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Vibro-acoustic energy travels through hose walls as longitudinal waves and flexural waves, apart
from the sound waves through the fluid medium inside. Longitudinal waves in the hose wall are
coupled to the sound waves inside by means of the hose-wall Poisson’s ratio. Both in turn get
coupled to bending or flexural waves because of the energy transfer or interaction at the bends. For
any of these three types of waves incident on one end of a hose, waves of all the three types may
be transmitted on the other end because of their dynamical coupling with one another. Therefore, in
the present paper, expressions have been derived for the 333 transmission loss matrix for a
two-dimensional or planar piping system in terms of elements of the overall 838 transfer matrix of
the system. These expressions have then been used in a comprehensive computer program to
evaluate the vibro-acoustic performance of hoses, with particular application to the automotive
climate control systems with gaseous as well as liquid media. Finally, parametric studies have been
made that have led to some general design guidelines. ©1997 Acoustical Society of America.
@S0001-4966~97!03105-6#

PACS numbers: 43.20.Mv, 43.20.Jr, 43.50.Gf@JEG#
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INTRODUCTION

Rubber hoses have been used for several decade
transport of fluids so as to isolate vibrating machinery fro
accessories like exhaust and intake mufflers or rece
bottles/plenums. Hoses are capable of executing flexura
brations and torsional vibrations like a beam or shaft. T
hose wall can conduct oscillating longitudinal forces th
may interact with waves in the fluid inside as well as outsi
Flexural forces and moments get coupled to longitudi
forces and acoustic pressures because of bends in the p
system. If the fluid inside were a liquid, its inertia wou
accentuate the role of the bend.

Wiggert et al.1 considered Poisson coupling in a pip
with two bends. Based on linearized assumptions and p
odic motion, a simultaneous solution of the coupled flu
structure system equations in waveform were presented
cently by Lesmezet al.2 They have derived a composit
14314 transfer matrix consisting of submatrices for Poiss
coupled axial stress waves in the wall and pressure wave
the fluid column, flexural waves in the two normal plane
and torsional waves about the axis of the pipe or hose~see
Appendix A for the transfer matrix relations and Fig. 1 f
the forces and displacements!. In their analysis, compliance
or yielding of the hose wall is built into a modified bul
modulus for the fluid, and structural damping is accoun
for by means of a modified bulk modulus.3,4 At higher-
frequencies, however, inertia of the wall plays a signific
role and must be accounted for by means of wall impedan
The concept of wall impedance, incidentally, enables one
predict transverse transmission loss and thence the brea
noise too.5

The concept of transmission loss~TL!, which has been
for
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used extensively as a measure of the performance o
acoustical filter6 or muffler, may also be applied to th
structure-borne sound that travels in the form of longitudi
waves and flexural waves.7 TL of a one-dimensional acous
tical filter has been expressed in terms of the elements of
overall transfer matrix of the filter in the literature~see Ref.
6 for example!, but no such expressions are to be found
structure-borne sound. The present paper seeks to fill
gap.

Structure-borne longitudinal waves, flexural waves, a
fluid-borne sound waves are dynamically coupled. Henc
wave of any of these three types when incident on a pla
hose-pipe system will in general result in reflection a
transmission of all three types of waves. Thus, compl
knowledge of the transmission characteristics of a hose
tem will in general be given by a 333 matrix of transmission
loss ~TL! values. In this paper, these TL values have be
derived in terms of elements of the overall 838 matrix of the
hose-pipe system, adapted from Ref. 2~see Appendix A!
wherein the effects of shear deformation, rotary inertia, a
the fluid load have been incorporated. These express
have then been used for parametric studies related to vi
acoustics of hoses. Some general design guidelines base
the parametric studies have been arrived at for visco-ela
hoses, with or without bends, with gases or liquids as
media of propagation.

I. BASIC GOVERNING EQUATIONS

Longitudinal waves in the hose wall and on
dimensional sound waves in the medium inside are gover
by the following coupled equations:
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2rpAp

]2uz
]t2

50, ~2!

p1K*
]v
]z

22nK*
]uz
]z

50, ~3!

