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Abstract. The probability of large-fire (≥1000 ha) ignition days, in the Sydney region, was examined using historical
records. Relative influences of the ambient and drought components of the Forest Fire Danger Index (FFDI) on large
fire ignition probability were explored using Bayesian logistic regression. The preferred models for two areas (Blue
Mountains and Central Coast) were composed of the sum of FFDI (Drought Factor, DF = 1) (ambient component) and DF
as predictors. Both drought and ambient weather positively affected the chance of large fire ignitions, with large fires more
probable on the Central Coast than in the Blue Mountains. The preferred, additive combination of drought and ambient
weather had a marked threshold effect on large-fire ignition and total area burned in both localities. This may be due to a
landscape-scale increase in the connectivity of available fuel at high values of the index. Higher probability of large fires
on the Central Coast may be due to more subdued terrain or higher population density and ignitions. Climate scenarios
for 2050 yielded predictions of a 20–84% increase in potential large-fire ignitions days, using the preferred model.

Additional keywords: climate change, drought, fire danger, fire weather indices.

Introduction

Large landscape fires can have important environmental, social
and economic consequences (e.g. death and injuries, destruction
of buildings, crops and infrastructure; Moreno 1998; Keeley and
Fotheringham 2001; Gill 2005). Such impacts are often severe in
peri-urban environments where large populations abut extensive
tracts of flammable vegetation. Although large fires represent
only a small proportion of the total number of fires, they typi-
cally account for the bulk of area burned in many regions (e.g.
Reed and McKelvey 2002). An understanding of the factors that
govern the incidence and spread of large fires is therefore needed
to support effective planning of fire mitigation and suppression,
along with planning for ecological and urban interface manage-
ment (Amiro et al. 2004). Such an understanding is required not
only to predict their incidence, but also to evaluate how this may
shift under global change.

The incidence and size of fires is influenced by a range of fac-
tors, such as ignition sources, fuels, terrain, suppression forces
and weather. In particular, weather is considered to be a signif-
icant influence on the incidence of large fires (Flannigan and
Harrington 1988; Carrega 1991; Davis and Michaelsen 1995;
Gill and Moore 1996, 1998; Mensing et al. 1999; Moritz 2003;
Keeley 2004; Peters et al. 2004). Formal relationships between
the incidence of large fires and meteorological factors or fire-
weather indices have been explored in a variety of locations,

leading to differing conclusions about the relative importance
of different weather components. For example, in Canada, area
burned was positively related to low rainfall (i.e. drought),
high temperatures and low relative humidity (Flannigan and
Harrington 1988). In coastal California, however, large fires
were largely determined by incidence of autumn foehn winds
rather than antecedent rainfall (Keeley 2004). Viegas et al.
(1992) and Viegas and Viegas (1994) found area burned in
Portugal was related to fuel moisture and seasonal rainfall. In
temperate Australia, drought preceding the fire season, in com-
bination with particular meteorological conditions, can result in
large fires (Foley 1947; Robin and Wilson 1958; Cheney 1976;
Cunningham 1984; Gill 1984).

In contrast to drought, which can be regarded as a relatively
long-term influence on fire size, effects of wind, air tempera-
ture and humidity at the time of fire are ‘ambient’ drivers of fire
size. Studies using fire danger ratings or indices as predictors of
area burned have highlighted the importance of both the ambi-
ent and drought components as drivers (Carrega 1991; Goodrick
2002; Preisler et al. 2004). Recent research has highlighted
links between a changing climate and elevated fire activity in
the northern hemisphere (e.g. Pausas 2004; Flannigan et al.
2005; Westerling et al. 2006). These studies have related dif-
fering combinations of increases in temperature, length of fire
season and drought to increases in the incidence and area of fire
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Fig. 1. Location of study areas within the greater Sydney region.

in regions ranging from the boreal to temperate Mediterranean
types.

Increases in fire danger indices reflecting, in turn, elevated
temperatures, increased evaporation and higher incidence of
drought have been predicted for a wide range of regions in Aus-
tralia under global warming (Williams et al. 2001; Hennessy
et al. 2006). Further insights are required to predict the likely
effects of these shifts in fire-weather on fire regimes inAustralia.
A fundamental understanding of the relationship between area
burned and key weather variables offers an empirical basis for
predicting the effects of global warming on fire regimes.

