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Background: Single cell transcriptomics is a new technology that enables us to measure the 

expression levels of genes from an individual cell. The expression information reflects the activity 

of that individual cell which could be used to indicate the cell types. Chronic lymphocytic 

leukemia (CLL) is a malignancy of B cells, one of the peripheral blood mononuclear cells subtypes. 

We applied five analytical tools for the study of single cell gene expression in CLL course of 

therapy. These tools included the analysis of gene expression distributions – median, 

interquartile ranges, and percentage above quality control (QC) threshold; hierarchical 

clustering applied to all cells within individual single cell data sets; and artificial neural network 

(ANN) for classification of healthy peripheral blood mononuclear cell (PBMC) subtypes. These 

tools were applied to the analysis of CLL data representing states before and during the therapy. 

 

Results: We identified patterns in gene expression that distinguished two patients that had 

complete remission (complete response), a patient that had a relapse, and a patient that had 

partial remission within three years of Ibrutinib therapy. Patients with complete remission 

showed a rapid decline of median gene expression counts, and the total number of gene counts 

below the QC threshold for healthy cells (670 counts) in 80% of more of the cells. These patients 

also showed the emergence of healthy-like PBMC cluster maps within 120 days of therapy and 

distinct changes in predicted proportions of PBMC cell types. 

 

Conclusions: The combination of basic statistical analysis, hierarchical clustering, and supervised 

machine learning identified patterns from gene expression that distinguish four CLL patients 

treated with Ibrutinib that experienced complete remission, partial remission, or relapse. These 

preliminary results suggest that new bioinformatics tools for single cell transcriptomics, including ANN 

comparison to healthy PBMC, offer promise in prognostics of CLL.  

  

Keywords: artificial neural networks, chronic lymphoid leukemia, gene expression counts, Ibrutinib, 

single cell transcriptomics, supervised machine learning. 
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Background 

 

Cancer is a group of highly heterogeneous diseases characterized by abnormalities of cells 

(deregulation, mutation, and genome instability) that sustain immortality, uncontrolled growth, 

spread, and evasion of the defense mechanisms in the host organism [1]. Gene expression 

analysis (transcriptome analysis) was used to classify, discover subtypes, and predict outcomes 

in cancer [2,3]. Most gene expressions studies use analysis of bulk samples that measure average 

values of gene expression across all cells in the sample. Such studies can return useful 

information about gene expression differences between samples, but they often miss variability 

at the individual cell level [4]. Even within one cancer, cancer cells show very high heterogeneity 

reflected in differences in cellular morphology and phenotypes, including gene expression 

profiles, metabolic properties, motility, growth, and spread capabilities [5]. Heterogeneity of 

cancer cells reflects the diversity of phenotypes that differentially promote cancer progression, 

metastasis and resistance to therapies making clinical applications difficult [6]. The diversity of 

cellular and molecular phenotypes within cancer remains a crucial challenge for clinical 

applications including diagnosis, classification, prognosis, and therapy selection. Heterogeneity 

within a cancer is driven by genetic, systemic, and environmental triggers whose interplay shapes 

phenotypes related to cancer [7]. 

 

Single cell transcriptomics (SCT), also known as scRNA-seq, is an emerging technology that 

enables gene expression profiling at the individual cell level. SCT data are high-dimensional – 

more than 30,000 features are measured from single cells. A single representative data file may 

have 108 data points in form of sparse matrices where 95-99% of gene expression counts are 

zeros [8,9]. SCT produces Big Data – more than 20,000 data sets have been generated since 2017 

and are available to public. The availability of these huge and rapidly increasing data sets requires 

significant data analysis efforts. The SCT data analysis or “bioinformatics pipelines” has upstream 

and downstream components. The upstream component is concerned with accurate and 

reproducible quantification of gene expression. It involves two principal steps: quality control 

(reads, mapping, and cell quality control), and quantification (transcripts quantification, 

normalization, and control of confounding factors) [10]. SCT methods show high reproducibility 

of gene expression profiles from samples that are prepared using standard operating procedures 

(manufacturer’s protocol) and identical sample processing conditions [11]. However, even 

relatively small changes such as updating reagent kits, for example chemistry v2 vs. v3 for 10x 

Chromium (support.10xgenomics.com) produce marked changes in gene expression profiles. We 

found that gene expression profiles of healthy peripheral blood mononuclear cells (PBMC) of two 

samples from different individuals generated from the same chemistry are more similar than the 

profiles from the samples from one individual generated by different chemistry [12].  

