection approaches [49].

The elastic net model was constructed in Python using

the scikit-learn [50] ElasticNet function with default pa-

rameters. The features were standardized before training,

with the same standardization parameters used in train-

ing applied to test data before prediction.

Evaluating intervals for the predicted incubation periods

Given that there is no consensus as to how to define

standard errors or confidence intervals for LASSO,

Ridge, and elastic net estimates [28–30], we develop an

empirical estimation of the lower and upper range of the

incubation period using the elastic net model. To this

end, we trained two models on the training data (viruses

in the Coronaviridae family), with the first model trained

on the lower estimates of the incubation period of coro-

naviruses and the second model trained on the highest

reported estimate of the incubation periods.

Evaluating the significance of assigned interval using

permutation test

To evaluate the significance of the correlation between

the predicted incubation intervals and the true intervals,

we applied a permutation test. We calculated the average

deviation of the predicted ranges from the true incuba-

tion ranges across all viruses in the test set, which is 1.7

days. We then shuffle the true intervals 1000 times, to

generate a null distribution. Let the number of times the

average deviation of the predicted range from the per-

muted range is less than or equal to the average devi-

ation of the predicted range from the true range be X.

The p value is calculated as (X + 1)/(1000 + 1).
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