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PREDICTION OF THE SEVEREST SIGNIFICANT WAVE HEIGHT 

Michel K. Ochi* and Joseph E. Whalen** 

ABSTRACT 

This paper presents a method to statistically estimate the 
severest sea state (significant wave height) from the observed data. 
For the estimation of extreme significant wave height, a precise repre- 
sentation of the data by a certain probability function is highly 
desirable. Since we do not have any specific technique to meet this 
requirement, this situation seriously affects the reliability of the 
current method of predicting the severest sea condition. The author's 
method is to express asymptotically the cumulative distribution of 
the significant wave height as a combination of an exponential and power 
of the significant wave height. The parameters involved are determined 
numerically by a nonlinear minimization procedure. The method is 
applied to available significant wave height data measured in the North 
Sea, the Canadian coast, and the U.S. coast. The results of the analy- 
sis show that the data are well represented by the proposed method over 
the entire range of the cumulative distribution. 

INTRODUCTION 

For the design of coastal and ocean structures, it is necessary to 
obtain the severity of sea over a period of time on the order of 50 
years, sufficiently long enough to cover the lifetime of the structure. 
The severity of the sea is most commonly expressed in terms of signifi- 
cant wave height. Therefore, if the probability law which governs the 
significant wave height is found, then the statistical prediction of 
the severest sea in the long-term can be achieved. 

It should be noted that the probability distribution function of 
the significant wave height is derived empirically from analysis of 
data accumulated over a certain period of time, and that there is no 
way to theoretically derive the probability distribution function, in 
contrast to the probability function applicable for wave height in a 
given sea severity. Observations (or measurements) of the significant 
wave height are usually made several times a day, each for 15 to 20 
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minutes duration. Since the observations (or measurements) of the 
significant wave heights are made intermittently, the information on 
the sea severity is given as a discrete phenomenon, although in reality 
the sea severity is continuously changing with time. 

The results of analysis made on available data have indicated that 
statistical properties of the significant wave height appear to follow 
the log-normal probability law, in general, but not to the extent that 
this probability law can be used for the estimation of extreme values. 
On the other hand, when the data are plotted on the Wei bull probability 
paper, it is the general trend that the higher significant wave heights 
are fit reasonably well to the Wei bull distribution, but the represen- 
tation over the entire range of the significant wave height by the 
(two-parameter) Weibull distribution is substantially poor. 

It should be noted that the data of severe seas (significant wave 
heights) are always sparse; on the order of one to two percent of the 
total number of observations are spread over the range of higher 
significant wave heights. Hence, the questions always remains as to 
how reliable the prediction technique is if we estimate the extreme 
significant wave height by extending the line plotted on either the 
log-normal or the Weibull probability paper taking into account the 
higher significant wave heights which are extremely unreliable data. 

For the estimation of extreme significant wave height, a precise 
representation of the data by a certain probability function is highly 
desirable. The precise representation implies that the data shall be 
represented by a probability function over the tntlne.  range of the 
cumulative distribution except data points of very high cumulative 
distribution such as 0.999 or higher due to the reason discussed in 
the foregoing paragraph. 

In order to represent the measured data with sufficient accuracy 
for estimating extreme values, this paper presents a method to express 
the cumulative distribution function as a combination of an exponential 
and power of the significant wave height. 

The method is applied to available significant wave height data 
measured in the North Sea, the Canadian coast, and the U.S. coast. 
The extreme significant wave heights expected in 50 years estimated by 
the proposed method are presented. 

PROBABILITY DISTRIBUTION FUNCTION FOR THE SIGNIFICANT WAVE HEIGHT 

For the probability density function applicable to the significant 
wave height, the Weibull distribution and the log-normal distribution 
have often been considered to date. The Weibull probability density 
function is given by, 

f(x) = cxc xc_1 e"(Xx) 0<x< - (1) 
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where x is the signficant wave height for the present problem, and c 
and X  are parameter to be determined from observed data. Since the 
probability density function given in (1) carries two parameters, it 
may be called the two-parameter Weibull distribution. 

It has been claimed that some data of significant wave heights can 
be represented very well by the three-parameter Weibull distribution 
which is given by, 

f(x) = cxc (x-a)0"1 e"U (x"a)}C       a<x<oo        (2) 

It is noted, however, that the three-parameter Weibull distribution 
carries the minimum non-zero value, a, as one of its parameters. If 
this is the case, it is not possible to explain the physical meaning of 
this minimum significant wave height associated with the distribution. 
The sea state of significant wave height zero, which represents the 
calm sea, is an important part of the distribution. The sample space 
of significant wave height has to be chosen between zero and « for the 
probability distribution of the significant wave height. For this 
reason, it is not appropriate to use the three-parameter Weibull distri- 
bution for the analysis of the significant wave height data. 

The log-normal probability function is another distribution that 
has been used to represent the statistical properties of the signifi- 
cant wave height. The density function is given by, 

1 (Inx-y)2 

f(x) = • e   2^ 0<x<» (3) 
/2TT a  x 

where, u and a  are parameters to be determined from the observed data. 

