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Abstract

Cyclooxygenases (COX) are present in the body in two isoforms, namely: COX-1, constitutively expressed, and COX-2,

induced in physiopathological conditions such as cancer or chronic inflammation. The inhibition of COX with

non-steroideal anti-inflammatory drugs (NSAIDs) is the most widely used treatment for chronic inflammation despite

the adverse effects associated to prolonged NSAIDs intake. Although selective COX-2 inhibition has been shown not

to palliate all adverse effects (e.g. cardiotoxicity), there are still niche populations which can benefit from selective

COX-2 inhibition. Thus, capitalizing on bioactivity data from both isoforms simultaneously would contribute to

develop COX inhibitors with better safety profiles. We applied ensemble proteochemometric modeling (PCM) for the

prediction of the potency of 3,228 distinct COX inhibitors on 11 mammalian cyclooxygenases. Ensemble PCMmodels

(R20 test = 0.65, and RMSEtest = 0.71) outperformed models exclusively trained on compound (R20 test = 0.17, and

RMSEtest = 1.09) or protein descriptors (R20 test = 0.16 and RMSEtest = 1.10) on the test set. Moreover, PCM predicted

COX potency for 1,086 selective and non-selective COX inhibitors with R20 test = 0.59 and RMSEtest = 0.76. These values

are in agreement with the maximum and minimum achievable R20 test and RMSEtest values of approximately 0.68 for

both metrics. Confidence intervals for individual predictions were calculated from the standard deviation of the

predictions from the individual models composing the ensembles. Finally, two substructure analysis pipelines singled

out chemical substructures implicated in both potency and selectivity in agreement with the literature.
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Background
Cyclooxygenases (EC 1.14.99.1), also known as endoper-
oxidases, prostaglandin G/H synthases or simply COX,
are involved in the biosynthesis of prostaglandin H2

from arachidonic acid [1]. Prostaglandin H2 is further
converted into prostanoids which play a key role in
inflammation. Thus, since the development of aspirin®
in 1899 [2], the inhibition of the cyclooxygenase activ-
ity with non-steroidal anti-inflammatory drugs (NSAIDs)
has been exploited to treat inflammation. Nonetheless,
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kidney failure and gastrointestinal side-effects, such as
peptic ulcer, have been correlated to long-term intake of
NSAIDs [3]. Until 1991, only one form of the enzyme
(COX-1) was thought to be responsible for both the con-
stitutive and the local biosynthesis of prostaglandins. In
that year [4], an inducible cyclooxygenase (COX-2) was
discovered and the different roles of both isoenzymes
were revealed. There does exist however some overlap:
COX-1 is constitutively expressed serving as the source
of housekeeping prostaglandins, whereas the expression
of COX-2 increases in pathophysiological situations such
as acute pain, inflammation or cancer [5]. From this it is
thought that efficacy and side-effects can, to some extent,
be delineated when blocking the prostaglandin synthesis
pathway associated with inflammation and pain.
In the last two decades, research in both the pharmaceu-

tical industry and academic laboratories has been driven
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by the hypothesis that selective COX-2 inhibitors would
exhibit strong anti-inflammatory and analgesic proper-
ties without leading to the unwanted gastrointestinal side
effects [6]. Nevertheless, a few organs, e.g. the brain cor-
tex and renal glomeruli, express COX-2 constitutively [1].
The association between the inhibition of COX-2 in these
organs with cardiovascular hazard (CVH) was ratified in
2004 and 2005 [7,8]. These findings led the US Food and
Drug Agency (FDA) to retrieve rofecoxib (Vioxx) and
valdecoxib (Bextra) from themarket, and to include boxed
warnings for all selective COX-2 inhibitors. Higher risk
of heart attack and hypertension have also been reported
for non-selective NSAIDs, thus highlighting that cardio-
vascular risk might not be related to the degree of COX
selectivity [9]. In 2012, Yu et al. [10] demonstrated that the
cardiovascular risk originates from COX-2 inhibition by
selective and not selective NSAIDs and is taking place in
blood vessels. These authors have shown that COX-2 inhi-
bition leads to a decrease in prostaglandin (mainly PGI2)
and to increased nitric oxide (NO) production which is
sufficient to increase the risk of heart failure, hypertension
and thrombosis [10].
Nevertheless, there are still niche populations which can

benefit from selective COX-2 inhibitors, e.g. patients who
cannot afford to take non-selective COX inhibitors, due
to an increased risk of peptic ulcers or cancer. In addition,
selective COX-2 inhibitors continue to be the common
treatment for chronic inflammatory and pain disorders
[3,11], and NSAIDs are known to reduce the risk of
(among others) [12-15]: colon cancer [16-19], Alzheimer’s
disease, and platelet aggregation [5,20]. Overall, NSAIDs
are still one of the most commonly prescribed drugs in
the world [21], and this trend is likely to increase owing
to the aging of the population. Therefore, the admin-
istration of NSAIDs in clinics is currently subject to a
benefit-risk assessment between the patients clinical pro-
file and potential drugs side-effects [22], always aiming at
optimizing both the dosage and the duration of the drug
regimen [3].
The isoform selectivity of COX inhibitors stems from a

structural difference in the binding site. The binding site
of both cyclooxygenases is highly conserved except for
the substitution of an isoleucine at position 523 in COX-
1 with a valine in COX-2 [23]. This substitution results
in a larger binding site in COX-2, as the smaller size
of valine allows access to a side-pocket. This structural
difference has been exploited for the rational design of
potent and selective COX-2 inhibitors by both medicinal
and computational chemistry [23-25]. To date, a plethora
of in silico studies have been published with the aim of
better understanding and predicting the potency of COX
inhibitors on either COX-1 or COX-2 using molecular
docking and QSAR models [26-30]. Nonetheless, none of
these studies was able to integrate bioactivity information

from multiple mammalian COX in the frame of a single
machine learning model. Given that the bioactivity pro-
files of selective COX inhibitors on COX-1 and COX-2 are
highly uncorrelated, thus presenting high selectivity ratios
[24,25], only a predictive model trained on both the chem-
ical and the target space would be able to simultaneously
predict compound potency on a panel of cyclooxygenases,
as well as to predict the activity of a given compound on
a yet untested isoform. In that way, new potent, selective
and safe COX inhibitors could be discovered.
Proteochemometrics (PCM) constitutes as an approach

capable to simultaneously relate the chemical and the tar-
get space in single machine learning models in order to
predict the bioactivity for a set of compounds against a
panel of (related) biomolecular targets [31-33]. This inte-
gration of chemical and biological information enables,
within the limits of the data presented to the model, the
inter- and extrapolation on both the chemical and the tar-
get spaces to predict the potency of (novel) compounds on
a panel of (novel) targets.
Therefore, the bioactivity of new compounds on yet

untested targets can be predicted. These features of PCM
make it different from both chemogenomics and QSAR,
thus allowing [34,35]: (i) the inclusion of bioactivity
information from orthologuous targets [34], (ii) bioac-
tivity prediction for emergent viral mutations [35], or
(iii) the design of personalized medicine for e.g. cancer
treatment [33].
In this contribution, we apply the principles of PCM

to model the potency of 3,228 compounds on 11 mam-
malian cyclooxygenases. To this aim, we have trained
PCM models with different machine learning algorithms
on public IC50 values from ChEMBL 16 [36], including
data on human COX-1, COX-2, and on 9 orthologues. In
an attempt to increase model performance, these models
have been combined in ensembles (ensemble modeling),
thus constituting the first PCM study where ensemble
PCM modeling is applied. Additionally, the description
of compounds with keyed fingerprints has enabled the
deconvolution of the chemical space to rationalize both
the potency and the selectivity of COX inhibitors towards
a particular isoenzyme.

