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A mathematical model has been developed to determine the optimum bubble size for the removal of
inclusions from molten metals by flotation. The probability of collision between a bubble and an inclusion,
Pc, and the probability of adhesion of an inclusion to a bubble by sliding, P4, are defined to describe the
efficiency of inclusion attachment to a bubble. The results show that small bubbles have a high P¢, while
small inclusions have a high P, and low P.. By considering the overall probability, P (=P x Pa), and the
floating time of the bubble, the model suggests that the optimum bubble sizes for the removal from steel
of alumina inclusions less than 50 um in size are in the range of 0.5 to 2mm in diameter.
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1. Introduction

Gas injection is commonly practiced in the ferrous
and non-ferrous secondary metallurgy processes. This
technique is used to achieve homogeneity in the tem-
perature and metal composition and to assist in the
removal of second phase and dissolved impurities from
molten metals.

Cold modelling” has demonstrated that when the
particles do not wet the liquid phase, the particles can
be captured by gas bubbles and floated up to the free
surface. Solid inclusions such as alumina and silica are
non-wetted by liquid steel,” and can therefore be
removed by attachment to gas bubbles.

In general the metallurgical industry has moved
towards generating smaller size bubbles in order to
improve the efficiency of impurity removal. For example,
tuyere and lance injection has been replaced by the use
of porous refractory plugs to create smaller gas bubbles.
A currently commercialised technology for ultra clean
steel production, NK-PERM (NK-Pressure Elevating
and Reducing Method),® uses alternate pressurisation
to create fine bubbles in order to remove inclusions from
liquid steel.

It has been assumed that the smaller the bubble size,
the higher the efficiency of removal. Intuitively it can be
argued that smaller bubbles have a high probability of
collision with inclusions, however their lower rising
velocity leads to longer floating times. Larger bubbles
have a lower probability of collision with inclusions, but
having higher rising velocity.

This work is aimed at determining the optimum
bubble size for the inclusion removal on the basis of
the interaction of gas bubbles with particle inclusions,

particularly for the removal of fine, non-wetting in-
clusions of diameter 5 to 50 um.

2. Mechanism of Bubble/Inclusion Interaction

The process of inclusion removal by gas bubbles is
influenced by various factors including the liquid flow,
the properties of inclusion, bubble, molten metal and
slag. The overall process is complicated by the coales-
cence and breaking of bubbles in the bubble, swarm.
Detailed quantitative modelling of the overall process is
not possible at present, but the study of the behaviour
of a single bubble in the quiescent liquid steel is a very
useful starting point in analysing this problem.

Previous theoretical and experimental studies*~7”
have shown that the overall process of particle flotation
by a gas bubble can be divided into several sub-proc-
esses:

1) Approach of a particle to a bubble,

2) Formation of a thin liquid film between the particle
and the bubble,

3) Oscillation and/or sliding of the particle on the
bubble surface,

4) Drainage and rupture of the film with the formation
of a dynamic three-phase contact (TPC),

5) Stabilisation of bubble/particle aggregates against
external stresses, and

6) Flotation of the bubble/particle aggregates.

Of the above mentioned sub-processes, the attachment
of particles to bubbles plays a central role.

For ease of description the following times are defined.
The oscillation time of the particle following the initial
collision with the bubble surface is the collision time, ..
The time elapsed when the inclusion is sliding over the
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bubble surface is the sliding time, /. The time for the
drainage of the liquid film between the gas and the
inclusion until film rupture occurs is defined as film
drainage time, /.

The processes of attachment of an inclusion to a gas
bubble in the liquid steel can also be further understood
as follows:

The inclusion approaches the gas bubble, and a thin
liquid steel film builds up between the inclusion and the
bubble. The film gradually drains until film rupture
occurs. If the collision time is longer than the film
drainage time, i.e., t-> ty, the inclusion will be attached
by the collision. If /<1, the inclusion will rebound
away from the bubble or slide on the bubble surface. If
the sliding time is longer than the film drainage time, i.e.,
ts> I, the attachment will occur during sliding. If ¢ <,
on the other hand, the inclusion will slide away and will
not become attached to the bubble. In this paper the
attachment by collision will be referred to as mechanism
(A) and that by sliding as mechanism (B) respectively.
These mechanisms are illustrated schematically in Fig.
1. Polar coordinates are used to describe location in the
following models and the nomenclature used is given at
the end of the paper.