]p

]z
1r f

]2v
]t2

50. ~4!

Flexural ~or bending! waves are governed by the followin
equations for a beam incorporating shear deformation, ro
inertia, and fluid inertia:

FIG. 1. A straight hose-pipe reach with state variables.

FIG. 2. A sharp bend.
ry

shear angle: bx5
]uy
]z

1cx , ~5!

shear force: f y5GApksbx , ~6!

bending moment: mx5EIp
]cx

]z
, ~7!

force equilibrium:
] f y
]z

2~rpAp1r fAf !
]2uy
]t2

50, ~8!

moment equilibrium:
]mx

]z
2 f y2~rpI p1r f I f !

]2c

]t2
50,

~9!

where f z , uz , p, v, mx , cx , f y , anduy are state variables
as shown in Fig. 1. Other notations are as follows:Ap is the
cross-sectional area of the pipe,n is the Poisson’s ratio of the
pipe material,r is radius of the pipe cross section,e is the
pipe wall thickness,E is Young’s modulus~generally com-
plex!, z is the axial coordinate as shown in Fig. 1,rp is
density of the pipe material,r f is density of the fluid inside
the pipe,G is the shear modulus of the pipe material,ks is
the shear shape factor,I p is the moment of inertia of the pipe
I f is the moment of inertia of the fluid inside the pipe,K* is
the modified bulk modulus; for thin-walled pipes,

K*5
K

11K~12n2!r /Ee
, ~10!

whereK is the bulk modulus of the fluid.

II. EVALUATION OF THE TL MATRIX

For a one-dimensional hose-line system configured
they-z plane~the plane of the paper!, field matrices~A6! for
straight pipes~Fig. 1! and point matrices~A8! of Appendix
A for sharp bands~Fig. 2! may be multiplied successively a
per configuration so as to obtain the overall or product tra
fer matrix relation connecting the state vector2

FIG. 3. A hose-pipe with a smooth bend.
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$Uz P V Fz Uy Cx Mx Fy%
T ~11!

on the right-hand~or downstream! side with that on the left
hand~or upstream! side ~see Fig. 1!. HereU, P, V, F, C,
andM denote complex amplitudes of displacement, acou
pressure, acoustic particle displacement, force, flexural an
lar rotation ~or slope!, and bending moment, respectivel
Field matrix of the constituent hose-pipe elements would
made up of the 434 submatricesTfp andTyz only. Before
multiplying out, all transfer matrix elements have to be m
tiplied with the dimensional factors associated with the st
variables ~A7!, so that state variables have their physic
dimensions as in the state vector~11!. It may be noted that
for a smooth bend~Fig. 3! the bent portion will have to be
partitioned and the angular changes will be lumped at s
tions 2, 3, 4, and 5~15°, 30°, 30°, 15°! and the intermediate
portions will be treated as curved pipes with modified fle
ural rigidity EI.2

In the absence of any bends, the resultant transfer ma
would consist of two uncoupled 434 submatrices, one rep
resenting the product of the individualTfp matrices and the
other of theTyzmatrices. Further, if we put Poisson’s ration
hypothetically equal to zero in theTfp matrix ~that is, if we
neglect Poisson coupling!, then it would separate into two
uncoupled 232 submatrices corresponding to longitudin
waves in the hose wall and acoustic waves in the fluid m
dium inside the hose. Thus,

FUz

Fz
G
d

5FT11 T14

T41 T44
G FUz

Fz
G
u

~12!

FPVG
d

5FT22 T23

T32 T33
G FPVG

u

~13!

and

F Uy

Cx

Mx

Fy

G
d

5F T55 T56 T57 T58

T65 T66 T67 T68

T75 T76 T77 T78

T85 T86 T87 T88

GF Uy

Cx

Mx

Fy

G
u

, ~14!

where@T# is the overall transfer matrix, and subscriptsd and
u denote downstream and upstream variables, respectiv

In general, and particularly in the presence of bends,
type of input~incident wave! will result in an output~trans-
mitted wave! of not only the same kind, but also of othe
kinds. So, one should try to predict a set of nine TLs cor
sponding to three types of incident waves and three type
transmitted waves, making use of the entire 838 transfer
matrix of a planar hose-pipe system@see Eqs.~46!–~52!#.