Materials andmethods
Dataset

IC50 values for 11 mammalian cyclooxygenases, listed in
Table 1, were retrieved from ChEMBL 16 [36]. To ensure
the reliability of the bioactivity values, only IC50 values
corresponding to small molecules and satisfying the fol-
lowing criteria were kept: (i) activity relationship equal to
‘=’, (ii) assay score confidence ≥ 8, and (iii) activity unit
equal to ‘nM’. The average pIC50 value was calculated
when multiple IC50 values were annotated on the same
compound-target combination. The application of these
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Table 1 Composition of the COX dataset

UniProt ID Type Organism Number of bioactivities % Compounds annotated

P23219 1 Homo sapiens 1,346 41.7

O62664 1 Box taurus 48 1.5

P22437 1 Musmusculus 50 1.5

O97554 1 Oryctolagus cuniculus 11 0.3

P05979 1 Ovis aries 442 13.7

Q63921 1 Rattus Norvegicus 23 0.7

P35354 2 Homo sapiens 2,311 71.6

O62698 2 Bos taurus 21 0.7

Q05769 2 Musmusculus 305 9.4

P79208 2 Ovis aries 341 10.6

P35355 2 Rattus Norvegicus 39 1.2

The total number of bioactivities, after duplicate removal and selected from ChEMBL as described in Materials and methods, and of distinct compounds are 4,937 and

3,228 respectively. The last column indicates the percentage of the total number of distinct compounds (3,228) annotated on each target.

filters led to a final dataset composed of 3,228 distinct
compounds and 11 sequences, being the total number of
datapoints 4,937 (13.9% matrix completeness). The neg-
ative logarithm with base 10 of the IC50 values (pIC50)
was used as the response variable to train all models. We
decided to mix bioactivity data from different assays given
that Kalliokoski et al. [37] reported that the standard devi-
ation of public IC50 data is 25% larger than the standard
deviation corresponding to public Ki data, and thus mix-
ing IC50 data from different assays adds a moderate level
of noise. The crystallographic structure of the ovine COX-
1 complexed with celecoxib (PDB [38] ID: 3KK6 [39]) was
used to extract the residues in the binding site. Those
residues within a sphere of radius equal to 10Å centered
in the ligand were selected.
The corresponding residues for the other 10 sequences

were identified by multiple sequence alignment [40]. The
sequence alignment as well as the final residue selection
are provided in the supplementary information.

Computational details

Descriptors

Chemical structures were standardized with the func-
tion StandardiseMolecules from the R package camb

[41] with the following options: (i) inorganic molecules
were removed, and (ii) molecules were selected irrespec-
tively of the number of fluorines, chlorines, bromines
or iodines present in their structure, or of their molec-
ular mass. Morgan fingerprints [42,43] were calculated
using RDkit (release version 2013.03.02) [44,45]. For the
calculation of unhashed Morgan fingerprints [45], each
compound substructure in the dataset, with a maximal
diameter of four bonds, was assigned to an unambiguous
identifier. Subsequently, substructures were mapped into
an unhashed (keyed) array of counts. Physicochemical

descriptors (PaDEL) [46] were calculated with the func-
tion GeneratePadelDescriptors from the R package camb.
The R package vegan was used to generate the dis-
tributions of pairwise compound similarities (Jaccard
distance) [47].
The amino acids composing the binding site of the

mammalian cyclooxygenases considered in this study
(Table 1), were described with five amino acid extended
principal property scales (5 z-scales) [48]. Z-scales were
calculated with the R package camb [41].

Machine learning implementation

Machine learning models were built in the R statistical
programming language using the packages caret [49] and
camb [41]. Model ensembles were created with the help
of the R package caretEnsemble [50]. Both the dataset
(Additional file 1) and the modeling pipeline coded in
R is available in the documentation of the R package
camb [41].

Model generation

Descriptors with a variance close to zero were removed
with the function RemoveNearZeroVarianceFeatures from
the R package camb using a cut-off value equal to 30/1
[41,49,51]. Subsequently, the remaining descriptors were
centered to zero mean and scaled to unit variance with the
function PreProcess from the R package camb.
The values of the model parameters were optimized by

grid search and 5-fold cross validation (CV) [52]. The
whole dataset was split into 6 folds by stratified sampling
of the pIC50 values. One fold, 1/6, constituted the test set.
The remaining folds, 5/6, were used to optimize the values
of the parameters in the following way. For each combi-
nation of parameters, a model was trained on 4 folds, and
the values for the remaining fold were then predicted. This
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procedure was repeated 5 times, each time holding out
a different fold. The values of the parameters exhibiting
the lowest average RMSE value along the 5 folds was con-
sidered as optimal. Subsequently, a model was trained on
the whole training set, 5/6, using the optimized values for
the parameters. The predictive power of this model was
assessed on the test set, 1/6. To significantly compare the
quality of the modeling with different machine learning
algorithms, the same folds were used to train all models.
Both single PCM models and model ensembles were

used to predict the bioactivities for the test set, and their
error in prediction compared. The bioactivity values cor-
responding to the datapoints in the test set were not
considered when building neither the single PCM models
not the model ensembles.
In order to assess whether merging the chemical and

the target space in a single PCM model enhances model
performance, we trained two Random Forest (RF) models
using either: (i) only compound descriptors (Family Quan-
titative Structure-Activity Relationship -QSAR-) [53], or
(ii) only target descriptors (Family Quantitative Sequence-
ActivityModeling -QSAM-) [53]. Obtaining a high perfor-
mance with a Family QSARmodel would indicate that the
bioactivities of a given compound on different targets are
correlated. Thus, target descriptors would not contribute
to increase model performance. On the other hand, high
performance observed for a Family QSAM model would
indicate that the bioactivity values only depend on the tar-
gets and not on the compounds, i.e. the bioactivities of a
set of diverse compounds are correlated on a given target.
In this case, compound descriptors would not be required
to predict compounds affinity, as target descriptors alone
would be sufficient.

Model validation

Both internal and external validation were per-
formed according to the criteria proposed by Tropsha
et al. [54-56], and to the RMSE values (Equation 1).
The formulae of the statistical metrics used in
the internal

(
RMSEint and q2int

)
and the external(

RMSEtest, q2test and R2
test 0

)
validation are:

RMSE =

√
(y − ỹ)2

N
(1)

q2 = 1 −

∑N
i=1 (yi − ỹi)

2

∑N
i=1 (yi − ȳ)2

(2)

R2
0 = 1 −

∑N
i=1

(
yi − ỹr0i

)2
∑N

i=1 (yi − ȳ)2
(3)

where N represents the size of the training or test set, yi
the observed bioactivity values, ỹi the predicted bioactiv-
ity values, and ȳ the average values of the response variable

for those datapoints included into either the training or

the test set, and ỹr0 = s̃y, with s =

∑
yĩyi∑
ỹ2i

.

Generally, to consider a model as statistically sound, the
statistical metrics must satisfy the following criteria: (i)
q2int > 0.5, and (ii) q2test and R2

test 0 > 0.6. R2
test 0 imposes

the regression line to pass through the origin (intercept
equal to zero). Although we follow these requirements
here, as they serve as general guidelines for the evalua-
tion of model predictive ability [54-56], the cut-off values
for q2int , q

2
test and R2

test 0 should be adjusted and tailored in
other studies depending on the dataset to be modeled.

Assessment of maximummodel performance

To further assess the reliability of the models in the light
of the uncertainty of the bioactivity values [37,57,58],
we established the maximum R2

0 test and q2test , and mini-
mum RMSEtest values achievable given: (i) the uncertainty
(experimental error) of public IC50 data, and (ii) the num-
ber of datapoints in both the training and the test set. The
distributions of minimum RMSEtest, and maximum q2test,
and R2

0 test values were calculated in the following way.
Firstly, a random sample, A, was generated from the

pIC50 values with a size equal to the test set. Secondly,
the sample Anoisy was calculated by adding to A random
noise with mean zero and standard deviation equal to the
experimental error. The experimental error required to
define the random samples Anoisy was taken as 0.68 pIC50

unit, which corresponds to the average standard deviation
value for public IC50 datasets, as estimated by Kalliokoski
et al. [37] Then, the statistical metrics were calculated for
A with respect to Anoisy. These steps were repeated 1,000
times, which permitted to define the distributions for the
statistical metrics.
The maximum and minimum values of respectively

R2
0 test/q

2
test and RMSEtest were then used to validatemodel

performance on the test set.
If the obtained metrics were beyond the maximum val-

ues (for q2test and R2
0 test) or the minimum values (for

RMSEtest) of the corresponding distributions, the model
is likely to be over-optimistic [52]. This estimation of
the maximum achievable model performance takes into
account the range and distribution of the bioactivities
present in the data. This is of particular importance as it
has been recently reported by Sheridan [59] that (i) certain
bioactivity ranges are better predicted than others, and (ii)
R2
0 values might be very low if the bioactivity range con-

sidered is too narrow, even if the predictions closely match
the observed values.