The Sydney basin in south-eastern Australia contains the
largest urban population centre in the nation. Large fires, caus-
ing losses of lives and property, are common in the region
(Cunningham 1984; Gill and Moore 1996, 1998; Bradstock and
Gill 2001) owing to the large expanse of natural vegetation within
and around the greater metropolitan area of Sydney. Much of
this is a complex of sclerophyll vegetation dominated by Euca-
lyptus species. Rapid fuel accumulation and high equilibrium
fuel loads are a characteristic of this vegetation (Morrison et al.
1996). Local combinations of vegetation, terrain and weather
can result in a high probability of uncontrollable fire behaviour
(Bradstock et al. 1998). Bradstock and Gill (2001) estimated that
the probability of destruction of property in the region was a pos-
itive non-linear function of McArthur’s Forest Fire Danger Index
(FFDI – the fire danger rating system commonly used in tem-
perate, forested regions of Australia; Luke and McArthur 1978;
Noble et al. 1980). This trend reflected an underlying positive
relationship between incidence of fire and FFDI within major
landscapes in the region (Bradstock and Gill 2001).

In the present paper, the aims are to:

(i) Examine the effect of both ambient and drought components
of weather in the Sydney region on the probability of large-
fire (≥1000 ha) ignition days;

(ii) Apply derived relationships to estimate the level of change in
the incidence of large fires that could result from predicted
changes in climate by the mid-21st century.

The approach taken differs from many other studies because
it concentrates on the weather on the day that large-area
fires ignite, rather than a correlation between more general
measures of weather and final area burned per se. Such an
approach has the advantage of offering a predictive capacity
for management: i.e. an estimation of the chance of a large-
fire event beginning on any given day based on its weather
characteristics.

Methods
Study area
The greater Sydney region, in the state of New South Wales,
south-eastern Australia, extends from the Hunter Valley in the
north to Bateman’s Bay in the south and the Blue Mountains in
the west, covering ∼3.6 million ha. The study areas lie within
this basin to the west and north of Sydney and include respec-
tively the Blue Mountains (BM, 1 043 231 ha) and the Central
Coast and Tablelands Regions (CCT, 433 471 ha) as defined by
New South Wales National Parks and Wildlife Service (Fig. 1).
National Park estate predominates in both cases. Historical data
on unplanned fire occurrence within these study areas were
compiled from official records. Ignition dates and final areas
burnt for the periods 1960–61 to 2003–04 (BM) and 1988–89 to
2003–04 (CCT) were collected.These study periods were chosen
for their higher data reliability.

The climate of the study areas is temperate (bounded by
34◦20′–33◦00′S latitude, and 149◦50′–151◦35′E longitude) with
average annual rainfall varying from 600 to 2000 mm. Mean
annual temperature ranges from 8.5◦ to 18.5◦C (−2◦ to 8.5◦C,
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Fig. 2. Annual area burned, number of fires and occurrence of years containing large fire ignition
days in the (a) Blue Mountains (1960–2003); and (b) Central Coast and Tablelands (1988–2003).
Years are Australian financial years (e.g. 1960 = 1 July 1960–30 June 1961).

minimum; 20◦–29.5◦C, maximum) (Australian Bureau of Mete-
orology). Topography ranges from gently undulating to rugged
plateaux with dissected gorges (0 to 1400 m above sea level).
The dominant geology is sandstone. Broad vegetation communi-
ties include grasslands, heath, woodlands, dry sclerophyll forest
with pockets of moister forests, and swamps. Dominant trees are
Angophora, Eucalyptus and Corymbia spp. (Keith 2004).

Fire-weather in the region is primarily influenced by temper-
ate dry, cool to hot westerly airstreams and warm, humid easterly
subtropical airstreams (Luke and McArthur 1978). From 1960
to 2003, there has been an increase in the annual number of fires
in BM, especially since 1993–94 (Fig. 2a; years are defined
as 1 July to 30 June – which encompasses the spring–summer
fire season). Both BM and CCT have shared years with large
areas burned: e.g. 1993–94, 1997–98, 2001–02 and 2002–03. In
BM, other years with large area burned were 1964–65, 1968–69,
1977–78, 1979–80, 1982–83. Over their respective study peri-
ods, a total of 800 500 ha burned in BM and 391 253 ha in CCT
(Table 1).

Large-fire ignition days were defined as those on which at
least one ignition led to a subsequent burned area of ≥1000 ha
(Fig. 2). Small-fire ignition days were all other ignition days
(i.e. ignitions resulting in <1000 ha burnt). Predominant igni-
tion sources were human, with lightning being a more significant
source of fire in BM than the CCT (NSW Department of
Environment and Climate Change, unpubl. data).

Definition of weather indices
The choice of weather observations and procedures for calcu-
lation of FFDI and its components followed the methods of
Hennessy et al. (2006). Daily values of maximum FFDI were
calculated from maximum air temperature (T, ◦C), minimum
relative humidity (H, %), maximum wind velocity (V, km h−1)
and 24-h precipitation to 0900 hours, using Eqn 1 (Noble et al.
1980). FFDI values were capped at a maximum of 100 (see Gill
et al. 1987).