As TL is a symmetric function for stationary medium
state vectors subscriptedu andd may be interchanged with
out having to invert the overall transfer matrix@T#. Thus,
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Uz

P
V
Fz

Uy

cx

Mx

Fy

4
u

5F 838

overall transfer matrix
of the hose-pipe system

T
G 3

Uz

P
V
Fz

Uy

cx

Mx

Fy

4
d

. ~15!

For an incoming or incident progressive wave, there will
one reflected wave and one transmitted wave in the cas
sound waves and longitudinal waves~in the hose-pipe wall!,
and two reflected waves and two transmitted waves,
propagating and one evanescent~exponentially decaying! in
the case of flexural waves. Thus, in general, there will
four reflected waves and four transmitted waves~anechoic
termination is presumed on the downstream side as imp
in the definition of transmission loss!. Substituting these into
the state variables in Eq.~15! would yield a set of eight
inhomogeneous equations. These may be solved to obtai
three propagating type progressive waves~evanescent flex-
ural wave carries no wave energy! in terms of the incident
wave, and thence the corresponding three transmission
values corresponding to this particular type of incident wa
The process can be repeated for the other two types of i
dent waves to obtain all nine elements of the desired 333 TL
matrix.

In the following analysis, the~known! incident wave
amplitude is denoted byA and the~unknown! reflected and
transmitted wave amplitudes~complex in general! by B.

Substituting

~uz , f z ,p,v !5~Uz ,Fz ,P,V!elz/ lejvt ~16!

into the homogeneous set of Eqs.~1!–~4!, and applying the
compatibility criterion, yields the characteristic equation

l41~t1s1g!l21st50, ~17!

wheret, s, andg are defined by the identities~A1a! to ~A1c!
of Appendix A. Equation~17! has roots

l56 jl1 ,6 jl2 , ~18!

wherel1 and l2 are given by Eqs.~A1l! and ~A1m!, and
represent wave numbers for the longitudinal wave and so
wave, respectively. Therefore, for prediction of transmiss
loss of longitudinal waves and sound waves, the stand
wave solutions may be written as

uz5$A1e
2 jl1z/ l1B1e

1 jl1z/ l%ejvt, ~19!

Fz5$Q~2 jl1!A1e
2 jl1z/ l1Q~ jl1!B1e

jl1z/1%ejvt, ~20!

v5$A2e
2 jl2z/ l1B2e

jl2z/ l%ejvt, ~21!

p5$H~2 jl2!A2e
2 jl2z/ l1H~ jl2!B2e

jl2z/ l%ejvt, ~22!

where functionsQ(b) andH(b) are given by Eqs.~2! and
~4! as

Q~b!52
rpApv

2

b
, b[

d

dz
57 jl1/ l57 jk1 , ~23!



FIG. 4. Vibro-acoustic isolation of a composite rubber hose with liquid medium.
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57 jl2 / l57 jk2 . ~24!

Putting z50 arbitrarily at the upstream as well as dow
stream end of the hose-pipe system, and assuming the d
stream termination to be anechoic as required by defini
of TL, one gets

Uz,u5A11B1 , Uz,d5B2 , ~25!

Vu5A21B3 , Vd5B4 , ~26!

Pu5H~2 jku,2!A21H~ jku,2!B3 , pd5B4H~2 jkd,2!,
~27!

Fz,u5Q~2 jku,1!A11Q~ jku,1!B1 ,
~28!

Fz,d5B2Q~2 jkd,1!.