Ensemble modeling

Gradient-boosting machines (GBM) [60], Random Forest
(RF) [61], and Support Vector Machines (SVM) [62]
were implemented to train a model library. The resulting
models were combined in model ensembles using two
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techniques, namely: greedy optimization and model
stacking. Depending on the models considered when
training an ensemble, two types of model ensembles were
defined: (i) homo-ensembles: the same algorithm was
used to train all models composing the ensemble, though
the parameter values were different in each model, (ii)
hetero-ensembles: the number of distinct algorithms used
to train the models combined in the ensemble was greater
or equal than 2.

Greedy optimization

Greedy optimization, based on the work of Caruana et al.
[63], optimizes the RMSE on the cross-validation predic-
tions on the hold-out folds. These predictions were cal-
culated for all models in the model library. These models
were trained on a training set with identical fold compo-
sition. Each model was assigned a weight in the following
manner. Initially, all models had a weight equal to zero.
Afterwards, the weight of a given model was repeatedly
incremented by 1 if the subsequent normalized weight
vector allowed a closer match between the weighted com-
bination of cross-validated predictions and the observed
pIC50 values. This repetition was carried out n times,
n = 1000 in the present work, and the resulting weight
vector was normalized to obtain the final models weight-
ing. The predicted activity for a given compound corre-
sponds to the weighted sum (using the optimized model
weight vector) of the predictions generated by the individ-
ual models. The final model ensemble was used to predict
the activities on the test set, and the error in prediction
compared to that of single PCMmodels on the same set.

Model stacking (MS)

The concept of model stacking is illustrated in Figure 1.
In this case, the predictions on the training set calculated
with the model library during cross-validation served as
descriptors. Thus, a training matrix was defined where
rows were indexed by the datapoints in the training set
used to train themodel library, and columns by themodels
in the aforesaid library.
A machine learning model was trained on this matrix,

irrespective of the algorithms used to generate the model
library. This model is then used to predict the bioactivities
for the test set, and the RMSE value compared to that of
single PCM models on the test set. To predict the activity
for a compound from the test set, the individual models
composing the ensemble are used to predict its activity
(pIC50). These activities are then used as input features
to the model stacking ensemble, which will output the
predicted pIC50 value by the ensemble. The bioactivity
values corresponding to the datapoints in the test set are
not considered when building the ensemble. If the selected
algorithm has the inherent capability to determine the
importance of each descriptor, as for Elastic Net, a vector

A B

Figure 1 Ensemble modeling with model stacking. A. A set of

models are trained with diverse machine learning algorithms (Model1

.. Model n in the Figure). The predictions of these models on each

datapoint in the training set calculated during cross validation, are

used as descriptors to create a new training matrix, which rows are

indexed by the datapoints in the training set and columns by the

models in the library. A machine learning model is trained on this

matrix. The resulting model is the model ensemble. B. The model

ensemble is then applied on the test set.

of weights for the models can be defined. Given that each
descriptor corresponds to a particular model, this vector
will determine its contribution to the generated ensemble.
In the present study we used the following algorithms: lin-
earmodel, Elastic Net, SVMwith linear and radial kernels,
and RF.

Estimation of the error of individual predictions

In order to estimate errors for individual predictions,
we used the standard deviation of the predictions of the
individual models composing a given model ensemble,
i.e. ensemble standard deviation (Estd). Previous studies
[59,64-66] have highlighted the usefulness of considering
the ensemble standard deviation as a domain applica-
bility (DA) measure, specially in the case of RF models,
where the calculation of the standard deviation along the
trees is straightforward [59,64]. Here, we extend this idea
to ensembles composed of models trained with differ-
ent algorithms (hetero-ensembles). For each datapoint in
either the test set or in the hold-out fold in the case of
cross-validation, we calculated the standard deviation of
the predictions generated with each model conforming
the model ensemble. Subsequently, the ensemble stan-
dard deviation was scaled with the parameter β . This
permits to obtain individual confidence intervals for each
prediction, which are thus defined as:

IC = ỹ ± Estd β {β ∈ R | β > 0} (4)

To assess the practical usefulness of the derived con-
fidence intervals, the percentage of datapoints for which
the predicted values lied within IC (0 < β < 4) was
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calculated. Both the predictions calculated during model
training (using the optimal parameter values), i.e. cross-
validated predictions, as well as the predictions on the test
set were used.

Interpretation of compound substructures

The contribution of chemical substructures to bioactiv-
ity on human cyclooxygenases was deconvoluted using a
predictive and a Student’s method (Figure 2):

Prediction of bioactivity values with andwithout each

compound substructure (predictivemethod)

This first technique quantifies the contribution of each
chemical substructure to bioactivity by calculating the
distribution of differences between (i) the predicted bioac-
tivity for all compounds containing a given substructure,
and (ii) the predicted bioactivity using PCM for these
compounds, from which that substructure was virtually
removed [67-72].
To virtually remove a substructure, we iteratively set its

count equal to zero in all compound descriptors present-
ing it. The difference between the predicted bioactivity
values in the presence or absence of a given substructure
was then calculated. The average value of these differ-
ences, weighted by the number of counts of the feature in
each compound, corresponds to the average contribution

A

B

Figure 2 Interpretation of compound substructures. A. Predictive

method. The average influence on bioactivity of a given substructure

is calculated as the difference between the distributions

corresponding to: (i) the predicted bioactivity for all compounds

containing that substructure, and (ii) the predicted bioactivity using

PCM for these compounds, from which that substructure was virtually

removed by setting its count to zero. B. Student’s method. In this

case, the average substructure influence on bioactivity is evaluated as

the difference between the mean values of the pIC50 distributions for

those compounds presenting and not presenting a given

substructure. The statistical significance of this difference was

evaluated with a Student’s t-test.

of that feature to bioactivity [68]. The contribution was
estimated for all compound features considered in the
model. The sign of the difference ({+/-}) indicates whether
the feature is respectively beneficial or deleterious for
compound bioactivity.

Statistical significance between bioactivity distributions with

andwithout each compound substructure (Student’smethod)

In order to identify chemical substructures that might not
be recognized by the predictive method due to moder-
ate PCM model performance, we also deconvoluted the
chemical space in a model-independent way. We created
two bioactivity sets, each containing the pIC50 values for
either human COX-1 or human COX-2. For each of these
bioactivity sets and for each substructure, we defined two
distributions, namely:
(i) the distribution A of pIC50 values corresponding

to the compounds presenting a given substructure in a
given bioactivity set, and (ii) the distribution B of pIC50

values for those compounds not presenting that substruc-
ture in the same bioactivity set. The normality of these
distributions was assessed with the Shapiro-Wilk test
(α = 0.05). If both distributions, A and B, followed the
Gaussian distribution, a two-tailed t-test for independent
samples (α = 0.05) was applied to statistically evaluate
the difference between them. If the difference was signifi-
cant, we assumed that the considered substructure has an
influence on bioactivity on the isoenzyme associated to
the bioactivity set considered.
The sign of the difference between the mean value of A

and B indicates whether the presence of the substructure
hampers or fosters compound bioactivity on that isoen-
zyme. Therefore, each substructure was assigned a label,
‘deleterious’ or ‘beneficial’, depending on its influence on
bioactivity on either COX-1 and COX-2.
Finally, we intended to assess which substructures

always increase or decrease compound bioactivity on
human COX-1 and COX-2. In that way, substructures
identified in the previous step are finally identified as:
(i) increasing or decreasing bioactivity on human COX-1,
(ii) increasing or decreasing bioactivity on human COX-
2, and (iii) increasing or decreasing bioactivity on both
human COX-1 and COX-2.