3. Important Parameters

Preliminary calculations indicate that the models are
very sensitive to certain model parameters, such as the
terminal velocity of the gas bubble, the collision time,
and the film drainage time. Special consideration has
therefore been given to these parameters before they are
incorporated into the models.

3.1. Terminal Velocity of Bubbles

The terminal velocities of gas bubbles in liquid steel,
particularly for fine bubbles, are difficult to measure
accurately. However, many studies on the terminal
velocity of gas bubbles in water have been carried out.

Particle
Trajectory
Liquid
Collision

Sliding

. ) tal - .
Mechanism (A) Mechanism (B)

Fig. 1. Schematic representation of mechanisms of particle
attachment to a gas bubble.
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Based on experimental measurements a number of
mathematical models of the phenomenon have been
developed.®~1? These models describe the influences
of the density, viscosity, surface tension of the liquid,
the bubble size and the fluid flow characteristics. Un-
fortunately, the agreement between these models varies
considerably. In the present study an average value of
bubble velocity in steel predicted using these models
is adopted and then smoothed by the mathematical
method of cubic spline fitting. The properties of alumina
inclusions, water and steel used in the following cal-
culations are listed in Table 1.

Figure 2 shows the terminal velocities of gas bubble
in liquid steel predicted by the different models and the
average result. The terminal velocities and shapes of
bubbles depend on the bubble sizes. In the regime of
bubbles with diameters less than 3 mm, the bubbles are
spherical in shape. When the equivalent diameter of the
bubble exceeds 3 mm, the bubble becomes ellipsoidal in
shape. The bubble velocity reaches a maximum value
in the transition region from sphere to ellipsoid. The
emphasis in the present work is on the bubble size in
the range less than 5mm in diameter, so that all the
bubbles are assumed to be spherical in shape in the
following calculations.

3.2. Collision Time ¢ and Film Drainage Time ;.

Schulze® derived an expression of collision time, te,
by taking into account non-linear oscillation of particle
on the gas bubble surface,

Table 1. Physical properties of alumina inclusions, water

and steel.
Properties Values Refs.
Piso 1000 kg/m? 15)
Pre 7000kg/m3 16)
PALOS 3000kg/m3 16)
Hity0 1073 kg/m-s 15)
Mre 7.0%x 10" *kg/m"s 16)
%10 7.3% 1072 N/m 15)
OFe [.89 N/m 2)
0.7
0.6 1. Cliftet al (1978)
z 2. Peebles et al (1953) 5
E p54 3. Grace et al (1976) -
4. Mean
& 04
< 031
>
E
2 0.2
&

0.1 7

0.0 . .
0.1 i 10

Diameter of Bubbles, DBXI()3 (m)

Fig. 2. Terminal velocities of gas bubbles in liquid steel as a
function of bubble size.
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where p, and pp are the relative densities of the liquid
and the particle. The non-linear function f depends on
the particle size Dp and the surface tension ¢, . Inserting
the surface tension of liquid steel (Table 1) into Schulze’s
model,® the magnitude of f for steel is 3.6 to 4.2 when
the inclusion sizes are in the range of 5 to 50 um.

The model for - (Eq. (1)) was verified by Schulze’s
experiments® using a pendant water drop and a high-
speed camera.

Schulze® considered two limiting cases for the cal-
culation of the film drainage time:

1) plane contact: Reynolds’ equation in the case of a
plane-parallel thin film of finite dimensions, and

2) point contact: Taylor’s equation for a solid sphere
approaching a rigid wall.

Schulze’s model for the evaluations of film drainage
time in these two cases can be summarised as:

Plane contact:

3 m \?b2(32ugtc)*™=uy D3
[FR _— ST e (2)
64 \ 180 o khé,
Point contact:
6u In(Dp/2h¢,)
ter= L’(L s plfed) 3)
(36/¢L-——"--- + DPApg> cos
B
AP =Pp—PL eveerreeieniiienianiiiiinans 4)

where p, and o, are the viscosity and surface tension of
liquid respectively. 6 is the angle in the polar coordinate
system as shown in Fig. 1. ug is the relative velocity of
bubble to particle. The factor k takes the value of 4.
The constants b, and m, depend almost linearly on the
particle size, and weakly change with surface tension of
the liquid. Therefore b, and m, take the values of 700
and 0.6 respectively as recommended by Schulze.®

The critical thickness /g, for the film rupture in
Egs. (2) and (3) can be obtained by an empirical relation
based on the experimental results by the interfero-
metrical measurement,’?

e =2.33-10"8 [0, - 103(1 —cos 8,)1°1¢ ... (5)

where 0, is the advancing contact angle, which is sub-
stituted with the contact angle in the present calculation,
and ¢ is liquid surface tension.