FFDI = 2 × exp(−0.450 + 0.987 × ln(DF) − 0.0345

× H + 0.0338 × T + 0.0234 × V) (1)

Precipitation is an input into the calculation of the Drought
Factor (DF) along with the Drought Index (Noble et al. 1980). DF
was calculated using the Keetch–Byram Drought Index (KBDI),
(Keetch and Byram 1968) with DF capped at a maximum value
of 10 using Eqn 2 (Noble et al. 1980).

DF = 0.191 × (KBDI + 104) × (N + 1)1.5/

(3.52 × (N + 1)1.5 + P − 1) (2)

where N is the number of days since rain and P is the amount of
precipitation in the last rain event in mm.

Weather data representative of the BM and CCT districts
were taken from respectively Sydney (Sydney Airport) and
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Table 1. Numbers of large (≥1000 ha) and small (<1000 ha) fire ignition days and the corresponding area burned for the Blue Mountains (BM) and
Central Coast and Tablelands (CCT) for their respective study periods

Study area (period) No. days Total days Percentage of days Area burned (ha) Total ha

Ignitions Ignitions Large Small

Large Small Large Small

BM (1960–2003) 51 510 15 692 0.32 3.20 768 223 32 277 800 500
CCT (1988–2003) 23 419 5394 0.39 7.76 359 963 31 267 391 320

Williamtown stations (Australian Bureau of Meteorology) and
daily values of KBDI, DF and FFDI were calculated for the
historical periods 1960–2003 for Sydney and 1988–2003 for
Williamtown. Daily FFDI was then partitioned into relatively
long-term (i.e. drought – DF) and short-term, ambient (FFDI
with effect of DF minimised) components. The latter, daily
ambient component was calculated with DF as a value of 1
(FFDI(DF = 1)) using Eqn 3 (Noble et al. 1980), thus minimising
the drought effect and allowing coupled effects of temperature,
wind and humidity on large-fire ignition to be explored. Values
of FFDI(DF = 1) were capped at a maximum of 10.

FFDI(DF = 1) = 2 × exp(−0.450 − 0.0345 × H + 0.0338

× T + 0.0234 × V) (3)

Statistical modelling

Trends in large-fire ignition days in relation to the various
weather indices and their combinations (i.e. DF, FFDI(DF = 1),
FFDI and FFDI(DF = 1) + DF – see below) were explored
graphically. Large-fire ignition day probability was initially cal-
culated for graphical exploration in ‘bins’(single unit size for DF,
FFDI(DF = 1) and FFDI(DF = 1) + DF; decile size for FFDI)
for each index (i.e. large fire ignition probability = number of
large fire ignition days in each bin/total days in each bin in the
time series). Non-binned (i.e. continuous) data were used for
statistical modelling.

Bayesian logistic regression, with uninformed priors (no prior
data), was used to investigate the relationship between large-fire
ignition day probability and differing weather components in
each study area. The advantage of a Bayesian approach is that
the full range of variability in parameter estimates can be accom-
modated in a preferred model (Ellison 2004; Clark and Gelfand
2006), resulting in a fulsome representation of uncertainty and
variability in model predictions.

Four logistic models were fitted to the data from each
study area using WinBUGS ver. 1.4 (Spiegelhalter et al.
2003). The models tested independent effects of DF and
FFDI(DF = 1) as well as their product (i.e. FFDI) and their
sum (FFDI(DF = 1) + DF) (Table 2). Explanatory variables
were centred by subtracting the mean, to reduce correlation
between successive samples. Posterior probability distributions
on the parameter estimates were sampled from normal distribu-
tions. Parameter estimates for the models were based on 20 000
samples after excluding an initial 2000.

The Deviance Information Criterion (DIC) was used to select
a preferred model for each study area (Spiegelhalter et al. 2003).
The change in DIC is indicative of the superiority of the models
i.e. values less than three are the better models and those >10

indicate inferior ones. Low values of DIC indicate parsimonious
models (i.e. small number of explanatory variables) with a high
level of fit to the data. The performance of the models as predic-
tors of large-fire probability was tested by calculation of the ROC
(Receiver Operator Curve) and estimation of the area under the
curve (AUC). The ROC provides an estimation of performance
of binary models based on the ratio of true to false positive pre-
dictions (Burnham and Anderson 2002). AUC values close to 1
indicate a model with a high capacity for successful prediction,
whereas a value of 0.5 indicates a model that does not perform
better than a random coin toss. A predictive, probability surface
for large-fire occurrence was derived for the preferred model
using least-squares regression (STATISTICA, version 7.1).