Results
Analysis of the chemical and the target space

Target space

The PCA analysis of the amino acid descriptors of
the binding site of the 11 mammalian cyclooxygenases
(Table 1) is shown in Additional file 2: Figure S1. Ortho-
logue sequences COX1 and COX2 define two distant clus-
ters. As paralogues display more sequence variability than
orthologues, and as small molecules tend to display sim-
ilar binding within orthologues [73], we hypothesize that
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merging bioactivities from orthologues and paralogues
will lead to more predictive models. In addition, these
results indicate that the amino acid descriptors account
for structural differences between COX-1 and COX-2.

Chemical space

The initial bioactivity selection from ChEMBL 16 [36],
consisted of 6,804 datapoints. As previously highlighted
[57], a large number of target-compound combinations in
ChEMBL are annotated with more than one bioactivity
value, hence the total number of different compound-
target combinations after duplicate removal was 4,937.
The standard deviations for the bioactivity values anno-

tated on the same compound-target combination are
in less than 2% of the cases higher than two pIC50

units (Additional file 3: Figure S2A), whereas more than
90% of the repeated bioactivities exhibit a standard
deviation close to zero (Additional file 3: Figure S2B).
Consequently, we decided to take the average of these
repeated values instead of the median value: this latter
value would be more suitable only if outliers were more
aboundant.

Selectivity dataset

As stated in the introduction, the main advantage of
a PCM model applied to mammalian cyclooxygenases
would be to anticipate the potency of a given compound
towards a particular isoenzyme. To ensure that our dataset
covered chemical entities with diverse bioactivity profiles
on COX-1 and COX-2, we selected all compounds anno-
tated on both human cyclooxygenases. This resulted in a
selection of 1,086 compounds, out of a total of 3,228 dis-
tinct inhibitors present in the dataset. The scatterplot of
the bioactivities of these compounds on human COX-1
against human COX-2 (Figure 3A) reveals that the dif-
ference in bioactivity for some compounds depending on
the isoenzyme is higher than 4 pIC50 units (upper left
corner of Figure 3A). RMSE and R2

0 values for the bioac-
tivities on COX-1 with respect to COX-2 are, respectively,
1.69 pIC50 units and -0.42. As the area above the diag-
onal of Figure 3A is more populated, there are more
compounds with higher activity on COX-2 than on COX-
1. Therefore, these data let us conclude that the dataset
comprises compounds exhibiting high selectivity towards
COX-2. In addition, the overlap between the datapoints in
the PCA of the compound descriptors (Additional file 4:
Figure S3) indicates that the compounds annotated on
the COX targets cover the same regions of the chemical
space.

PCM validation

Overall, the models obtained with GBM, RF, and SVM
(Table 2A and Figure 4) satisfied our model validation
criteria, described in Materials and methods (Equations

Figure 3 COX inhibitors selectivity on human COX-1 and COX-2.

A. Scatterplot corresponding to the comparison of bioactivities

against human COX-1 and COX-2 for 1,288 compounds. A large

proportion of the compounds present a COX-2/COX-1 selectivity ratio

between 2 and 4 pIC50 units. Therefore, the present dataset includes

COX inhibitors with highly divergent bioactivity profiles for COX-1

and COX-2 (R20 = −0.42). B. Scatterplot of the observed against the

predicted pIC50 values for the compounds described in A. Blue

squares correspond to the activity on COX-1, whereas orange squares

correspond to the activity on COX-2. The PCMmodels explain more

than 59% of the variance (R20 = 0.59), thus highlighting the ability of

the PCMmodels to predict the potency of compounds displaying

uncorrelated bioactivity profiles on human cyclooxygenases.

(1) to (3)), namely: q2int > 0.5 and, q2test and R2
test 0 > 0.6.

The performance of the three algorithms is comparable
since R2

0 test values range from 0.60 to 0.61, and RMSEtest
from 0.76 to 0.79 pIC50 units between the different
models. Interestingly, the predictive power did not vary
when using hashed or unhashed fingerprints, being the
R2
0 test and RMSEtest differences smaller than 0.01 in both

cases (data not shown). Thus, we decided to rather use
unhashed fingerprints as this choice enables an interpre-
tation of the models according to chemical substructures.
To ensure that our modeling results did not arise from

chance correlations, we trained models with an increas-
ingly bigger fraction of the bioactivity values randomized
(y-scrambling) [77]. The representation of model perfor-
mance as a function of the percentage of randomized
bioactivities is given in Additional file 5: Figure S4. When
approximately 35% of the bioactivity values are random-
ized, R2

0 test values become negative, which indicates that
the relationships found by our models between both the
chemical and the target space, and the bioactivity values
are not spurious [77].

PCMmodels are in agreement with the maximum

achievable performance

The distributions of the respectively maximum and min-
imum achievable R2

0 test and RMSEtest values are depicted
in Figure 5. The maximum correlation values R2

0 test are
far from 1, which agrees with observations previously
reported for public data [68,78]. The mean of the mini-
mum theoretical RMSEtest values lies between 0.68 and
0.69, which is comparable to the level of uncertainty in
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Table 2 Internal and external validationmetrics (mean values +/- one stardard deviation) for the PCM (A), Family QSAM (B), Family QSAR (B), Individual QSAR

models (C), Ensemble PCMmodels combining themost predictive models (D), and Ensemble PCMmodels combining the whole model library (E)

q2
int

RMSEint R20 test RMSEtest q2test CCC

A GBM 0.59 +/- 0.02 0.77 +/- 0.01 0.60 +/- 0.03 0.76 +/- 0.02 0.60 +/- 0.03 0.76 +/- 0.02

RF 0.60 +/- 0.03 0.78 +/- 0.02 0.61 +/- 0.03 0.79 +/- 0.03 0.61 +/- 0.03 0.74 +/- 0.02

SVM 0.61 +/- 0.03 0.75 +/- 0.03 0.60 +/- 0.03 0.76 +/- 0.03 0.60 +/- 0.03 0.76 +/- 0.02

B Family QSAR 0.17 +/- 0.02 1.13 +/- 0.02 0.17 +/- 0.04 1.09 +/- 0.03 0.17 +/- 0.04 0.43 +/- 0.03

Family QSAM 0.16 +/- 0.02 1.10 +/- 0.02 0.16 +/- 0.03 1.10 +/- 0.02 0.16 +/- 0.03 0.28 +/- 0.02

C Ind. QSAR human COX-1 0.31 +/- 0.04 0.75 +/- 0.05 0.30 +/- 0.06 0.74 +/- 0.04 0.30 +/- 0.06 0.45 +/- 0.05

Ind. QSAR human COX-2 0.60 +/- 0.24 0.78 +/- 0.03 0.54 +/- 0.04 0.78 +/- 0.04 0.53 +/- 0.04 0.68 +/- 0.03

Ind. QSAR ovine COX-1 0.28 +/- 0.11 0.83 +/- 0.08 0.35 +/- 0.08 0.71 +/- 0.08 0.09 +/- 0.09 0.50 +/- 0.07

Ind. QSAR ovine COX-2 0.53 +/- 0.07 0.78 +/- 0.06 0.57 +/- 0.13 0.79 +/- 0.08 0.57 +/- 0.13 0.74 +/- 0.09

Ind. QSAR mouse COX-2 0.49 +/- 0.08 0.84 +/- 0.10 0.57 +/- 0.10 0.81 +/- 0.10 0.57 +/- 0.11 0.71 +/- 0.07

D Greedy Ensemble Best - 0.73 +/- 0.01 0.63 +/- 0.05 0.73 +/- 0.03 0.63 +/- 0.05 0.77 +/- 0.02

MS Linear Ensemble Best 0.63 +/- 0.02 0.73 +/- 0.01 0.63 +/- 0.05 0.73 +/- 0.03 0.63 +/- 0.05 0.78 +/- 0.02

MS EN Ensemble Best 0.63 +/- 0.02 0.72 +/- 0.02 0.62 +/- 0.05 0.72 +/- 0.03 0.62 +/- 0.05 0.78 +/- 0.02

MS SVM Linear Ensemble Best 0.63 +/- 0.01 0.73 +/- 0.02 0.62 +/- 0.04 0.73 +/- 0.03 0.63 +/- 0.05 0.78 +/- 0.02