Table 2 lists the results for a typical case of alumina
inclusions in steel.

The actual value of f¢ should be between the two

Table 2. Calculated contact time and film drainage time for
alumina inclusions in steel.

Dy (m) 5x107¢ 5x107°
tc (8) 3.0x107¢ 9.6%x1073
Irr (8) 4.7x1071° 2.9% 1073
Ipr (8) 3.1%x1073 53%x1073

Conditions: Dy=2mm, 0=0° 0.=144° (Ref. 2)).

limiting values, /g and tgr. According to the calculations
given in Table 2, ¢ is larger than f; and less than gy
This indicates that /. may be larger or less than ¢, and
that the two mechanisms of attachment, (A) and (B) may
occur in the process of inclusion attachment to gas
bubbles in the steel.

4. Mathematical Model

In the model presented in this paper, the possibilities
of rebound of the inclusion from the bubble surface
following the first collision and the detachment of the
inclusion from the bubble after the formation of three
phase contact are neglected. Experimental results
obtained by Pan!) using non-wetting particles in aqueous
solutions show that almost all of the particles arriving
at the bubble surface become attached. Solid inclusions
such as alumina and silica are not wetted by liquid steel
(the contact angles of alumina and silica inclusions with
liquid steel are 144° and 115° respectively?). It is there-
fore assumed that analogous behaviour occurs in the
high temperature process.

The probability that an inclusion will collide with a
bubble is defined as collision probability, P, and the
probability of adhesion by sliding is defined as adhesion
probability, P,. The overall probability of attachment
of the inclusion to the bubble, P, is given by the product
of these probabilities, i.e.,

4.1. Collision Probability, P

Whether an inclusion approaches a bubble depends
principally on the fluid flow around the bubble. Con-
sider the case of an isolated bubble rising through a
suspension of inclusions in a quiescent environment.
As the liquid sweeps past the bubble, a flow pattern
represented by the infinite series of streamlines as shown
in Fig. 3 develops in the fluid. For mathematical con-
venience, this can be considered to be analogous to a

Inclusion
Trajectories

)
|
[
|
|
1
|
1
|
|
|
'
|
1
|
[
|
'
|
'
|
1

Fig. 3. Schematic representation of coilision of particles with
a bubble.
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stationary bubble around which the fluid is moving at
a velocity equal to the terminal rising velocity of the
bubble but.in the opposite direction.

‘The trajectory of an inclusion is considered to be
determined by the streamline which passes through its
centre. Assuming that the streamlines come closest to
the bubble at its equator, a grazing streamline is defined
as the one passing through the bubble at the distance of
inclusion radius, Rp, at the equator. This streamline
originated at the distance of Ry from the central axis
at an infinite distance from the bubble. It is clear that,
of the inclusions located in the path of the bubble, only
those within the limiting radius, Ry, will collide with
the bubble. Those which lie outside this area will sweep
past the bubble without having an opportunity for
contact. The collision probability is therefore determin-
ed by the ratio of the area Aqc(=nR3c) to the area
Agp [=7(Rg+ Rp)?]. Thus, the collision probability is
given as:

Aoc Ric

Ap  (Rg+Rp)?

The value of Ry is unknown and must be determined
from the mathematical description of the grazing
streamline.

Studies of fluid flow around a spherical obstruction,
e.g., drop and bubble, have been reported in the litera-
ture.*~® In the cases of low Reynolds numbers (much
less than unity) and very high Reynolds numbers, it is
possible to obtain analytical solutions to Navier—Stokes
equations. For the case of intermediate Reynolds
numbers, Le., | <Re< 500, numerical solutions have to
be used.

Various simplifications of the velocity profile around
the bubble have been made by Yoon,* Weber®> and
Schulze® in their models. The complexities of the
mathematical expressions of the collision probability
vary from model to model depending on how the
description of the flow pattern is simplified, but the
predictions using these models are quite close to each
other if applied to the same case. Of these models, that
developed by Yoon® is relatively simple. It involves the
fitting of an empirical equation of stream function to
experimental data available in the literature in the range
of 1 <Re< 100. But when the inclusion sizes are close to
bubble sizes, the probability predicted by this model
exceeds unity. In the present work, Yoon’s expression
for P. has been modified by including the higher order
terms and considering the effect of relative velocity
(Appendix 1):

Pe= (Dp<

1 3 0.72 E3 *2
Po= [_+D*+2Re 2+D )] D
1—u*| 2 15(1 + D¥*) (14+D*)3
(Dp<Dp) weoieveecrveeeririeeeiieeennns ®)
where
Ug
and
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As suggested by Yoon,* this expression is also
applicable to the case of Re>100.