Effects of climate change
Hennessy et al. (2006) estimated a range of scenarios, using a
variety of Global Circulation Models (GCMs), for effects of cli-
mate change on fire danger and drought indices for a variety of
weather stations within south-eastern Australia. Hennessy et al.
(2006) predicted a general increase (relative to contemporary
climate) in average annual sum of daily FFDI in the order of
5–25% and 8–30% for 2050 using two differing GCMs (CCAM
Mark 2 and CCAM Mark 3 respectively). Hennessy et al. (2006)
also provided estimates of change in daily FFDI: for example,
the annual frequency of days with Very High to Extreme FFDI in
2050 for Sydney was predicted to rise by 6–75% from a current
annual average of 8.7 (Hennessy et al. 2006). These predictions
were generated from an adjusted 31-year time series of contem-
porary daily data (Hennessy et al. 2006), reflecting effects of
2050 scenarios on the individual parameters (e.g. rainfall, tem-
perature, humidity, wind speed) used in the calculation of daily
FFDI.

Effects of climate change on the frequency of large-fire days
and total area burned were estimated using the highest and
lowest scenarios of change in FFDI and drought indices for
2050 provided by Hennessy et al. (2006) based on the CCAM
Mark 2 and 3 predictions. The preferred statistical model (see
above) was used to generate threshold values of FFDI(DF = 1)
and DF that corresponded to differing levels of predicted large
fire probability (e.g. 10, 20, 30%). The number of days at
or above each threshold was calculated for the contemporary
31-year time series of daily weather data (1974 to 2005) for
Sydney and Williamtown (representing BM and CCT respec-
tively – see above). A similar calculation was then performed
on the adjusted daily weather data, representing the highest and
lowest 2050 scenarios of climate change produced by Hennessy
et al. (2006). Differences, resulting from climate change, in the
number of days corresponding to a particular level of predicted,
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Table 2. Bayesian logistic regression models (regression parameter estimates for mean and Bayesian credible intervals) for prediction of effects of
weather components (FFDI, DF, FFDI(DF = 1) – see text) on the probability of large fire ignition days in the Blue Mountains (BM) and Central Coast

and Tablelands (CCT)
Deviance Information Criterion (DIC) compares models, which are ordered from best to worst (see Methods). Parameter a = slope; b = y-intercept for weather
component 1; c = y-intercept for weather component 2. Model performance is indicated by estimated area (AUC) under the Receiver Operator Curve (ROC)

Weather component Credible intervals

Mean 2.5% 97.5% DIC �DIC AUC

a b c a b c a b c

BM
FFDI(DF = 1) + DF −7.80 0.55 0.61 −8.63 0.43 0.39 −7.10 0.68 0.84 560.68 0 0.87
FFDI −6.24 0.08 −6.60 0.07 −5.90 0.10 587.15 26.47 0.84
FFDI(DF = 1) −6.68 0.67 −7.09 0.56 −6.30 0.79 607.03 46.35 0.79
DF −7.21 0.70 −8.06 0.49 −6.52 0.95 613.98 53.30 0.84

CCT
FFDI(DF = 1) + DF −10.08 0.61 1.30 −12.62 0.46 0.75 −7.96 0.76 1.91 187.41 0 0.98
FFDI −6.36 0.09 −7.02 0.07 −5.78 0.10 209.98 20.57 0.96
FFDI(DF = 1) −6.30 0.71 −6.94 0.57 −5.73 0.85 220.53 33.12 0.92
DF −8.87 1.25 −10.88 0.89 −7.18 1.75 239.24 51.83 0.93

large-fire probability in BM and CCT were generated by compar-
ing the results yielded from the contemporary and future (2050)
weather time series data (high and low scenarios).

Results
Effects of weather on large fires
The daily frequency of each index (i.e. FFDI, DF and
FFDI(DF = 1)) declined at higher values (Fig. 3). DF tended
toward a bimodal distribution (Fig. 3). The number of large-fire
ignition days was relatively low (Table 1), but the resultant area
burnt by such fires was very high in both areas: i.e. large-fire
ignition days accounted for 96 and 92% of total area burnt in
BM and CCT over the respective study periods.

There were positive, non-linear trends in percentages of large-
fire ignition days in relation to all weather indices (Fig. 4). In
general, the percentage of large-fire ignition days (Fig. 4) was
small (e.g. <0.1%) at low values of the weather indices in both
areas. High percentages of large-fire ignition days (e.g. >20%)
occurred at high values of each index. The exception was DF,
where the overall range of percentage occurrence of large-fire
ignition days was low (<10%) in both areas. Percentage of large-
fire ignition days was generally higher in CCT than BM.

Drought (DF) had an apparent threshold effect on large-fire
ignition in both areas (Fig. 4a), i.e. large fires only occurred
on days where DF > 7 in CCT and mostly above DF > 6 for
BM. Large-fire ignition days occurred across a broad range
of ambient weather (FFDI(DF = 1)) and FFDI in both areas
(Fig. 4b, c), though trends in percentage occurrence were vari-
able. Trends in percentage of large-fire ignition days in relation
to FFDI(DF = 1) + DF were less variable (Fig. 4d). The per-
centage of large-fire ignition days increased markedly when
FFDI(DF = 1) was >8 (Fig. 4c) and FFDI(DF = 1) + DF > 14
in both areas.