MS SVM Radial Ensemble Best 0.63 +/- 0.02 0.73 +/- 0.02 0.63 +/- 0.05 0.73 +/- 0.03 0.63 +/- 0.05 0.78 +/- 0.02

MS RF Ensemble Best 0.61 +/- 0.01 0.76 +/- 0.01 0.58 +/- 0.05 0.77 +/- 0.03 0.58 +/- 0.05 0.75 +/- 0.02

E Greedy Ensemble - 0.73 +/- 0.01 0.64 +/- 0.05 0.72 +/- 0.03 0.64 +/- 0.05 0.78 +/- 0.02

MS Linear Ensemble 0.63 +/- 0.02 0.73 +/- 0.02 0.64 +/- 0.05 0.72 +/- 0.02 0.64 +/- 0.05 0.78 +/- 0.02

MS EN Ensemble 0.64 +/- 0.01 0.73 +/- 0.01 0.63 +/- 0.04 0.73 +/- 0.02 0.63 +/- 0.04 0.78 +/- 0.02

MS SVM Linear Ensemble 0.64 +/- 0.03 0.73 +/- 0.04 0.64 +/- 0.04 0.71 +/- 0.03 0.64 +/- 0.04 0.80 +/- 0.02

MS SVM Radial Ensemble 0.64 +/- 0.02 0.73 +/- 0.02 0.65 +/- 0.04 0.71 +/- 0.03 0.65 +/- 0.04 0.80 +/- 0.02

MS RF Ensemble 0.64 +/- 0.02 0.73 +/- 0.02 0.63 +/- 0.05 0.73 +/- 0.03 0.63 +/- 0.05 0.78 +/- 0.02

“Best” refers to the ensembles trained on only the three most predictive RF, GBM and SVMmodels. MS of models trained with different algorithms in a models ensemble allows to increase predictive ability, as the highest

R
2
0 test

and RMSEtest values, 0.652 and 0.706 pIC50 units respectively, were obtaind with the “MS SVM Radial Ensemble”. The standard deviation for the metrics was calculated with the bootstrap method [74].

Abreviations: CCC Concordance Correlation Coefficient [75,76], EN Elastic Net, GBM Gradient Boosting Machine, Ind. Individual,MSModels Stacking, RF Random Forest, RMSE root mean square error in prediction, SVM Support

Vector Machines.
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Figure 4Model performance on the test set. RMSEtest (upper panel) and R20 test (lower panel) values for the following models: (group A) single

PCM, (group B) Family QSAR and Family QSAM, (group C) individual QSAR, (group D) model ensembles comprising those single PCMmodels

exhibiting the highest predictive power, and (group E) model ensembles comprising the whole model library. Bars are colored according to the

groups defined in Table 2. Confidence intervals correspond to the mean value +/- one standard deviation calculated with bootstrapping [74].

public IC50 data reported by Kalliokoski et al. [37] The
mean of the distribution of theoretical R2

0 test values is
between 0.67 and 0.69. The minimum RMSEtest and max-
imum R2

0 test values obtained with the individual models,
0.76 and 0.61 respectively (Table 2A and Figure 4), thus
appear consistent with the underlying uncertainty in the
present dataset.

Figure 5 Distribution of theoretical R20 test (A) and RMSEtest (B)

values. The mean of the R20 test distribution, 0.68, highlights that the

uncertainty in public bioactivity data does not permit models

displaying R20 test values close to 1. Similar results were obtained for

q2test . From these data we conclude that the minimum RMSEtest value

that a model can achieve without exhibiting overfitting is close to the

experimental uncertainty.

PCM outperforms both family QSAR and family QSAM on

this dataset

Interestingly, neither the Family QSAR nor the Family
QSAM model alone could infer the relationships in the
dataset, as the respective R2

0 test and RMSEtest values were:
(i) for Family QSAR: 0.17 and 1.09 pIC50 units, and (ii) for
Family QSAM: 0.16 and 1.10 pIC50 units (Table 2B and
Figure 4). Taken together, these results suggest that: (i)
compound bioactivities on different targets are not corre-
lated, as indicated by the low performance of the Family
QSAR model, and (ii) compound bioactivities depend on
compounds structure, as highlighted by the low perfor-
mance of the QSAMmodel.

PCM outperforms individual QSARmodels

We then evaluated on individual targets the usefulness
of PCM in comparison with QSAR models (Table 2C
and Figure 4). Independent QSAR models for those tar-
gets with more than 100 bioactivities, namely: human
COX-1 and COX-2, ovine COX-1 and COX-2, and mouse
COX-2. The human COX-2 model exhibits a RMSEtest
value of 0.78 pIC50 units, which is 0.03 pIC50 units larger
than the RMSEtest value for the datapoints annotated on
human COX-2 averaged over ten PCM models, namely
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0.76 +/- 0.04 pIC50 units. By contrast, the R2
0 test value

drops to 0.54, indicating the higher peformance of PCM.
Better correlations are obtained for the individual QSAR
models corresponding to both the mouse and the ovine
COX-2, for which the R2

0 test values are 0.57 in both cases,
whereas the RMSEtest values are 0.81 and 0.79 pIC50 unit.
In contrast, the human and the ovine COX-1 QSAR mod-
els cannot relate the descriptor space to the bioactivity
values in a statistically sound manner, as they exhibit
respective R2

0 test values of 0.30 and 0.36.
Altogether, these data evidence the versatility of PCM to

integrate incomplete information from different protein
targets. Furthermore, PCM strongly outperforms one-
target and one-space models (Family QSAR, individual
QSAR, and Family QSAM) [33].

Model ensembles exhibit higher performance than single

PCMmodels

As the most predictive PCM model exhibited moderately
high R2

0 test and q2test values, as well as moderately low
RMSEtest values (Table 2A and Figure 4), we explored
the possibility of enhancing model performance by com-
bining different models into a more predictive model
ensemble (Table 2D, E and Figure 4). Two ensemble tech-
niques were implemented, namely: greedy optimization
and model stacking (MS), previously described in section
“Ensemble modeling” . To gather a library of diverse mod-
els, we trained a total of 282 GBM, RF and SVM models.
Each of these models was trained with different parameter
values. Hence, the performance of single models ranged
from very poor to that of the individual models described
above (Table 2A and Figure 4).
Initially, we created ensembles using only the most

predictive GBM, RF and SVM models (Table 2D and
Figure 4). Overall, all model ensembles (Table 2D)
exhibited higher predictive power than single models
(Table 2A). The best R2

0 test value, 0.63, was obtained with
the greedy and the MS linear ensemble. The weights for
the three models in the greedy ensemble were: (i) GBM:
0.35, (ii) RF: 0.12, and (iii) SVM: 0.53. The MS Elas-
tic Net ensemble displayed the highest predictive power,
with a RMSEtest value of 0.72 (Table 2D and Figure 4).
The small differences in performance observed between
ensembles, with the exception of the RF ensemble are neg-
ligible, since, in the experience of the authors [68], the
standard deviation observed for the R2

0 test and RMSEtest
values when using different samples duringmodel training
are between 0.1 and 0.3. The only model that led to worse
results was the RF ensemble, with R2

0 test and RMSEtest
values of 0.58 and 0.77 pIC50 unit, respectively.
In a second step, ensembles were optimized using all

models in the model library, namely 282 (Table 2E and
Figure 4). Interestingly, the values of the statistical metrics
for all ensembles increased.

The MS SVM ensemble with radial kernel displayed
the highest predictive ability, with R2

0 test and RMSEtest of
0.65 and 0.71 pIC50 unit, which only differs marginally
from the minimum theoretical RMSEtest value, namely
0.68 (Figure 5).
Worthy of mention is the lack of performance improve-

ment (data not shown) of homo-ensembles (i.e ensembles
created with models trained with the same algorithm but
with different parameter values) with respect to the most
predictive single models (Table 2A and Figure 4), as the
difference in R2

0 test and RMSEtest values was below 0.01
for both metrics. By contrast, the ensembles exhibiting
the highest predictive power on the test set were obtained
when combining models with high and low predictive
ability. This increase in performance is likely to arise from
the fact that these models display uncorrelated resampling
profiles, i.e. the predictions calculated on the hold-out
folds during cross-validation are not correlated (Figure 6).
Overall, these data underline the highest predictive

power of hetero-ensembles generated with amodel library
displaying a comprehensive range of predictive abilities.