4.2. Adhesion Probability, P,

After collision with the bubble the inclusion begins to
slide over the bubble surface and stays on the surface
for a finite period of time. The residence time is referred
to as sliding time, z5. The magnitude of the sliding time
is determined by the tangential component of the relative
velocity and the bubble size since larger bubbles have
longer sliding distances. A number of measurements of
sliding time have been reported.!?

Bubble/inclusion attachment will occur when the
sliding time fg is longer than the film drainage time t;.
Therefore, the inclusion must slide a finite distance over
the bubble surface before the attachment occurs. In
reference to Fig. 4, for given size of bubble and inclusion,
the distance travelled by an inclusion along the surface
of a bubble is a function of the incidence angle 0, at
which the inclusion strikes the bubble. Only when 8, is
smaller than the limiting angle, 6,,, will the inclusion
have a sliding time longer than the film drainage time
and become attached. The probability of adhesion of the
inclusion to the bubble by sliding, P,, will be the ratio
of the area inscribed by the limiting radius, Ry,, to the
area inscribed by the sum of the bubble radius with
inclusion’s, R+ Rp. Thus P, can be expressed as
(Appendix 1):

2
ROA

=—" _=5in?0 Dp<D
(RB+RP)2 OA ( P B)

A
By taking the same stream function as Yoon’s¥

mentioned in the foregoing section, Yoon’s expression
of P, can be modified as:

Liquid

N Sliding
Distance

Fig. 4. Schematic drawing showing the critical angle of
incidence and the probability of adhesion.
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P, =sin?| 2arctanex <~— 2 {[1 — 3 — !
A P 3
Dy+Dp 4xg 4xg

Re®72 2 1 1 >} }):l
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where

xg=14D*% (Dp<Dg) .eeeevvvirriiinrnn (13)

5. Results and Discussions

The probability of collision, Pc, can be obtained from
Eq. (8). Figure 5 shows the relationship between P and
bubble size for a range of inclusion diameters from 5 to
50 um. P increases with decreasing bubble size and with
increasing inclusion size, viz, smaller bubbles have higher
probability of collision with an inclusion of given size
than larger bubbles, and larger inclusions have higher
probability of collision with a given size bubble than
smaller inclusions. ,

The magnitude of P is determined by the fluid flow
around the gas bubble. For the movement of a viscous
liquid about a bubble, the flow pattern of fluid can be
represented by an infinite series of streamlines, as shown
in Fig. 3. From geometric considerations it can be seen
that the ratio of Roe/(Rg+ Rp) for a large bubble is lower
than that for a small bubble. So, according to Eq. (7)
P increases as the size of bubble decreases. P for 20 um
inclusions at bubble diameters 1 mm is only 0.5%. This
means that only one bubble in 200 (=1/0.005) bubbles
with diameter of 1 mm will collide with an inclusion of
20 pym in a column of fluid 1 mm diameter, i.e., the same
as that swept out by the bubble.

According to Eq. (12), the value of adhesion prob-
ability, P,, depends on the magnitude of the film
drainage time, tg, while # itself is determined by the
bubble and particle sizes according to Egs. (2) and (3).
The adhesion probability, P,, can be obtained by solving
the Eqgs. (12) with (2) or (3). Taking the maximum value
of tr given by Eq. (3), P, is illustrated as a function of
bubble and inclusion size in Fig. 6 for inclusion sizes
in the range of 5 to 50 um. The effect of bubble size on
P, varies with inclusion size. For inclusions 5 to 10 um

10

Inclusion Size:

l 4

0.1 -\\
10um
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0.01 4

0.001
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Collision Probability, PC

T T T T ¥ T T
1 2 3 3 4 5
Bubble Diameter, DBxl()' (m)

Fig. 5. Probability by collision of inclusions with gas bubbles
" as a function of bubble size and inclusion size.

in diameter there is no significant influence of the bubble
size on P,, ie., P, is effectively independent of the
bubble size. In the case of larger inclusions, i.e., 20 to
50 um in diameter, both the small and large bubbles
have a higher P, than intermediate size bubbles. This
is due to the low rising velocity in the case of the small
bubbles and the long sliding distance offered by the
large bubbles both of which favour the adhesion of the
inclusions. From Fig. 2, the bubbles with a diameter
around 2 to 3 mm have a high rising velocity, so that the
P, is minimum under this condition.