An example of data of significant wave height measured at the 
location 53.5° N, 4° E in the North Sea is shown in Table 1 (Bouws 
1978). A total of 5,412 measurements of significant wave heights were 
made in three years. This information implies that the significant 
wave heights were measured at every 5-hour interval, as an average. 
Hence, the data provide information on the significant wave height at 
5-hour intervals, just to cover all severe sea conditions expected to 
occur at the site. It should be noted here that the observed (or 
measured) data of significant wave height obtained in a relatively long 
time interval may not provide sufficient information on severe seas that 
do not persist for a long period. 

Figures 1 and 2 show the cumulative distribution function of the 
data given in Table 1 plotted on log-normal probability paper and 
Weibull probability paper, respectively. As can be seen in these 
figures, the data appearto follow the log-normal distribution for the 
cumulative distribution up to 0.99, and the data also may be represented 
by the Weibull probability distribution except for small significant 
wave heights. 
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Table 1 Significant wave height data obtained 
from measurements in the North Sea (from Bouws 
1978) 

SIGNIFICANT NUMBER OF 
WAVE HEIGHT (M) OBSERVATIONS 

0   - 0.5 1,280 
0.5 - •   1.0 1,549 
1.0 - 1.5 1,088 
1.5 - 2.0 628 
2.0 - 2.5 402 
2.5 - 3.0 192 
3.0 - 3.5 1 1 5 
3.5 - 4.0 63 
4.0 - 4.5 38 
4.5 - 5.0 1 8 
5.0 - 5.5 21 
5.5 - 6.0 7 
6.0 - 6.5 8 
6.5 - 7.0 2 
7.0- 7.5 1 

TOTAL     5,412  in 3 Years 

0.9999 

0.5 I 2 4      6    8 10 
SIGNIFICANT WAVE HEIGHT(M) 

Figure 1 Cumulative distribution function of 
significant wave height plotted on log-normal 
probability paper (data from Bouws 1978) 
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Figure 2 Cumulative distribution function of 
significant wave height plotted on Weibull 
paper (data from Bouws 1978) 
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Figure 3 Comparison between histogram of 
significant wave height and log-normal and 
Weibull probability distributions (data from 
Bouws 1978) 
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In order to see the difference between the histogram constructed 
from the original data and the two probability functions, Figure 3 is 
prepared. As seen in this figure, the difference between Weibull 
probability function and the data is pronounced when the probability 
density functions and histogram are compared. It is noted that the 
Weibull probability paper is usually constructed by taking the logarithm 
of the cumulative distribution function twice. Hence, a small difference 
between data and the cumulative distribution function drawn on the 
Weibull probability paper may result in a substantial difference be- 
tween the histogram and theoretical probability density function. 

As another example, Figure 4 shows the comparison between the 
histogram of significant wave height and Weibull and log-normal 
probability density functions for the data observed at Tiner Point, 
Canada (Khanna and Andru 1974). The figure shows that the log-normal 
probability density function agrees well with the histogram over the 
entire range of significant wave height. On the other hand, the 
Weibull probability density function agrees well with the histogram 
for large significant wave heights, but the agreement is rather poor 
for small significant wave heights. 

Although these examples show that the data are represented satisfac- 
torily by the log-normal distribution, this may not always be the case. 
Some other significant wave data may be better fitted by the (two- 
dimensional) Weibull distribution depending on the geographical location, 
depth of the water, frequency of occurrence of the storm, etc. In 
principle, as was mentioned earlier, there is no scientific basis for 
selecting any particular probability distribution to characterize the 
significant wave height. 

It may be noted, however, that the representation of significant 
wave height by the log-normal probability distribution results in a 
significant benefit for the derivation of the joint probability distri- 
bution of the significant wave height and wave period (Ochi 1978). 

Since our goal is to statistically predict the extreme significant 
wave height "from the observed data, a precise representation of the 
data by a certain probability function is highly desirable. However, 
we should consider the fact that the data of severe significant wave 
heights are always sparse, and hence the frequency of occurrence is 
extremely unreliable. For example, the data given in Table 1 show 
that the largest significant wave height of 7-7.5 meters was observed 
once in three years, and that 99 percent of the data are significant 
wave heights less than 4.5 meters. This implies that, on the order of 
one percent of the total number of observations are spread over the 
range of higher significant wave heights, which are most interesting for 
us from the view point of statistical estimation. 

It is appropriate, therefore, to establish a probability function 
which represents the significant wave height data over the entire range 
for the cumulative distribution up to about 0.99. Then, the extreme 
significant wave height will be estimated based on this probability 
function. For this, let us express the cumulative distribution function 
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Figure 4 Comparison between histogram of 
significant wave height and log-normal and 
Weibull probability density functions (data 
from Khanna and Andru 1974) 
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Figure 5 Cumulative distribution function based 
on Equation (6) plotted on log-normal proba- 
bility paper (data from Bouws 1978) 
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in the following form, 

F(x) = l-e-q(x) (4) 

where, q(x) is a monotonically increasing, real-valued function. Then, 
it can be proved that, for a large number of_observations, the probable 
extreme value in n-observations, denoted by Y , is given as the inverse 
function of q(x). That is, 

Yn = q~Vn n) (5) 

The probable extreme value can also be obtained graphically by 
equating the return period, 1/{1 - F(x)}, to the number of waves expect- 
ed in a specified period of time, 10 years, 50 years, etc. 