Statistical modelling
The best model for both study areas contained the additive effects
of the ambient (FFDI(DF = 1)) and drought (DF) components
of FFDI (Table 2). For both study areas, the parameter estimates

for FFDI (i.e. the multiplicative effects of drought and ambient
components) were significant but this model accounted for a
smaller change in the DIC (Table 2) than the additive model,
as was expected given trends in the raw data (Figs 3, 4). ROC
andAUC values followed a similar trend, with the additive model
yielding highest values. The overall ROC and AUC values for all
models were relatively high, with the preferred, additive model
yielding the maximum (i.e. close to 1), indicating a high capacity
for successful prediction of large-fire ignition day probability.

Overall, predicted large-fire ignition day probability based
on the preferred mean additive model was constrained by both
drought and ambient weather in both areas (Fig. 5a), but there
was differential sensitivity to these factors between the areas.
Large-fire ignition days were predicted (mean) to be absent under
low to intermediate values (e.g. 0–6) of both weather components
in both areas. Mean predicted probability was less constrained
by ambient weather and more constrained by drought in CCT
compared with BM, based on the relative position of the 0.1 prob-
ability contour (Fig. 5a). Mean predicted probability of large-fire
ignition days increased with FFDI(DF = 1) and DF, but was sen-
sitive to change at high values of both independent variables
(Fig. 5a). Overall mean predicted large-fire ignition probability
was higher at high values of both weather components in CCT
compared with BM. Thus CCT predictions were more sensitive
to variations in both ambient and drought components at high
values (Fig. 5a).

The preferred model, FFDI(DF = 1) + DF, can be used as a
large fire probability index (LFPI) with a range of 20, given that
both components had a capped maximum value of 10 (see above
and Fig. 5). The minimum value of LFPI for each mean large-
fire probability decile (Table 3) was estimated from the intercept
of each decile with the axes of either DF or FFDI(DF = 1) (i.e.
where the value of either index is zero – Fig. 5a). Minimum LFPI
for each decile of probability was lower for CCT than BM (Fig. 5,
Table 3). For example, there was a >50% mean chance of a large-
fire ignition day on the Central Coast when LFPI was >18.0 (i.e.
FFDI(DF = 1) ≥ 8, DF > 9.1) and in the Blue Mountains when
LFPI was >19.4 (i.e. FFDI(DF = 1) ≥ 9.4, DF ≥ 9.6). Over the
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Fig. 3. Frequency of categories of weather indices from Sydney and Williamtown, used respectively for analysis of Blue
Mountains (1960–2003) and Central Coast (1988–2003) fire data. Weather indices include Drought Factor (DF), Forest Fire
Danger Index (FFDI) with DF = 1 (FFDI(DF = 1)) and FFDI.

period 1974–2003 (10 957 days), these conditions (mean pre-
dicted 50% chance of a large-fire ignition day) were rare, being
met on 0.01% days (12 days total) on the Central Coast and
∼0.001% days (1 day total) in the BM. Lower probabilities of
large-fire ignition occurred on appreciably more days in both
areas (Table 3).

There was considerable uncertainty around the mean predic-
tions, indicated by the Bayesian credible intervals (Fig. 5b, c)
and their effect on the LFPI. For example, at the upper confi-
dence limit (97.5%), the 50% LFPI was 16.6 for CCT and 17.8
for BM (Fig. 5b). At the lower confidence limit, the maximum
large-fire probability dropped to ∼0.5 for CCT and 0.3 for BM
(Fig. 5c).

Effects of climate change
The climate change scenarios for 2050 substantially increased
the predicted incidence of days suitable for large-fire ignitions,

based on minimum LFPI (Table 3). The high-climate-change
scenario, as expected, produced a greater increase in predicted
large-fire ignition probability than the low-climate-change sce-
nario (Hennessy et al. 2006). The average increase in predicted
minimum LFPI ranged from 20 (BM) to 34% (CCT) under the
low-climate-change scenario, and from 67 (BM) to 84% (CCT)
under the high-climate-change scenario (averages were calcu-
lated across all LFPI deciles, yielding values of ≥5 days under
contemporary climate).

Discussion
Effects of drought and ambient weather
The positive relationship between percentage of large-fire igni-
tion days and the differing weather indices (Fig. 4) reflected the
relative rarity of small fires on days with higher values of each
index, as well as the overall rarity of such weather conditions
(Fig. 3). The exception to this was DF, where the percentage
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Fig. 4. Percentage occurrence of large fire ignition days in relation to differing weather indices (a) Drought Factor (DF);
(b) Forest Fire Danger Index (FFDI); (c) ambient weather (FFDI(DF)); (d) additive model (FFDI(DF = 1) + DF) (see text)
in the Blue Mountains (BM 1960–2003) and Central Coast and Tablelands (CCT 1988–2003).

range of large-fire ignition days was low, owing to the bimodal
distribution of daily DF (Fig. 3). Drought, and to a lesser degree
ambient weather, had threshold effects on large-fire ignition
day percentage (Fig. 4a, c). The addition of drought and ambi-
ent components (FFDI(DF = 1) + DF) captured these non-linear
trends (Fig. 4d). Large-fire ignition day probability followed a
clearer trend in response to this additive index, compared with
FFDI (multiplicative effect) (Fig. 4b, d). This was reflected in
the preferred statistical model (Fig. 5, Table 2).