For inclusions greater than 10 um in diameter, P,
significantly decreases with the increase in inclusion size
(Fig. 6). This indicates that smaller inclusions are more
easily captured by a gas bubble during sliding. P, of the
inclusions with 5 to 10 um diameter is high over the
whole range of bubble size from 1 to 5mm diameter.
This is the result of the high gradient of velocity close
to the bubble surface.'® In the present calculations, the
sliding velocity of an inclusion is taken as the tangential
velocity of the fluid around the gas bubble and at a
position corresponding to the centre of the inclusion,
so that a small inclusion has a lower sliding velocity
and hence a longer sliding time. On the other hand, since
both the inclusion and the bubble float up in the same
direction in the liquid steel and a smaller inclusion
has a slower rising velocity than a larger inclusion, the
relative velocity of a small inclusion to the rising bubble
is larger than that of a large inclusion to the bubble. This
results in a reverse influence on the attachment of the
smaller inclusion to that mentioned above in relation
to the tangential velocity, but it is comparatively less
important than the contribution from the tangential
velocity.

As mentioned above, the value of P, depends on the
magnitude of . High ¢ results in a low P,. Low fg
means that the film ruptures easily. Zero fz means that
once an inclusion approaches a bubble, it will be attached
immediately, in which case the P, is equal to one. Two
limiting cases for t are given by Egs. (2) and (3). In the
results as shown in Fig. 6, #; has been taken to be the
upper limiting value given by Eq. (3), so that the P,
given in Fig. 6 is a low limit. The real P, should be

100 Sam

90 10 um

80 q\———”/

20 um

(%)

70
60
501

404
304 Inclusion Size: 50 um

201

Adhesion Probability, P,

10 T T \ T T T .
1 2 3 4 5

Bubble Diameter, DBxIO3 (m)
Fig. 6. Probability by adhesion of inclusions sliding on the

surface of bubbles as a function of bubble size and
inclusion size.
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higher than the values given in Fig. 6.

To understand the stability of the inclusion attachment
to a gas bubble, the position of the inclusion on the
bubble surface has been further calculated. The position
of the inclusion on the bubble surface is expressed as the
ratio of the depth of the inclusion wetted by liquid steel
to its diameter, i.e., y/Dg x 100 % as shown in Fig. 7. By
considering the balance of the forces acting on the
inclusion, as listed in the Appendix 2, the position of an
inclusion can be calculated as a function of bubble and
inclusion size (Fig. 8). When the bubble size is larger
than 0.5mm in diameter, less than 20 % of the diameter
of the inclusion is contained in the liquid steel regardless
of inclusion size and bubble size. In the case of small
bubbles, i.e., less than 0.4mm in diameter, both de-
creasing the bubble size and increasing the inclusion
size will obviously increase the proportion of the in-
clusion in the steel. These influences are due to the effects
of the capillary force and interfacial tension. The lower
the proportion of inclusion wetted by steel, the more
likely the inclusion will not become detached from the
bubbles. Therefore the bubbles larger than 0.5mm
favour the retention of the inclusion in the bubble/
inclusion aggregates.

The efficiency of the inclusion removal can be further-
more expressed as the injected gas volume required to
remove all inclusions. In the imaginary liquid column
through which the bubble is passing, if the probability

Gas
bubble

Liquid

Fig. 7. Schematic representation of a particle attached and
detached from a gas bubble.
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[=]
E 10 T T T ¥ T T
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T
0.4 0.8

Bubble Diameter, DBx103

0.6

Fig. 8. The equilibrium position of an alumina inclusion in
liquid steel attached to a gas bubble.
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of an inclusion to be attached to the bubble is P, the
number of bubbles to obtain a unit probability should
be Ny=1/P. The number of columns for a unit cross-
section of vessels (such as ladle or tundish) is No=
4/(nDg*). The total number of gas bubbles required to
remove all inclusions is therefore Np=Ny-N. The
theoretical gas volume, V5, to remove all the inclusions
per unit cross-section of vessels is thus:
nD3 2D,
V=N =5
where P is obtained from Eq. (6). Equation (14) is also
applicable to the case of more than one inclusion with
same size in the column.