The authors' method is to express q(x) as a combination of an 
exponential and power of the significant wave height. That is, 

q(x) = axm exp{ - pxk} (6) 

The parameters involved in q(x) are determined numerically by 
a nonlinear minimization procedure. The form used in the procedure 
is given by, 

G = ln{-ZnC\ -  F)} = In  a + m In x - pxk (7) 

The parameters are optimized such that the sum of the difference 
between G and the corresponding'observed values squared is minimal. 
The procedure is iterative, and thus requires a single set of priori 
estimates for the parameters. It was found through results of many 
numerical examples, the value of each parameter converges to a fixed 
value, individually, irrespective of the priori estimates, if sufficient 
many number of iterations, approximately 100 iterations, are carried out. 

As an example, the method is applied to significant wave height 
data observed in the North Sea. For this example, values of the four 
parameters involved in (6) are obtained as, 

a = 0.908 
m = 1.101 
p = 0.181 
k = -1.328 

The cumulative distribution function evaluated by using these 
values are plotted on the log-normal probability paper as shown in 
Figure 5 together with data points, while Figure 6 shows those plotted 
on the Wei bull paper. As can be seen in these figures, the data are 
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Figure 6 Cumulative distribution function 
based on Equation (6) plotted on Weibull 
probability paper (data from Bauws 1978) 
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Figure 7 Prediction of extreme significant 
wave height by using the proposed cumulative 
distribution function (data from Bouws 1978) 
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well represented by the proposed probability distribution over the 
entire range of the cumulative distribution function. It can be seen, 
from these figures together with the results shown in Figures 1 and 2, 
that the log-normal distribution substantially overestimates, while 
the Weibull distribution underestimates the magnitude of the extreme 
significant wave height for this example. 

Figure 7 shows the return period in the logarithmic scale. Given 
that 5,412 observations are made in 3 years, the magnitude of signifi- 
cant wave height most likely to occur in 10 years and 50 years are 
estimated from the figure as 8.8 meters and 10.0 meters, respectively. 

As another example, presentations similar to those shown in 
Figures 5 and 6 are made using the significant wave height data observed 
at Tiner Point, Canada, and results are shown in Figures 8 and 9. 
Again, the data are well represented by the proposed distribution over 
the entire range. Given that 2,304 observations were made in one year, 
the magnitudes of extreme significant wave height expected in 10 years 
and 50 years are estimated from Figure 10 as 19.0 ft (5.8 meters) and 
22.2 ft (6.8 meters), respectively. 

Figure 11 shows another example of application using the signifi- 
cant wave height data observed at Port Hueneme, California (Thompson 
1977). As can be seen in the figure, the data follow fairly well the 
log-normal distribution; however, the log-normal distribution appears 
to underestimate the extreme significant wave height for this example. 
The data are represented well by the cumulative distribution function 
obtained by the proposed method. The extreme significant wave heights 
estimated by the proposed method are shown in Figure 12. 

CONCLUSIONS 

This paper discusses a method to statistically predict the 
severest sea state (significant wave height) from the observed data. 
For the estimation of extreme significant wave height, a precise repre- 
sentation of the data by a certain probability function is highly 
desirable. For the probability distribution function applicable to 
the significant wave height, the log-normal distribution and the 
Weibull distribution have often been considered to date. Although it 
is a general trend that the data appear to follow the log-normal 
probability law, but not to the extent that this probability law can 
be used for the estimation of extreme values. In principle, there is 
no scientific basis for selecting any particular probability distri- 
bution (either the log-normal or the Weibull) to characterize the 
significant wave height. 

The authors' method is to express asymptotically the cumulative 
distribution function of the significant wave ehight as a combination 
of an exponenetial and power of the significant wave height. The para- 
meters involved are determined numerically by a nonlinear minimization 
procedure. 
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Figure 8    Cumulative distribution function 
based on Equation  (6)  plotted on log-normal 
probability paper (data from Khanna and 
Andru 1974) HEIGHT (M) 
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Figure 9    Cumulative distribution function 
based on Equation (6) plotted on Weibull 
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Figure 10 Prediction of extreme significant 
wave height by using the proposed cumulative 
distribution function (data from Khanna and 
Andru 1974) 
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Figure 12 Prediction of extreme significant 
wave height by using the proposed cumulative 
distribution function (data from Thompson 
1977) 

The proposed method is applied to significant wave height data 
obtained in the North Sea, Tina Point, Canada, and Port Hueneme, 
California. The results of analysis show that the data are well 
represented by the proposed method over the entire range of the 
cumulative distribution. Thus, it is believed that a more accurate 
estimation of the severest sea state (significant wave height) can be 
achieved based on the proposed cumulative distribution function. 
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