The corresponding relations for flexural waves may be
tained as follows.
Substituting

~uy ,cx ,mx , f y!5~Uy ,Cx ,Mx ,Fy!e
lz/ lejvt ~29!

into Eqs.~5!–~9!, eliminating shear anglebx , and applying
the compatibility criterion, yields the characteristic equati

l41~s1t!l22~g2st!50, ~30!

wheret, s, andg are defined by identities~A3a! to ~A3c! of
Appendix A. Equation~28! has roots

l56l3 , 6 jl4 , ~31!

wherel3 andl4 are given by Eqs.~A3i! and ~A3j! of Ap-
pendix A, and represent evanescent waves and propag
waves, respectively. Therefore, for prediction of flexu
n-
n

-

ing
l

transmission loss, the general solutions may be written
terms ofl3 and jl4 as a sum of four progressive waves~two
evanescent and two propagating! similar to Eqs.~19! and
~20!.

Puttingz50 arbitrarily at the upstream as well as dow
stream end of the hose-pipe system, and assuming the d
stream termination to be anechoic as required by defini
of TL, yields

Uy,u5A31B51B6 , Uy,d5B71B8 , ~32!

Cx,u5E~2 jku,4!A31E~ jku,4!B51E~ku,3!B6 ,
~33!

Cx,d5E~2 jkd,4!B71E~2kd,3!B8 ,

Mx,u5F~2 jku,4!A31F~ jku,4!B51F~ku,3!B6 ,
~34!

Mx,d5F~2 jkd,4!B71F~2kd,3!B8 ,

Fy,u5G~2 jku,4!A31G~ jku,4!B51G~ku,3!B6 ,
~35!

Fy,d5G~2 jkd,4!B71E~2kd,3!B8 ,

whereE(b), F(b), andG(b) are calculated from Eqs.~5!–
~9! as

E~b!5
2v2C/b

EIb21Dv2 , ~36!

F~b!52
EIv2/C

EIb21Dv2 , ~37!

G~b!52Cv2/b, ~38!

b[
d

dz
57l3/ l , 7 jl4 / l57k3 ,7 jk4 , ~39!



FIG. 5. Effect of the wall storage modulus of a hose on its vibration isolation.
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D[rpI p1r f I f . ~41!

Substituting Eqs.~25!–~28! and ~32!–~35! into the transfer
matrix equations~15!, and rearranging, yields a set of eig
inhomogeneous equations for the eight unknownsB1 to
B8 :

@A#$B%5$S%, ~42!

where

$B%5@B1 B2 B3 B4 B5 B6 B7 B8#
T,

A11521, A2352H~ jku,2!, A33521,

A4152Q~ jku,1!,

A55521, A56521, A6552E~ jku,4!,

A6652E~ku,3!,

A7552F~ jku,4!, A7652F~ku,3!,

A8552G~ku,4!, A8652G~ku,3!,

Ai25Ti11Q~2 jkd,1!Ti4 , i51,2,...,8,

Ai45Ti21Q~2 jkd,2!Ti3 , i51,2,...,8,

Ai75Ti51E~2 jkd,4!Ti61F~2 jkd,4!Ti7

1G~2 jkd,4!Ti8 , i51,2,...,8.

The rest of the elements of matrix@A# are equal to zero:
S15A1 , S25H~2 jku,2!A2 , S35A2 ,

S45Q~2 jku,1!A1 ,

S55a3 , S65H~2 jku,4!A3 ,

S75F~2 jku,4!A3 , S85G~2 jku,4!A3 .

The matrix equations~42! are solved by means of a standa
subroutine for vector$B% for given ~say unity! values of the
incident wavesA1 , A2 , and A3 representing longitudinal
acoustic, and flexural waves, respectively.

Now, the expressions for power flux associated with d
ferent types of waves can be given by longitudinal wave

longitudinal waves: W15
v

2
Re@Fz•Uz* #, ~43!

sound waves: WS5
v

2
Af Re@P•V* # ~44!

flexural waves: Wf5
v

4
Re@Fy•Uy*1Mx•Cx* #, ~45!

where the superscript asterisk indicates complex conjuga
Applying these expressions to incident waves and tra

mitted ~propagating! waves of the three types, yields

W1,i[Wl ,i5
v

2
Re@Q~2 jku,1!#uA1u2, ~46!

W1,t[Wl ,t5
v

2
Re@Q~2 jkd,1!#uB2u2, ~47!



FIG. 6. Effect of the structural damping~loss factor! of a hose on its vibration isolation.
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W2,i[Ws,i5
v

2
Af ,u Re@H~2 jku,2!#uA4u2, ~48!

W2,t[Ws,t5
v

2
Af ,d Re@H~2 jkd,2!#uB4u2, ~49!

W3,i[Wf ,i5
v

4
Re@G~2 jku,4!1F~2 jku,4!

3E* ~2 jku,4!] uA3u2, ~50!