Drought and ambient weather therefore had interdependent
effects on large-fire ignition. Ignition of large fires was only
likely in representative landscapes of the Sydney region when
drought and ambient conditions of at least ‘moderate’ sever-
ity (e.g. DF > 5, FFDI(DF = 1) > 5, LFPI > 10) co-occurred.
Ambient weather (higher temperatures and wind speeds, lower
humidity) can realise the opportunity created by drought for large
fires to develop if ignitions occur.

The results of the present study quantify trends partially
explored in other case studies in the region. Cunningham (1984)
found that major fire seasons of fires in the Blue Mountains
before 1983 resulted from one or more wet seasons followed by a
dry spring, accompanied by specific ambient weather conditions.
Large fires in January 1994 affected the Sydney region, resulting
in major property loss. These fires and the bulk of resultant prop-
erty damage occurred under conditions of extreme daily FFDI,
though a comparison of wind and drought contributions to FFDI
on these days showed no unprecedented values of these variables

(Gill and Moore 1996). The contribution of both drought and
ambient weather were causal to these fires. Similar circum-
stances prevailed when large fires burned in the region in Decem-
ber 2001 (Chafer et al. 2004; Hammill and Bradstock 2006).

Gill (1984) hypothesised that droughts, because of their
regional scale, predispose large areas to fire through drying of
fuel, an increase in fuel load and removal of natural barriers
to fire spread. Gill (1984) also noted that when droughts are
prolonged, there is an increased chance of coincidence of other
weather factors that enhance the spread of fire. The overall prob-
ability of large fires therefore increases.The results of the present
study confirm and extend this hypothesis through quantification
of the interactive contributions of drought and ambient weather
on probability of ignition of large fires.

Influences of weather on fuel connectivity
Threshold effects of drought and ambient weather on probability
of large-fire ignition (Fig. 4) are also evident when cumulative
area burned is examined for the study period in both areas in
relation to the additive model (i.e. calculated from the final area
burned and corresponding FFDI data for each ignition day in the
appropriate record – Fig. 6). These results (Fig. 6) are consistent
with conclusions from other studies of non-linear distributions
of fire area (Reed and McKelvey 2002; Peters et al. 2004), i.e.
that weather factors operating at meso and macro spatial scales
have a predominant influence on the development of large fires
through influences on the connectivity of available fuel.
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Table 3. Relationships between mean predicted daily probability of large fire ignition days (LFPI – see text) Drought Factor (DF) and ambient
weather (FFDI(DF = 1)), under current (1974–2003) and predicted (Hennessy et al. 2006) 2050 climate (low and high scenarios – see text) for the

Blue Mountains and Central Coast

Predicted large fire Minimum Number of days for current (1974–2003) and predicted
ignition probability DF FFDI(DF = 1) LFPI 2050 climate (percentage increase for 2050)

Decile Current 2050 Low 2050 High

Blue Mountains
0.1 5.0 4.9 14.9 34 40 (18) 56 (65)
0.2 6.6 6.4 16.4 13 16 (23) 22 (69)
0.3 7.6 7.5 17.5 4 6 (50) 8 (100)
0.4 8.6 8.5 18.5 3 3 (0) 4 (33)
0.5 9.6 9.4 19.4 1 1 (0) 3 (200)

Central Coast
0.1 6.6 3.8 13.8 135 162 (20) 204 (51)
0.2 7.4 5.1 15.1 70 83 (19) 102 (46)
0.3 8.1 6.2 16.2 39 46 (18) 66 (69)
0.4 8.7 7.2 17.2 23 29 (26) 35 (52)
0.5 9.1 8.0 18.0 12 17 (58) 25 (108)
0.6 9.5 8.8 18.8 5 8 (60) 14 (180)
0.7 9.8 9.7 19.7 4 5 (25) 8 (100)

The thresholds in large-fire ignition (Fig. 4) and resultant
cumulative area burned in relation to DF (Fig. 6) may represent a
state-transition in landscape-level fuel connectivity, determined
primarily by fuel moisture. For values above the threshold, the
landscape may enter a state of potential high flammable con-
nectivity where natural controls on fire size break down and
where the size of fire will be strongly affected by the ambient
component of weather. Such a hypothesis is consistent with the
geomorphology of the region: the study landscapes are elevated
sandstone plateaux dissected by complex stream systems, often
resulting in deep canyons with steep sides (Doerr et al. 2006).
Thus topography is diverse, leading to strong disjunctions in fuel
and complex aspect effects on fuel moisture. We hypothesise that
in the absence of drought, fires are relatively small because of the
natural variations in continuity of available fuel imposed by the
high variation in terrain. In particular, in non-drought conditions,
fuel in sheltered southerly and easterly aspects is often too moist
to burn. Combined with slope effects, these may impose signif-
icant natural barriers to the spread of fires, even when ambient
conditions are relatively severe. Such factors are known locally
to complement suppression by providing natural containment
lines for burning-out operations and prescribed fires.