The ensemble standard deviation enables the definition of

informative confidence intervals

Figure 7 displays the percentage of datapoints which
predicted values lie within confidence intervals calcu-
lated with increasingly larger β values (Equation 4). The
ensemble model exhibiting the highest predictive power
(RMSEtest: 0.71; R2

0 test : 0.65), namely MS SVM Radial

Figure 6 Pairwise Pearson correlation for the cross-validation

predictions across the model library. The predictive power across

the model library is not uniformly distributed, as the predicted values

for a large fraction of model pairs are uncorrelated (yellow areas).

Therefore, the combination of these models in a model ensemble is

expected to lead to higher predictive power than individual models

(“wisdom of crowds”).
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Figure 7 Confidence intervals calculated from the ensemble

standard deviation of the models present in the model

ensembles. The percentage of datapoints which predicted

bioactivities lie within confidence intervals calculated with

increasingly larger β values (Equation 4), is shown for: (i) the cross

validated predictions calculated during model training (Training in

the Figure), and (ii) for the predictions on the test set (Test in the

Figure) calculated with the most predictive model ensemble, namely

“Stacking SVM Radial Ensemble”. The percentage of true values lying

within the confidence interval derived for a given β value increases

with the number of datapoints available during model training.

Overall, the confidence intervals derived from the ensemble standard

deviation provide an estimation of the reliability of individual

predictions, as in practice, this plot can be used to determine the β

value corresponding to a given confidence level.

Ensemble, was used to make the predictions and to calcu-
late the confidence intervals. Confidence intervals calcu-
lated for the cross-validated predictions (shown as squares
in Figure 7) require larger β values to reach a given level of
confidence when compared to those calculated on the test
set (shown as triangles in Figure 7). This can be seen as the
percentage of datapoints for which the true value is within
the confidence interval (β = 1) for the cross-validated
predictions is 40%, whereas this value increases till 70% in
the case of the test set. This difference might be due to the
fact that predictions on the test set are made with models
trained on a larger fraction of the dataset. Nevertheless,
the error in prediction on the test set might increase if
the compounds present therein were structurally dissim-
ilar. In those cases, a larger β value would be required,
with respect to that for the training set, to reach a given
confidence level.
Overall, the percentage of true values lying within the

confidence interval derived for a given β value is expected
to increase with model performance. Figure 7 can be used

to determine the β value corresponding to the confidence
interval required by the user.

Ensemble modeling enables the prediction of uncorrelated

human COX inhibitor bioactivity profiles

As previously stated, selectivity is a crucial aspect in the
discovery and optimization of COX inhibitors. To assess
whether PCM models were able to predict the pIC50 val-
ues for compounds displaying uncorrelated bioactivity
profiles on human COX-1 and COX-2, we predicted the
bioactivity values for the 1,086 compounds annotated on
both human COX-1 and COX-2. Figure 3B, which displays
the observed against the predicted pIC50 values for these
compounds, shows that PCM models are able to pre-
dict the potency for compounds displaying uncorrelated
bioactivity profiles on human cyclooxygenases. Indeed,
the R2

0 test and RMSEtest values calculated for the observed
pIC50 values with respect to those predicted by the PCM
model are, respectively, 0.59 and 0.76 pIC50 unit.
Subsequently, we analyzed the capability of PCM mod-

els to correctly predict the bioactivity for both selective
and non-selective compounds. A compound was consid-
ered as selective or non selective if the absolute value of
the difference between its bioactivity on COX-1 and COX-
2 is larger or smaller than 2 pIC50 units. On this basis,
226 compounds were considered as selective, and 860 as
non selective. The error in prediction for the non selec-
tive compounds was lower than 1 pIC50 unit in 85.4% of
the cases, and lower than 0.5 pIC50 unit for 55.6% thereof.
On the other hand, the error in prediction was lower than
1 pIC50 unit for 73.23% of the selective compounds, and
lower than 0.5 pIC50 unit for 42.9% thereof. When consid-
ering a more stringent selectivity cut-off value, namely 3
pIC50 units, we obtained a set of 61 compounds. The error
in prediction for this set was lower than 1 pIC50 unit in
66.4% of the cases, and lower than 0.5 pIC50 unit for 40.2%
thereof.
Consequently, these data indicate that PCM models are

capable to predict the potency for both selective and non
selective compounds on human COX-1 and COX-2. In
addition, we anticipate that model performance is likely to
increase with the inclusion of more bioactivity data in the
models.

Model performance per target is related to compound

diversity

To further assess model performance on a per target basis,
we generated 10 RFmodels each one trained on a different
subset of the whole dataset.
The variation of performance across the 11 cyclooxyge-

nases considered can be related to the compound diversity
(Additional file 6: Figure S5).
Human cyclooxygenases, with the highest number

of annotated compounds (Table 1), exhibited average
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RMSEtest values between 0.74 and 0.76 pIC50 unit. For
these proteins, the distributions of pairwise compound
similarity (Additional file 6: Figure S5) are skewed towards
high similarity values, with mean values between 0.75 and
0.85.
Likewise, mouse COX-2 and ovine COX-1 display aver-

age RMSEtest values of 0.70 and 0.73 pIC50 unit probably
related to the smaller number of compounds annotated
on these proteins (Table 1). High predictive ability on
mouse COX-2 was expected given the high R2

0 test value,
0.57, obtained with the individual QSAR model, whereas
low performance was expected for ovine COX-1, as the
individual QSAR model displayed a R2

0 test value of 0.36.
Unsurprisingly, skewed distributions in compound diver-
sity are observed for mouse COX-2 and ovine COX-1
(Figure 8).
Conversely, ovine COX-2, with 341 annotated com-

pounds, displayed a worse average RMSEtest value, within
the 0.80-0.85 pIC50 unit range (Figure 8). This decrease
in performance for ovine COX-2 might be ascribed to
the higher dispersion of the pairwise compound similar-
ity distribution with respect to those observed for mouse
COX-2 and ovine COX-1 (Additional file 6: Figure S5).
The dependency of model performance on compound

diversity is even more contrasted for targets with less than
100 annotated bioactivities. Indeed, the average RMSEtest
value for mouse COX-1, with 50 compounds, lies within
the 0.57-0.62 range of pIC50 unit and the distribution
of compunds diversity is skewed towards high similarity
values (Additional file 6: Figure S5). However, the aver-
age RMSEtest value increases till 0.80-0.90 pIC50 unit for
bovine COX-1 (Additional file 6: Figure S5), annotated

with 48 bioactivities and for which the pairwise com-
pound similarity distribution presents several peaks, thus
highlighting the structural diversity of the compounds.
Finally, targets with less than 30 annotated compounds
exhibit multimodal pairwise similarity distributions and,
consequently, model performance is low, with standard
deviations in the 0.50-1.00 range of pIC50 unit (Figure 8).
Overall, chemical diversity in the training set con-

tributes to enhance the applicability of a PCM model.
Nonetheless, a balance needs to be established between
this diversity and the number of datapoints to ensure
model convergence.