 

The design of SCT experiments has key variables that affect the results of upstream data analysis 

and change gene expression profiles. These variables include the number of cells that are 

sequenced, cell isolation methods, experimental protocol, inclusion of quantitative standards, 

sequencing depth, and technical factors (instrument settings, chemistry, library versions, and 
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software versions) [10]. The downstream analysis of SCT data is still developing, and significant 

challenges are still unresolved. The challenges for the downstream SCT data analysis include [13]: 

handling sparsity in SCT data; lack of data-analytical tools for analysis of differential gene 

expression; lack of practically useful reference data sets; dealing with dynamic changes in cells 

over time, state, and space; handling errors and missing data; dealing with heterogeneity in 

tumors; integration of SCT data across samples, experimental designs, and protocols; and 

validation and benchmarking of SCT data analysis tools. Because of the sparseness of SCT data 

matrices and the lack of representative reference data sets, classification of single cells and 

differential gene expression analysis typically deploys unsupervised methods to assist cell type 

assignments (cell classification) before cell differential analysis of gene expression can be 

performed. Unsupervised clustering is currently the method of choice for classification of cell 

types and subtypes [14-15]. Most SCT data analyses start with unsupervised clustering followed 

by annotation of clusters and cells using various tools [16]. Cell labelling usually involves the 

analysis of canonical markers. This process is inefficient and involves manual steps – the resulting 

models display unstable accuracy and poor generalization between different studies 

[13,15,17,18]. Supervised machine learning methods address the discussed limitations by 

learning the properties of cell classes from labelled reference data sets using model training. The 

model is then applied to unlabelled data to annotate each individual cell. This learning is done 

through the inclusion of representative data sets and model validation [9,19]. A selection of 

supervised methods has been proposed for the classification of cell types and subtypes [18-23]. 

These methods are promising but due to the lack of comprehensive representative data sets 

these methods are yet to be validated using multiple independent data sets. 

 

The challenge for the analysis of SCT data in cancer is our ability to deal with the heterogeneity 

of cells, both between cancers (population studies), within a cancer (individual disease), and deal 

with data sparseness and technical factors. The key SCT tasks include identification of cancer and 

non-cancer cells, understand cancer microenvironment, assess the effects of therapies, 

understand dynamic changes in cancer cells, cancer microenvironment, and the organism [24]. 

For example, single cell transcriptomics offers insight into the cancer microenvironment [25], 

drivers of metastasis [26], and the effects of cancer therapy [27]. Furthermore, the analysis of 

123 PBMC cell subtypes in individuals shaw changes in numbers, mostly decreases, with age (12 

cell subtypes show significant changes, p<0.05), and increases with metastatic cancer (23 cell 

types, p<0.05) [28]. SCT has excellent potential to revolutionize diagnosis, classification, therapy 

selection, and prognosis in cancer, but there is an urgent need for tools and methodology that 

will ensure reproducibility of SCT results. These tools include comprehensive reference data sets, 

standardized sample processing procedures, and supervised machine learning methods for cell 

classification. 

 

We defined a diverse reference data set for classification of healthy PBMC and trained an artificial 

neural network (ANN) to achieve 95% accuracy in 5-class classification of PBMC [29]. The five 

main cell classes in PBMC include B cells (BC), dendritic cells (DC), monocytes (MC), natural killer 

cells (NK), and T cells (TC). In another study, we trained an ANN to assess the progress of chronic 

lymphocytic leukemia (CLL) upon therapy by kinase inhibitor Ibrutinib. The task was to classify 

cells into pre- and post-treatment groups using SCT gene expression changes by [30]. The study 
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results indicated that the changes in gene expression at 30 days after the start of therapy could 

predict cancer responses to the therapy.  