W3,t[Wf ,t5
v

4
@G~2 jkd,4!1F~2 jkd,4!

3E* ~2 jkd,4!] uB7u2. ~51!

Finally, elements of the 333 matrix of transmission loss ma
be calculated by means of the equation:

TLM ~ j1,j2!510 log
Wj1,i

Wj2,t
~dB!,

j1, j251, 2, and 3. ~52!

For straight hose-pipe systems, there is no coupling betw
flexural waves and the other two waves. Therefore, for s
tems without any bends, TLM~1,3!5TLM ~2,3!5TLM ~3,1!
5TLM ~3,2!50. Similarly, if one neglects Poisson couplin
between longitudinal waves in the hose wall and the so
waves in the fluid inside, then TLM~1,2!5TLM ~2,1!50. For
most practical applications, only the diagonal elements of
TL matrix are of relevance. These are
en
s-

d

e

TLM ~1,1!5TL l[LTL

~TL of longitudinal waves in the hose wall!,

~53!

TLM ~2,2!5TLs[STL

~TL of longitudinal waves in the fluid inside!,

~54!

TLM ~3,3!5TL f[FTL ~TL of flexural waves!. ~55!

In the presence of bends, however, coupling terms of the
matrix may also become relevant because of cross-mode
ergy transfer.

III. TYPICAL RESULTS AND CONCLUSIONS

A comprehensive computer program has been prepa
in FORTRAN for prediction of the transmission loss values f
longitudinal waves, sound waves, and flexural waves~LTL,
STL, and FTL!, making use of the expressions derive
above. Parametric studies were made for different mater
and geometries as listed in Appendix B, for flexural wav
(TL f or FTL!.

Typical results are shown in Fig. 4 for the default co
figuration of a 500-mm long, 19-mm nominal diamete
composite-rubber hose with steel-pipe terminations, but w
a liquid medium~power-steering system oil: see Appendix
for specifications!. Dips in the TL curves correspond to res
nance frequencies that roughly correspond tokl5np,
n51,2,3,..., where

k5
v

~K* /r f !
1/2 for sound waves, ~56!



FIG. 7. Effect of the material of a hose on its vibration isolation.

FIG. 8. Effect of the length of a hose on its vibration isolation.



FIG. 9. Effect of the number of hose pieces within the same overall length on vibration isolation.
th
e-
and

k5
v

~Er /rp!
1/2 for longitudinal waves. ~57!

The observed values are within 20% of those given by
approximate relationships~56! and ~57!.
e

However, this simple relation (kl5np) does not hold
for flexural waves for which

k5S rpApv
2

ErI p
D 1/4. ~58!

If the medium were a gas, LTL and FTL curves would r
FIG. 10. Effect of wall thickness of a hose on its vibration isolation.



FIG. 11. Effect of the inner radius of a hose on its vibration isolation.

FIG. 12. Effect of bend angle on vibration isolation of a hose.
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main more or less unchanged, but STL would reduce to z
~less than 0.5 dB!. This is because longitudinal and flexur
waves travel in the wall material whereas sound waves tra
in the fluid medium inside. For air medium, impedance m
match between air and hose material is so strong that
wall behaves more or less like a rigid boundary. For liqu
medium, however, the impedance mismatch is rather we

Poisson coupling is not of much significance because
neglect~putting n50 in theTfp transfer matrix! alters LTL
and STL by less than 0.5 dB even at 500 Hz; the differe
is much less at lower frequencies. Therefore, use of
coupled transfer matrices for evaluation of LTL and ST
would suffice.