The theoretical gas volumes, Vi, in two cases of
inclusion sizes 10 and 50 ym are illustrated in Figs. 9 and
10 respectively. The lower lines in these two figures
represent the mechanism (A) as mentioned before, i.e.,
attachment by collision, by which P, =1, thus P is equal
to P¢. The upper lines represent the mechanism (B), i.e.,
adhesion by sliding, by which P,<1. The real gas
volume should be between these two limits.

Figure 9 shows that in the case of a small inclusion
of 10 um in diameter, curve (B) is very close to curve
(A), which is due to the low film drainage time 7 of
small inclusions (Table 2). This indicates that the small

Inctusion Size: 10 um

5

3

Theoretical Gas Volume, VT (m~/m~)

Mechanism (B)

0 T T T
| 2 3 4 5

Bubble Diameter, DBx]()3 (m)
Fig. 9. Theoretical gas volume per unit area for the removal
of all inclusions as a function of bubble sizes.

2.0
o
E Inclusion Size: 50 um
-
E 1.5
R
3]
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(=}
>
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g 0.5+
@ (A)
=}
£
ja
0.0 T T T T . T .
1 2 3 4 S

Bubble Diameter, DBxl()3 (m)

Fig. 10. Theoretical gas volume per unit area for the removal
of all inclusions as a function of bubble sizes.
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inclusions are easily attached by the first collision. For
inclusions of 50 um in diameter, there is a difference of
the gas volumes V. between mechanisms (A) and (B), as
shown in Fig. 10. This is due to the higher ¢ value for
the larger inclusions.

Figure 11 shows the theoretical gas volume, Vr,
required by mechanisms (B) for the inclusion of 5 to
50 um diameter. As shown in Fig. 11, the gas volume,
V', required for the total removal of fine inclusions,
e.g. 5 um, rapidly increases for bubble sizes larger than
2 mm.

Figure 12 shows the bubble terminal velocities and
their rising times for passing through one meter liquid
steel, tz. Small bubbles have a low rising velocities and
thus require a long floating time. For gas injection into
the ladle, a flow pattern with recirculating zone and
stagnant zone is inevitably developed. The small bubbles
with a low rising velocity may be trapped in the re-
circulating zone or stay in the stagnant zone and there-
fore the inclusions attached to these bubbles do not
have any chance of being floated to the covering slag
layer. The horizontal velocity of liquid steel near the slag
and metal interface is generally 0.1 m/s.}”'® To avoid
being entrained into the bulk, the bubbles need to have

40

Mechanism (B)
304

Inclusion Size: 5um

Theoretical Gas Volume, \ﬁ. (m3m?)

20
10 10um
0 T T T T T T r
i 2 3 4 5
Bubble Diameter, DBxlO3 (m)
Fig. 11. Theoretical gas volume per unit area for the removal
of all inclusions as a function of bubble size for
mechanism (B).
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Fig. 12. Rising time of bubbles through one meter liquid steel

and bubble terminal velocity as a function of bubble
size.

13

a faster vertical velocity than 0.1 m/s. According to Fig.
12, the bubble rising time for bubble size smaller than
0.5 mm rapidly increases with decreasing bubble size. To
obtain a vertical velocity higher than 0.1m/s the gas
bubbles should be larger than 0.5mm in diameter. In
practice, shorter treatment time of liquid steel will
significantly reduce the operational costs by reducing the
temperature loss and refractory consumption. For these
reasons, bubbles smaller than 0.5 mm are undesirable.

In the current practice in the industry, nozzles, tuyeres
or porous plugs are used to introduce gas into the
metallurgical vessels. The average sizes of bubbles are
10 to 20 mm. According to the above calculations, the
gas volumes required to remove the same number of
inclusions with 10 to 20 mm diameter bubbles will be 150
to 200 times more than these using small bubbles of 0.5
to 2mm in diameter.

By considering the stability of bubble/particle ag-
gregates as shown in Fig. 8, the rising time of the gas
bubbles as drawn in Fig. 12 and the efficiency for the
inclusion removal as illustrated in Fig. 11, it may be
concluded that the optimum bubble sizes for the efficient
removal of inclusions less than 50 um are in the range
of 0.5 to 2mm in diameter.