 

We used the same standardized format of the SCT matrices and trained artificial neural networks 

for classifying health PBMC subtypes to classify PBMC in CLL samples before and during the 

Ibrutinib treatment. We pursued three research questions in this study: 

• How do SCT profiles in CLL patients change during the ibrutinib therapy? 

• What are the differences in single cell gene expressions between healthy and CLL subjects? 

• Can we accurately predict the outcome of Ibrutinib therapy and how early these predictions 

can be made? 

 

Methods 

 

This study was performed using data from previously published CLL study [27] of four patients 

that were treated by Ibrutinib, an irreversible Bruton's tyrosine kinase (BTK) inhibitor. Ibrutinib 

binds to BTK with high affinity and inhibits B-cell receptor signalling. This inhibition results in 

decreased B-cell activation, proliferation, and cell survival. Ibrutinib demonstrates anti-tumor 

activity in B-cell cancers [31].  Our study focuses on the analysis of SCT data from four patients 

treated by Ibrutinib (two with full remission, one with partial remission, and one with relapse). 

For this analysis we used SCT classification of healthy PBMC by ANN that we developed earlier 

[29] to assess the SCT changes associated with successful CLL treatment. 

 

 

Study design 

 

In our previous study, we determined that patterns of gene expression in patients with CLL differ 

between samples taken before the treatment and at time points during the therapy.  We trained 

an ANN with data sets from different time points and predicted PBMC cells on “Day 0” (before 

therapy) and “Day 30”, “Day 120”, “Day 150”, and “Day 280” (during therapy)” [30]. We 

demonstrated that ANN distinguishes PBMC before and during treatment in successful therapy. 

The current study is the extension of our studies where we trained ANN to classify PBMC in five 

main classes. Our trained network reported 95% accuracy in classification of healthy PBMC into 

5 main classes (positive predictive values were BC – 92.0%, DC – 94.3%, MC – 97.0%, NK – 81.5%, 

and TC – 97.4%) [29]. We applied 5-class classification to CLL PBMC samples to observe the 

behavior of PBMC in CLL before and during therapy. The overall study design is shown in Figure 

1. It has four main steps: data pre-processing and standardization, basic statistical analysis of 

data sets (statistical distributions of gene expression counts), followed by the analysis of changes 

of counts during treatment. We then performed hierarchical clustering of all cells in each CLL file 

to check their similarities and groupings. Lastly, we performed the prediction of cell types by our 

trained ANN model and interpreted the results.  
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Figure 1. The design of this study. Raw data and metadata were obtained from [27]. Standardization of 

data sets was performed as described earlier [9]. The ANN model was developed as described in [9,29]. 

The details of the study are further elaborated in the main text. 

 

 

 

Data sets 

 

Data were extracted from the NCBI Gene Expression Omnibus (GEO) database 

(www.ncbi.nlm.nih.gov/geo). The GEO accession of the study is GSE111014. The IDs of the 12 

samples are shown in Table 1. The description of the study has been reported in [27]. PBMC was 

obtained from 4 CLL patients (CLL1, CLL5, CLL6, and CLL8) before treatment (day 0) and on 

treatment days 30 and 120. CLL5 had a sample collected on day 150 instead of day 120, and CLL6 

had an additional sample taken on day 280. The number of datasets indicating cell numbers in 

each sample is shown in Table 2. The total number of cells we used in this study is 48,016. The 

breakdown of cell numbers by sample collection days is shown in Table 3. CLL1 and CLL8 

experienced full remission, CLL6 had partial remission, while CLL5 had the relapse of CLL. 

 

The metadata describing the experiment is shown in Supplemental Table 1. Each file was 

analysed for the distribution of total feature (gene expression) counts. The distributions of gene 

expression values across cells in each data set were visualized. We used seaborn [32] module 

seaborn.violinplot  to draw the violin plots of feature distributions, and “area” as the value for 

the parameter “scale” to ensure that all violin plots in our analysis have the same area. The violin 

plots with the same area show the changes and different in gene expression level between 
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multiple therapy points and patients. For the analysis of healthy PBMC data sets, we used quality 

control (QC) thresholds to eliminate cells that have less than 670 total feature counts or less than 