FTL values computed with the classical beam assum
tions ~neglecting shear deformation, rotary inertia, and flu
inertia! turn out to be substantially lower~by 4–5 dB! at
higher frequencies~;500 Hz!. Therefore, the exact theor
~that is, without the classical beam assumptions! has been
used here for the parametric studies. These studies for
eous medium~refrigerant vapor! indicate that vibration iso-
lation @represented by flexural transmission loss~FTL!#
would improve with:

~i! Softer hoses~lower storage modulus,Er! as indicated
by Fig. 5,

~ii ! lossier hoses~higher loss factor,h! as is obvious from
Fig. 6,

~iii ! rubber hoses instead of aluminum as is clear from F
7,

~iv! longer hoses as is borne out by Fig. 8,
~v! more ~smaller! hoses in series with metallic~steel!

joints as indicated by Fig. 9,
~vi! thinner walls as is obvious from Fig. 10, and
~vii ! lower internal radius as is borne out by Fig. 11.
d
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-
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In particular, Fig. 9 shows that the effect of a multiple ho
is similar to that of a multiple expansion chamber muffle
better at higher frequencies, but worse at lower frequenc

Bends have a mixed but generally beneficial effect
vibration isolation~see Fig. 12!, and therefore may be use
as necessitated by logistics.

All these observations, viz.,~i!–~vii !, are in fact inde-
pendent of the fluid medium inside the hose pipe, inasm
as they have been found to hold for liquid medium well.

Finally, it may be noted that this paper has been c
cerned primarily with vibration isolation of hoses. For app
cations dealing primarily with sound waves along hoses
hose mufflers like power-steering systems,3,4,8,9 the theory
developed in Ref. 5 with that of Ref. 6 as the base would
more useful inasmuch as it would help in evaluating t
breakout noise or transverse transmission loss~TLtp! that
imposes a limit on effectiveness of axial sound TL~STL!
realization.
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APPENDIX A: TRANSFER MATRICES

The field transfer matrix of a beam element is compos
of submatrices representing different types of waves.
Poisson coupled axial stress waves in the hose wall and p
sure waves in the fluid inside, the nondimensional repres
tation of the field transfer matrix and state vector are2
@Tfp#53
sC22C0

nb

h
@C12~s1t1g!C3#

nb

h
tC2 2C11~s1g!C3

2nstC3 ~t1g!C22C0 t@~t1g!C32C1# 22ntC2

2nsC2
1

t
~~t1g!C12@~t1g#21sg#C3! ~t1g!C22C0 2n@~s1t1g!C32C1#

s~C12sC3! 2
nb

h
sC2 2

nb

h
stC3 sC22C0

4 , ~A1!
where subscriptf p indicates sound waves in the fluid an
longitudinal waves along the pipe wall,

t5
v2l 2

af
2 , ~A1a!

s5
v2l 2

ap
2 , ~A1b!

g52n2
bs

d
, ~A1c!
b5
t

e
, ~A1d!

d5
rp

r f
, ~A1e!

h5
E

K*
, ~A1f!

C05D@l2
2 cos~l1!2l1

2 cos~l2!#, ~A1g!



nd
C15DFl2
2

l1
sin~l1!2

l1
2

l2
sin~l2!G , ~A1h!

C25D@cos~l1!2cos~l2!#, ~A1i!

C35DF 1l1
sin~l1!2

1

l2
sin~l2!G , ~A1j!

D5@l1
22l2

2#21, ~A1k!

l1
25 1

2~~t1s1g!2@~t1s1g!224st#1/2!, ~A1l!
l2
25 1

2~~ t1s1g!1@~t1s1g!224st#1/2!, ~A1m!

and the nondimensional state vector at locationi ~the right-
hand end! in Fig. 1 is

Zi5SUz

l

p

K*
V

l

Fz

ApE
D
i

T

. ~A2!