Interpretation of compound substructures

Predictivemethod

The usage of unhashed fingerprints permitted the decon-
volution of the chemical space to determine the influence
of compound substructures on bioactivity. Two sub-
structure analysis methodologies were implemented, as
described in the section “Interpretation of Compound
Substructures”. The first approach, predictive method,
relies on the PCM model to correctly predict the bioac-
tivity for a compound when a given substructure is vir-
tually removed from a compound descriptor. The second
approach, Student’s method, is a pipeline designed to sta-
tistically assess how the presence of a given substructure
influences, on average, bioactivity on the compounds.
Figure 9 shows the contribution to bioactivity of each

substructure considered in the model on human COX-
1 and COX-2 calculated with the predictive method.
Red and blue areas correspond respectively to substruc-
tures that, on average, enhance or decrease compound

Figure 8 Target-averagedmodel performance. The number of datapoints is displayed through the size of the squares. Targets annotated with

less than 30 compounds or with chemical structures displaying high structural diversity (Oryctolagus cuniculus COX-1, Rattus norvegicus COX-1, Bos

taurus COX-1, and Bos taurus) are produced with high mean RMSEtest values. These observations indicate that PCMmodels are not always able to

extrapolate in the chemical or the target space if a given target or compound family is not sufficiently represented in the dataset.
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Figure 9 Influence of compound substructures on potency and selectivity on human COX-1 and COX-2. Rows in the heatmap are indexed

by the isoenzyme type whereas columns correspond to compound substructures. Substructures are depicted in red within arbitrary molecules

presenting it. The color represents the average influence (pIC50 units) of each substructure on bioactivity. Red corresponds to an average increase in

bioactivity, whereas blue indicates a deleterious effect. Well-known chemical moieties, e.g. pyrrole rings (c), were singled out as selectivity

determinants. For instance, substructure d is present in sulfonamides such as diflumidone, and substructure b in selective 1,2-diarylpyrroles COX-2

inhibitors.

bioactivity. Representative substructures either deleteri-
ous or beneficial for bioactivity are also shown. Generally,
substructures shown to have an influence on bioactivity
display an opposite behaviour depending on the isoen-
zyme type. For example, a pyrrole ring with aryl sub-
stituents in the 2,3-positions (substructure c in Figure 9) is
predicted to have a high influence on bioactivity, increas-
ing it on COX-2 and decreasing it on COX-1. This
observation is in agreement with the literature as the
2,3-diarylpyrrole series with an halogen substituent in
the 5-position acting as electron withdrawing group have
been found as selective COX-2 inhibitors [79,80]. The pyr-
role moiety with a radical in the 1-position is also found
as a selectivity feature towards COX-2 (substructure b in
Figure 9). This agrees with the discovery by Khanna et al.
[81] of a series of 1,2-diarylpyrroles as potent and selective
COX-2 inhibitors.
On the other hand, substructures conferring a dele-

terious effect could also be identified. substructure e in
Figure 9 is represented within compound 3-(1H-indol-5-
yloxy)-5,5-dimethyl-4-(4-methylsulfonylphenyl)furan-2-one
(CHEMBL322276). This compound is part of a series of
3-heteroaryloxy-4-phenyl-2(5H)-furanones reported as
selective COX-2 inhibitors by Lau et al. [82]. Its COX-
1/COX-2 selectivity ratio is larger than 4.17, which agrees
with the prediction of decreasing bioactivity on COX-1.
In general, substructures decreasing bioactivity tend to

be small and less informative (e.g. single atoms or sub-
structures with two heavy atoms), than those fostering
compound potency.

Student’s method

The implementation of the Student’s method to decon-
volute the chemical space (Figure 10), which evaluates
the statistical significance between bioactivity distribu-
tions in the presence or absence of each compound
substructure, led to the following observations: (i) 74
substructures increase bioactivity on COX-2, (ii) 64
substructures decrease bioactivity on COX-2, (iii) 9 sub-
structures increase bioactivity on COX-1, (iv) 2 substruc-
tures decrease bioactivity on COX-1, (v) 1 substructure
increases bioactivity on both COX-1 and COX-2, and (vi)
6 substructures decrease bioactivity on both COX-1 and
COX-2.
Well-known chemical moieties conferring selectivity

to COX-2 were present in this substructure selection.
Additional file 7: Figure S6 shows the 20 substructures
predicted to have the highest influence to increase bioac-
tivity on human COX-2. For instance, substructures con-
taining thiazole, pyrrole, pyrazole and oxazole rings were
enriched for COX-2 [24,25]. Likewise, tri-fluorometil and
sulfonamide radicals, which appear in e.g. celecoxib, were
also enriched [24]. Substructures predicted to influence
in the same way the compound bioactivity on both
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A B

Figure 10 Volcano plots corresponding to the results of the Student’s method applied on human COX-1 (A) and COX-2 (B). The size of the

points is proportional to the number of molecules in the dataset containing a given substructure. Significant P values are shown in red (two-tailed

t-test, α = 0.05).

COX-1 and COX-2 are small, which makes difficult
to extract medicinal chemistry knowledge therefrom
(Additional file 8: Figure S7).
It is nevertheless remarkable that the output of both

methods is contradictory for some substructures. By way
of example, substructure d in Figure 9 is considered as
deleterious for bioactivity on COX-1 by the predictive
method, whereas it is regarded as beneficial by the Stu-
dent’s method. Dannhardt et al. [83] highlighted the key
role of the carbonyl moiety for the potency of a series of
diarylmethanone compounds on both COX isoenzymes.
Nonetheless, Scholz et al. [84] have recently reported a
series of ortho-carbaborane derivatives of indomethacin
as selective COX-2 inhibitors. Furthermore, substructure
d also appears in a series of [2-[(4-substituted or 4,5-
disubstituted)-pyridin-2-yl]carbonyl-(5- or 6-substituted
or 5,6-disubstituted)-1H-indol-3-yl]acetic acid analogues
identified as COX-2 inhibitors [85]. Plausible reasons
for this divergence are analyzed in the Discussion
section.
Overall, both substructure analysis pipelines have

proven to be able to highlight chemical moieties confer-
ring or decreasing potency and selectivity in agreement
with the literature.

Discussion
In this contribution two ensemble modeling techniques,
namely greedy optimization and model stacking, have
been presented and benchmarked on a PCM dataset com-
prising the bioactivities of COX inhibitors on 11 mam-
malian cyclooxygenases (Table 1). PCM has been shown
to relate the target and the chemical spaces to bioac-
tivity in a statistically sound manner (Table 2) [54-56].
Family QSAR as well as Family QSAM displayed poor
performance (Table 2B and Figure 4).

Three machine learning algorithms (GBM, RF and
SVM) have been implemented individually and combined
in model ensembles. The application of ensemble model-
ing has been shown to outperform single machine learn-
ing models, the improvement being larger if the three
most predictive GBM, RF and SVM models are com-
bined in the same ensemble (Table 2D and Figure 4).
Nonetheless, the model stacking (MS) SVM radial kernel
model trained on the predictions of a library of 282 single
PCM models (Table 2E and Figure 4) displayed the low-
est RMSEtest and the highest R2

0 test values. This non-linear
model combination led to a RMSEtest value comparable to
the experimental uncertainty of public pIC50 data [37]. It
is noteworthy to mention that this ensemble was obtained
by combining several hundreds of poor and highly pre-
dictive models instead of only the most predictive models
of each class, namely GBM, RF and SVM (Table 2D and
Figure 4). Therefore, these results suggest that if suffi-
cient computing resources are available, higher predictive
ability can be obtained with a large and diverse model
library. Given that the ensemble concept is not restricted
to any particular machine learning algorithm, the pipeline
proposed in this study can be further explored.
The variability in the predictions of the individual

models composing model ensembles, quantified by the
ensemble standard deviation, served to define informa-
tive confidence intervals. Previous studies highlighted the
usefulness of this variability as an applicability domain
metric [59,64-66]. Here, we have extended this concept
to ensembles of models trained on different algorithms
(Figure 7). The higher performance of model ensembles
has already been observed [86,87]. This phenomenon,
usually termed ‘wisdom of crowds’, arises from the fact
that different models provide complementary informa-
tion. Moreover, the combination of a number of models
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palliates the effect of extreme predictions by averaging
them (regression to the mean), and the chances of obtain-
ing erroneous predicitons with a single model decrease.
Interestingly, it has been recently reported in the con-
text of cell line sensitivity prediction [87] that higher
performance was obtained by combining moderate pre-
dictive models, instead of the most predictive models of
each class. This observation has been corroborated in the
present study (Table 2E and Figure 4). Overall, the appli-
cation of ensemble modeling with a model library trained
with either the same algorithm but different parame-
ter values (homo-ensemble), or with different algorithms
(hetero-ensemble) constitutes a promising alternative to
single models in the context of predictive bioactivity
modeling.
High predictive ability for compounds displaying uncor-

related bioactivity profiles on COX-1 and COX-2 was
attained with both single models and model ensembles
(Figure 3B). Therefore, the present study illustrates how
the combination of the target and the chemical spaces
in a single PCM model improves the prediction of com-
pound potency in the context of multi-target systems. The
implications of COX-2 in widespread diseases, e.g. cancer,
has prompted the design of potent and selective COX-2
inhibitors since the early 1990s [24,25]. Thus, the suit-
ability of PCM to predict COX inhibitor potency and to
integrate multispecies bioactivity data opens new avenues
for the design of cyclooxygenase inhibitors.
The two approaches presented in this study for the

deconvolution of the chemical space, namely: (i) bioac-
tivity prediction with and without a given compound
substructure (predictive method), and (ii) assessment of
the statistical difference between the bioactivity distribu-
tions corresponding to compounds presenting or not a
given compound substructure (Student’s method), singled
out chemical moieties responsible for COX-2 selectivity in
agreement with the medicinal chemistry literature.
The divergent results described for substructure d in