When drought occurs, these natural controls on fire size
may begin to break down, resulting in greater fuel connec-
tivity – effectively a state-transition that increases the spatial
scale over which available fuel becomes highly connected. Fires
may therefore tend to be less naturally constrained and effec-
tive containment opportunities will diminish. When drought is
absent, effects of ambient weather are often insufficient for fire
to bridge discontinuities. High wind speed may partly allow
fires to overcome discontinuities in fuel at landscape scales,
via long-distance propagation of embers and ignition of spot
fires. This may explain why some large fires are possible (low
probability) at low values of DF and moderate to high values of
FFDI(DF = 1) (Figs 4, 5). Such a hypothesis is testable through
measurement of fuel moisture as a function of slope and aspect
combinations under varying degrees of drought. Retrospective

analyses of fire perimeters and their relationship between these
factors may provide further corroboration.

This hypothesis could partly explain the greater sensitivity of
large-fire ignition probability in CCT compared with BM (Figs
4–6). Although there are similarities in geomorphology between
these areas, terrain in CCT is substantially more subdued than
in BM, where relief and maximum elevation are greater. Thus
postulated natural controls on fuel connectivity may be less
restrictive and break down more readily in CCT.

In other temperate ecosystems, varying emphases have been
placed on drought v. ambient conditions (e.g. wind) as princi-
pal drivers of large fires. These contrasting and varied emphases
need resolution. Gill et al. (2002) suggested that interactions of
fuel type and climate (a function of latitude and other ecosystem
attributes) plus the timing of events that altered the spatial con-
nectivity of fuel can account for the diverse range of fire regimes
that prevail across the Australian continent. They distinguished
a continuum, in the temperate portion of the continent, spanned
by arid and mesic systems. At the arid end of this spectrum, sur-
face fuels that are primarily ephemeral (composed principally
of herbs and grasses) predominate, while at the mesic end, litter
fuels composed of the foliage of perennial plants and exhibiting
regular patterns of accumulation predominate. In arid systems,
fuel availability is limited by water availability and its effects
on plant germination and growth, whereas in mesic systems,
fuel accumulation is relatively rapid and the availability of fuel
for burning is constrained chiefly by its moisture content. Fire
weather (both drought and ambient components) is not limiting
at the arid end whereas fuel is. In contrast at the mesic end, fuel
tends not to be limiting but fire weather can be. In the latter
case, the occurrence of drought is crucial to fuel availability via
effects on fuel moisture.

The Sydney region, along with other ecosystems dominated
by forests or shrublands at temperate latitudes, is at the mesic
end of this spectrum. If drought is the precursor of large fires,
then their occurrence will governed by the frequency of drought
over large spatial scales. In temperate Mediterranean-type
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Fig. 6. Relationships between cumulative area burned and
FFDI(DF = 1) + DF (DF, Drought Factor; FFDI, Forest Fire Danger
Index) for (a) Blue Mountains (BM, 1960–2003) and (b) Central Coast and
Tablelands (CCT, 1988–2003).

ecosystems with a pronounced seasonal summer drought, the
conditions necessary for large fires to develop are present every
year. In other temperate systems that lack a regular pattern of
summer drought (e.g. the Sydney region), appropriate drought
conditions occur less frequently and more irregularly. This may
explain why wind speed (an ambient weather component) in Cal-
ifornian shrublands (Mediterranean climate with annual summer
drought) emerges as the principal determinant of fire size (e.g.
Keeley 2004). Thus year-to-year variations in ambient weather
(i.e. high wind-speed events) in that environment will have
greatest effect on area burned by large fires. By contrast, in a tem-
perate, non-Mediterranean system such as the Sydney region,
interannual or even interdecadal variations in drought are likely
to have a large effect on area burned, in concert with ambient
weather.

Study limitations and consequences for management
The results provide a quantitative basis for predicting the chance
of significant fire activity in the region and may be used to

refine planning and preparedness based on short-to-medium-
term weather forecasting. Existing systems for estimating FFDI
could be used for this purpose via an additive reformulation of its
components to predict large fire ignition probability (i.e. LFPI –
Fig. 5).