For flexural vibration of the hose in they2z plane, the non-
dimensional representation of the field transfer matrix a
state vector are2
@Tyz#5F C02sC2 2@C12~s1t!C3# 2C2 2
1

g
@2sC11~g1s2!C3#

2gC3 C02tC2 C12tC3 C2

2gC2 ~g1t2!C32tC1 C02tC2 @C12~s1t!C3#

2g~C12sC3! 2gC2 gC3 C02sC2

G , ~A3!
ch
di-
vi-

h of
pipe
dis-
ws

f

s5
~rpAp1r fAf !

GApks
v2l 2, ~A3a!

t5
~rpI p1r f I f !

EIp
v2l 2, ~A3b!

g5
~rpAp1r fAf !

EIp
v2l 4, ~A3c!

C05D@l4
2 cosh~l3!1l3

2 cos~l4!#, ~A3d!

C15DFl4
2

l3
sinh~l3!1

l3
2

l4
sin~l4!G , ~A3e!

C25D@cosh~l3!2cos~l4!#, ~A3f!

C35DF 1l3
sinh~l3!2

1

l4
sin~l4!G , ~A3g!

D5@l3
21l4

2#21, ~A3h!

l3
25~g1 1

4~s2t!2!1/22 1
2~s1t!, ~A3i!

l4
25~g1 1

4~s2t!2!1/21 1
2~s1t!. ~A3j!

The state vector in they-z plane at locationi ~right-hand
end! in Fig. 1 is

Zi5SUy

l
cx

Mxl

EIx

Fyl
2

EIp
D
i

T

. ~A4!
1. General field transfer matrix

The field transfer matrix for a single straight pipe rea
shown in Fig. 1 is composed of two submatrices: longitu
nal vibration of the liquid and pipe wall and transverse
bration in they-z plane ~neglecting torsion!. Their expres-
sions were given in Eqs.~A1! and ~A3!, respectively. The
state vectors have eight dependent variables: two for eac
the forces, moments, displacements, and rotations of the
wall, and one each for acoustic pressure and particle
placement of the fluid inside. The equation below sho
these arrangements:

Zi5@TL#Zi21 , ~A5!

where @TL# is the field transfer matrix for a pipe reach o
lengthl in the local coordinate system. This 838 matrix may
be partitioned as2

@TL#5F @Tfp# 0

0 @Tyz#
G . ~A6!

The state vector at locationi in Fig. 1 is
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2

EIp
D T. ~A7!

2. Transfer matrix for a bend

The point transfer matrix relation for a sharp bend~see
Fig. 2! is2
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sin a
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0 0 0 0 0 0 1 0
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R5@PL

B# iZi
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where superscriptsR, B, andL denote right, bend, and lef
respectively, and

g5
Apl

2

I p
, ~A9a!

q5
Af

Ap
, ~A9b!

b5
K*

E
. ~A9c!

APPENDIX B: HOSE DIMENSIONS AND MATERIAL
PROPERTIES USED IN THE PARAMETRIC
STUDIES

Inside fluid: default: HFC-134a refrigerant vapor
density522 kg/m3, bulk modulus54.4363105 Pa

alternative: power-steering system oil
density5834 kg/m3, bulk modulus51.53109 Pa

Hose material: default: 3/4 in. hose used in climate con
system

Elastic modulusE5Er(11 jh)
Storage modulus,

Er52.03108 (11 f /1000), Pa
Loss factor,h50.2(110.1f /1000)
Poisson’s ratio,n50.48
Internal radius,r59.5 mm
Wall thickness,e54 mm
Density, r51196 kg/m3

alternative: aluminum hose
Storage modulus,Er56.931010 Pa
Loss factor,h50.0001
l

Poisson’s ratio,n50.33
Density, r52710 kg/m3

Internal radius,r58 mm
Wall thickness,e52 mm

Terminal material: mild steel
Storage modulus,Er52.131011 Pa
Loss factor,h50.0001
Poisson’s ratio,n50.29
Density, r57800 kg/m3

Internal radius,r5hose radius
Wall thickness,e5hose wall thickness

Flexural transmission loss~FTL! has been selected for para
metric studies on vibration isolation.
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