Figure 9, plausibly arise from the following properties of
the two methods.
As in the predictive method the bioactivity is predicted

by calculating the average difference between the pre-
dicted value for a compound with and without a given
substructure, the (potentially non-linear) relationships
between the substructures present in a molecule can be
established, and the dependence of bioactivity on addi-
tional substructures or scaffolds present in the molecule
accounted. On the other hand, the Student’s method con-
siders the substructures as independent. The two meth-
ods can thus give contrasted results for example in the
following case. We can envision a compound, A, present-
ing a substructure, S1, having no effect on bioactivity,
and a second substructure, S2, strongly fostering bioac-
tivity on the studied biomolecular target. Additionaly,

we consider compound B, which only harbors substruc-
ture S2. Contradictory results would be given by the two
methods with respect to the influence of substructure S1
on bioactivity.
The predictive method would predict a similar bioactiv-

ity value for compound A with and without substructure
S1, as the bioactivity depends on substructure S2. By con-
trast, the Student’s method would consider substructure
S1 as relevant for bioactivity given that the difference
between the bioactivities of compounds A and B, i.e.
either presenting or not substructure S1, would be signif-
icant. It follows from the preceeding that the predictive
method is best suited to give insight into the contribu-
tion of single substructures to the bioactivity of individual
compounds, whereas the Student’s method is more suited
for the identification of the general relevance of the sub-
structures to bioactivity. Another important consideration
is the presence of substructures whose effects on bioac-
tivity are correlated. In the situation where a compound
presents two substructures whose influences on bioac-
tivity are correlated, the predictive method would likely
predict a similar activity when either of them is deleted.
Covering diverse structures in the dataset might alleviate
this issue, as the probability of finding repeated substruc-
ture pairs is likely to decrease with chemical diversity and
dataset size. Overall, if the general influence of a sub-
structure on bioactivity is assessed with the predictive
method, both the mean value and the standard devia-
tion of the differences between the predicted bioactivity
values with and without a given substructure should be
reported, as the standard deviation indicates whether the
influence of that substructure to bioactivity depends on
other substructures or not [68].
In the Student’s method, the pIC50 difference associ-

ated to a significant p-value might be negligible from a
medicinal chemistry standpoint. In addition, the capabil-
ity of the t-test to identify significant differences depends
on the sample size. Thus, a small pIC50 difference can be
detected as significant if the sample size is large, whereas
it might not be detected for smaller samples. Therefore,
the conclusions extracted from the application of the Stu-
dent’s method depend on the analyzed dataset, whereas
the predictive method might be less dependent on the
dataset composition if the models are applied within
their applicability domain. In the present study, we have
not applied any method to control the family-wise error
rate which comes from the multiple comparisons prob-
lem [88]. However, we anticipate that in other studies
comprising a larger number of substructures, it would
be advisable to control this problem. For a recent and
detailed discussion of the application of the student t-test
to assess the statistical significance of bioactivity differ-
ences in the context of Matched Molecular Pair Analysis
(MMPA), the reader is referred to Kramer et al. [89]. In
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summary, the application of both methods can help to
unravel whether the contribution of a given substructure
to compound bioactivity depends exclusively on itself,
or on the presence of other substructures or chemical
scaffolds [90].

Conclusions
Ensemble modeling has been introduced in the context
of PCM to predict the potency of mammalian cyclooxy-
genase inhibitors. The combination of single models in
model ensembles has led to increased predictive ability,
as well as to the definition of confidence intervals for
individual predictions. PCM has been shown to enable
the prediction of the potency for compounds exhibit-
ing uncorrelated bioactivity profiles with high confidence.
Finally, the implementation of two different substructure
analysis pipelines, which reliability for different pur-
poses has been pointed out, has permitted the recog-
nition of chemical moieties implicated in potency and
selectivity in agreement with the medicinal chemistry
literature.

Additional files

Additional file 1: Data set S1. The complete dataset used in this study

containing: (i) compound descriptors, (ii) amino acid descriptors, and (iii)

compound bioactivities.

Additional file 2: Figure S1. PCA analysis of the target space. PCA

analysis was applied on the binding site descriptors used to train the

models. The first two principal components explained more than 80% of

the variance, thus indicating that there are mainly two sources of variability

in the descriptor space, namely the isoenzyme type. This fact can be seen

as COX-1 (triangles) and COX-2 (squares) define two distant clusters.

Overall, the binding sites of orthologue cyclooxygenases are more similar

than those of paralog sequences. These results also indicate that the amino

acid descriptors account for structural differences between COX-1 and

COX-2, which can be learnt by the models. Thus, it is expected that

merging orthologues and paralogues will lead to more predictive models.

Additional file 3: Figure S2. Statistiscs of the repeated bioactivities for

each compound-target combination. A. The abcissa represents the mean

value for the bioactivities repeated for each compound-target

combination with more than one annotated bioactivity. The ordinate

represents their standard deviations. Repeated bioactivities are equally

distributed for low, moderate and high affinity COX inhibitors. B. Histogram

of the standard deviation of the repeated bioactivities. The distribution is

strongly skewed towards 0, thus indicating that the differences between

repeated bioactivities are generally negligible.

Additional file 4: Figure S3. PCA of the compound descriptors used to

train the PCMmodels. The PCA was performed on the pairwise Pearson

rank correlation matrix calculated with the compound descriptors used to

train the models. The two first principal components (PC) explain 58.03% of

the variance. COX-1 and COX-2 are represented with squares and triangles

respectively. Overall, the overlap between the datapoints indicate that the

compounds annotated on different targets cover the same regions of the

chemical space.

Additional file 5: Figure S4. Y-scrambling. Scatterplots corresponding to

the percentage of bioactivities randomized, against (A) R20 test and (B)

RMSEtest values. The intercept in A becomes negative when 25-50% of the

bioactivity variable is randomized. This finding indicates that PCM

performance is not the consequency of spurious correlations in the

descriptor space.

Additional file 6: Figure S5. Jaccard pairwise similarity distributions for

the compounds annotated on each target. Compounds annotated on the

human cyclooxygenases (annotated with a star in the plots) display

compound similarity distributions with mean values skewed towards 1. By

contrast, compounds annotated on targets with less than 30 annotated

bioactivities display multimodal similarity distributions. A correlation

between model performance and both the number of datapoints and

chemical diversity was established (see main text). Distributions were

calculated with the same descriptors than the ones used to train the PCM

models.

Additional file 7: Figure S6. Compound substructures predicted to

increase the bioactivity on human COX-2. The 20 substructures predicted

to have the highest influence on bioactivity on human COX-2 (P35354) are

plotted. Known chemical moieties such as pyrrole rings (1), aryl

substituents (e.g. 4 and 5) or benzylsulfonamide (17) are represented. These

substructures appear in diverse NSAIDs such as rofecoxib or etericoxib, as

well as in chemical families of COX-2 inhibitors based on e.g.

1,5-diarylpyrazoles or 3,4-diaryl-substituted furans [23-25].

Additional file 8: Figure S7. Compound substructures predicted to have

the same influence on human COX-1 and COX-2. Substrucutures predicted

to decrease bioactivity are accompanied by a blue arrow, whereas that

predicted to increase bioactivity are followed by a red arrow. Smaller

substructures are found in this case, predominating substituents on the

benzene ring. Therefore, substructure-activity relationships are difficult to

be determined.
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