Once the inclusion is attached to the bubbles the
probability that it will become detached in a turbulent
flow region have also been considered. The detachment
actually depends on the relative velocity of the inclusion
to the gas bubble. The conditions for detachment can
be calculated by considering the force balance on the
particle, including surface tension, inertial force, gravity
and capillary forces. The details of the model are listed
in the appendix. The results are illustrated in Fig. 13.
The critical relative velocity is defined as the relative
velocity between bubble and particle at which an in-
clusion will be detached from the bubble. As shown in
Fig. 13, the critical velocities are almost independent of
bubble size and the larger inclusions are the more easily
detached from the bubbles. The inclusions of 50 um in
size will not become detached until the relative velocity
is greater than 18 m/s, which is much higher than the
velocity of any bulk flow in the ladle or tundish. This
indicates that the detachment will not happen under the

50
Inclusion Size: 10 um
$ 40 A
2
5

TC; 30 20 am
>
2
=
Q
~ 20 71—
s P 50 um
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© 4 /”~———_~*_w_l—()0um_

10 7

T T T T T ST T
0.0 0.2 0.4 0.6 0.8 1.0 40 45 5.0

Bubble Diameter, DBxl()3 (m)

Fig. 13. Critical relative velocity for an inclusion to be
detached from bubble into steel.
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existing operational conditions in the steelmaking
process.

6. Conclusions

A mathematical model has been developed to predict
the efficiency of removal of alumina inclusions from
steel by considering the bubble/particle interaction. The
model predicts that:

(1) The collision probability, P, increases with de-
creasing bubble size and increasing inclusion size.

(2) The adhesion probability, P,, is influenced by
bubble and inclusion size. In the case of larger inclusion
sizes, i.e., 20 to 50 um, P, reaches a local minimum value
with the bubbles approximately 2 to 3 mm in diameter.
When the inclusion sizes are smaller than 10 um, P, is
independent of bubble size. Smaller inclusions have a
higher P, than the larger inclusions.

(3) The theoretical gas volume per unit cross-section
of liquid steel to remove all of the inclusions, Vi, de-
creases with decreasing bubble sizes.

(4) The optimum efficiency of flotation of inclusions
is obtained using bubble diameters between 0.5 to 2 mm.
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Nomenclature
D: Diameter (m)
~E: Total surface energy (N/m)
F: Force (N)
g: Gravity constant (m/s?)
hey© Critical thickness of liquid film (m)
Probabilities of adhesion and collision
R: Radius (m)
Re: Reynolds number
e, tg:  Contact time and slide time (s)
te:  Film drainage time (s)
fx: Bubble rising time passing through one meter
liquid steel (s)
u: Velocity (m/s)
ug: Relative velocity of bubble to particle (m/s)
up: Terminal velocity of bubble (m/s)
u,: Tangential velocity of the streamline (m/s)
Vr: Gas volume per unit cross-section of molten
metal to remove all of the inclusions (m3/m?)
Density (kg/m?)
Surface tension or interfacial tension (N/m)
Viscosity (kg/m-s)
0,¢0: Angle (rad)
0c,6;: Contact angle and incidence angle (rad)
¥: Stream function (m3/s)

= Qv

Subscript
Al,O;: Alumina

© 1996 ISIJ

B: Bubble
Fe: Steel
G: Gas

H,0: Water
L: Liquid
P: Particle
S: Solid
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Appendix 1. Derivations for the Expressions of P and
Py

By combining the Stokes and potential flow equations,
Yoon* developed an empirical stream function for
intermediate Reynolds numbers (¥) as follows:

1 3 1
Y=uzR3sin?0| —x?——x4+—
2 4 4x
Re®72 /1 1
+ ———+x=1]] ... A-1
15 <x2 x >} A-D

where x=r/Ry. When 8 =90°, r= R, + Ry, and therefore
x=xg=1+ Dp/Dy (Fig. 1).
At a distance of far ahead of the bubble,

sinf= Roc (A-2)
¥

which can be substituted into Eq. (A-1) to yield,

29
R3c=" e (A-3)

Ug
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By combining Egs. (7), (A-1) and (A-3) and considering
u*, Eq. (8) can be obtained.

By considering the flotation of the particle, the
tangential velocity of the particle at a distance of one
particle radius from the bubble surface u,, will be:

Uy, = Uy — Upsin

where y, is the tangential velocity of the streamline.
The particle sliding time (Z5) can then be expressed as:

J“/Z Ry+ Ry
lg=

Uy

de

foa P

Replacing the equations used in Yoon’s model* with
Egs. (A-4) and (A-5) and following Yoon’s derivation
procedures, Eq. (12) can be obtained.