Use of an index of this kind must be tempered by appreciation
of limitations in the data and analyses. First, the temporal record
of fire used in the study is limited – particularly for CCT. More
data could be obtained from archives of remote sensing, but
the extent to which this approach may augment the record is
currently unknown.

Second, ignition of large fires during the study period may
have changed owing to human population changes (ignition
sources) and changes in fire management practices (i.e. preven-
tion and suppression). These are not considered in the analysis
and may contribute to uncertainty in consequent predictions.
This study did not attempt to examine influences of varying igni-
tion rates on large-fire probability in time and space. Effects of
weather and ignition rates and sources were confounded; hence,
the probability of large fires in each region reflected inherent
ignition syndromes and the average influence of any historical
changes in these syndromes. Trends in the data could therefore
be biased. For example, the higher probability of large fires in
CCT and BM may be partly due to the higher population den-
sity and thus higher rates of anthropogenic ignition in the CCT
area (R. A. Bradstock, J. S. Cohn, A. M. Gill, M. Bedward and
C. Lucas, unpubl. data). High numbers of ignitions may over-
whelm suppression capacity, leading to a large area burned under
favourable weather. Data limitations prevented further examina-
tion of this effect in this study. Further insights into ignition
levels on days with favourable conditions for large fires are
required.

Third, the approach does not discriminate between the number
of ignitions on an individual day that result in a large area burned,
nor does it attempt to more tightly link the weather indices to
area burned.This is partly due to data limitations (i.e. insufficient
samples of days with differing ignition numbers). Additionally,
this limitation results in a relatively coarse representation of the
effect of ambient weather in the analysis (i.e. only on day of
ignition). In some cases, the area burned on subsequent days
was known to contribute substantially to the final total (R. A.
Bradstock, J. S. Cohn, A. M. Gill, M. Bedward and C. Lucas,
unpubl. data). Such data were not available, however, for all
fires, thus precluding the use of a more carefully targeted daily,
ambient weather estimate.

Despite these limitations, we suggest that the approach has
value for short-to-medium-term prediction of significant fires in
the region. Cautious use of LFPI may provide impetus for further
refinement to overcome these limitations. We emphasise that the
confidence intervals around the mean are wide (Fig. 5), in part
owing to the use of data from two weather stations as a predictor
of fire activity over a large spatial scale, along with limitations
outlined above. These variations would need to be accounted for
in any predictive use of LFPI. Local variations in all weather
components are likely to account for a substantial part of the
variation inherent in the model. We anticipate that the key rela-
tionships between weather and probability of large fires (Fig. 5)
would have substantially less uncertainty if in situ weather data
were used to construct the models. The future availability of
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regional surfaces for drought index and fire danger indices in
the region may expedite such improvements.

We also anticipate that other, non-weather factors such as fuel
condition and suppression response could be important in deter-
mining the probability of occurrence of large fires in this region.
There are indications that fuel age affects probability of fire in
the region (de Ligt 2005), though interactions with weather and
other factors may be significant (Travis 2005). Debate concern-
ing the extent to which fire weather and fuel age contribute to
large-fire activity is ongoing (e.g. Moritz et al. 2004). This may
be better informed by integration of both these key drivers in
statistical models that attempt to account for probability of large
fires and variation in area burned and severity.

Consequences of climate change
The predicted range of increase in probability of large-fire igni-
tion (∼20–84%, Table 3) is wide but sufficient to markedly
increase area burned and resultant fire regimes in the region
(e.g. shorter inter-fire interval). These estimates overlap with,
but exceed at the lower end, the range of increase in aver-
age annual daily incidence of Very High and Extreme FFDI
(6–75% – see above) predicted by Hennessy et al. (2006). They
are possibly conservative when extrapolated to effects on area
burned and therefore the average interval between fires. For
example, changes to the sequence of days with particular char-
acteristics were not considered by Hennessy et al. (2006). Such
changes may affect the incidence and development of large fires
in ways not accounted for here.The probability of rare but signif-
icant, extreme events (i.e. multiple days in succession with high
wind speed and temperature and low humidity) are unknown.
Changes to rates of ignition (not accounted for here) and sup-
pression capacity will further affect the outcome. Despite these
limitations, the magnitude of the change in fire regimes indicated
by the study has major implications for land management val-
ues, ranging from increased probability of property destruction
to increased chance of population decline and local extinction
of plant species (Bradstock and Kenny 2003).

Further insights will be needed to assess how differing
approaches to management will be needed to cope with the
changes in fire regimes predicted to result from an increase in the
ignition of large fires under climate change. The complexity of
this challenge and indeed the responses of fire regimes to alter-
ations in climate may require deeper insights into relationships
between weather, fire spread, management effects and indirect
feedbacks such as changes in vegetation and fuel structure under
climate change and elevated CO2. Process-based modelling (e.g.
Mouillot et al. 2002; King et al. 2006) may offer one way of
exploring the effects suggested by the correlative methods used
in the present study.
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