Appendix 2. Forces Acting on an Inclusion Attached to
a Gas Bubble

The attachment and detachment of an inclusion from
a gas bubble depends on the balance of the forces acting
on it. Considering a spherical inclusion and a spherical
bubble as illustrated in Fig. 7, y represents the portion
of solid particle in the liquid.

The forces acting on the inclusion particle include:

Inertial force:
4 du,
Fi=—nR3pp—
=73 PPp dr

where Rp is the radius of the particle, p, is the density
of the particle, ¢ is time, and ug is the velocity of the
particle relative to the bubble. When the bubble velocity
is zero, ug is the particle velocity.

Gravitational force:

4
Fy =—3—an§ppgcos @ e (A-7)
where ¢ is the angle defined in Fig. 7.
Buoyancy force:
1
Fy= —?ny2(3RP—y)pLgcos<p .............. (A-8)

The force due to surface tension effects can be obtained
by taking the surface area change.

Interfacial Tension:

OE ».
Fip=——=—-2nRp0 — - |+
1T ay P GL|: ( RP>

where E is the total surface energy, which is a function
of the penetration depth and is expressed as**:

E=n{—QRpy—y*)ocL+2Rp[yos +06s(2Rp—¥)1}
......................... (A-10)

The capillary force is the result of the pressure of the
gas on the inclusion intruding into the bubble, which
gives:

Fo= 2061

y(2Rp—y)

B

15

Drag force:

1
Fp=—CpnRg 7101,”1%

where Cy, is the drag coefficient, which is given by Clift
et al.® (page 112):
A force balance for the particle gives:

Fi=Fy+Fy+ Fr+Fo+Fp

Substituting F,, Fy, Fg, Fir, Fc, and Fp in Eq. (A-13)
with Egs. (A-6) to (A-12), and using the following
conversion,

duy dup dy dug _ 1 dug (A-14)
& dy 3 2 —dy ...........
the following equation is obtained:
2
(ijuR—A1u§=A2y3+A3y2+A4y+A5 ........ (A-15)
Y
where 4, to A5 are:
L= 30D (A-16)
4p*Rp
gcoso
e A-17
2 2p*R3 ( )
3
A3———2<g°05‘p+ oL ) ............ (A-18)
Rg \ 2p* prRg Rp
3 2 1
A= <_-_-> .................... (A-19)
ppRE \Rg Rp
3 -
As=2gcosp— UGLZ <GSL J6s _ 1> ........ (A-20)
peRp OGL
and
0=, (A-21)
PL

Integration of Eq. (A-15) gives

1
u§= _A_{A2y3+A3y2+A4y+AS

1

1
+A—[3A2y2+2A3y+A4

1

+-1—41—<6A2y+2A3+6;2>]}+C1e” (A-22)

1 1

where C; is the integration constant.

1) Detachment of a Particle from the Bubble
In a high turbulent flow region, the particle may be
detached from the bubble if the relative velocity between
the particle and the bubble exceeds a critical magnitude.
When y =2r,, the particle is considered to be detached
from the bubble. Inserting zero value of u, into Eq.
(A-21) when y=2r,, C, is obtained as:

1
c1=7exp(-2A1R,,){8A2R3+4A3R.%+2A4R,,+A5

1
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1
+—[12/42R}%+4A3R,,+A4

1

1
+-»-—<12A2RP+2A3+343~->:|}
A Ay

Substituting Eq. (A-23) into Eq. (A-22) and solving
numerically, the critical velocity for the detachment of
a particle from a bubble into the liquid can be obtained
when y=0.

2) Attachment of a Particle to the Bubble
When the position of a particle on a bubble at a steady
state is considered, the inertial force and drag force in

© 1996 IS1J
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Eq. (A-13) are zero, which gives:
Fy+ Fg+ Fip+ Fe=0

Substituting Fy, Fg, Fir and F¢ into Eq. (A-24) and
rearranging it gives:

1 20
~—§[4ppRS—y2(3Rp—y)pL]gcosﬁ— RGL y(2Rp—y)
B
+2Rp0, (l— 1 +-‘-’—S.E-1’9i>=o ........... (A-25)
Rp OgL

Solving Eq. (A-25) for y, the position of a particle at
steady state on the bubble surface can be obtained.