300 positive features. We deployed this threshold on CLL data with intention to eliminate cells of 

presumably low quality. However, we found that the in samples from treatment period for CLL1 

and CLL8 (full remission), as well as the last sample from CLL6 (partial remission) had both very 

low total counts and low positive feature numbers, below the QC thresholds (Supplemental Table 

2). And the high percentage of cells above the QC thresholds before the therapy for all 4 patients 

gave the confidence that low percentage above the QC threshold after therapy was not caused 

by experiment fact. We then performed comparative analysis of the total counts to identify 

possible correlations with treatment outcomes using comparison of the percentage of cells that 

were above the QC threshold. The percentage of cells above the QC corresponds to the overall 

activity of cells in the studied sample. 

 

 

 

Table 1. Twelve data sets used in this study were obtained from the GEO database 

(www.ncbi.nlm.nih.gov/geo) from study GSE111014 [27]. They represent SCT data at several therapy time 

points (Day 0 is before therapy) for four patients (CLL1, CLL5, CLL6, and CLL8). 

TIME POINTS 

NUMBER OF DATA SETS 

CLL1 

full remission 

CLL5 

relapse 

CLL6 partial 

remission 

CLL8 full 

remission 
DATA SETS 

Day 0 GSM3020393 GSM3020395 GSM3020398 GSM3020402 4 

Day 30 0 GSM3020397 GSM3020401 GSM3020404 3 

Day 120 GSM3020394 0 GSM3020399 GSM3020403 3 

Day 150 0 GSM3020396 0 0 1 

Day 280 0 0 GSM3020400 0 1 

DATA SETS 2 3 4 3 12 

 

 

 

Table 2. The number of cells from samples by patients and therapy time points. 

TIME POINTS 
NUMBER OF CELLS IN SAMPLES 

CLL1 CLL5 CLL6 CLL8 TOTAL CELLS 

Day 0 2,775 6,655 3,391 2,186 15,007 

Day 30 0 7,172 5,771 965 13,908 

Day 120 3,827 0 2,200 2,330 8,357 

Day 150 0 6,041 0 0 6,041 

Day 280 0 0 4,703 0 4,703 

CELL NUMBER 6,602 19,868 16,065 5,481 48,016 
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Classification of cells from CLL samples 

 

The main characteristic of CLL is an extensive clonal expansion of cancerous B cells, and profound 

changes in the regulation of immune cells [33]. In CLL, the number of B cells increase in numbers 

by approximately 100-fold (as compared to healthy status), T cells double their number, NK cells 

remain similar, while the number of monocytes drops by 5-fold. Ibrutinib therapy reverses the 

composition of PBMC cell types towards healthy reference ranges [33]. To understand the 

similarity of cells within and between cell types in CLL samples, we performed cell similarity 

analysis using hierarchical clustering. We used the function ‘clustermap’ from the Seaborn [32] 

Python library, as described in [34]. A sparse matrix is taken as input data for the 

seaborn.clustermap() function to calculate a heatmap of hierarchically clustered elements (gene 

expression profiles of each cell). The input parameters were assigned: linkage – average (UPGMA 

algorithm), metric (distance metric) – correlation representing Pearson correlation distance 

range from -1 to 1). Other parameters in the clustermap() function assumed their default values. 

Heatmaps were produced for all twelve CLL files described in Table 1 and for the healthy control 

data set BroadS2 (Supplemental Table 1). The heatmaps were compared for each patient along 

the timeline (between patients, and between CLL therapy time and healthy control data set). The 

heatmaps of hierarchical clustering show how cells group together and the similarity of them 

(range 0 to 1, where 1 represents identity), and also the different and change between patients 

and multiple therapy points. 

 

 

 

Figure 2. Artificial Neural Network architecture. The 30,698 input units represent our standardized list of 

features (genes). The output nodes provide signal values that predict cell class: B cells (BC), dendritic cells 

(DC), monocytes (MC), natural killer cells (NK), and T cells (TC). The final label of each query cell is 

determined by 10 cycles of voting. 
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Next, we performed the classification of cells from each CLL sample to assess the changes of 

proportions of each cell type before and during the ibrutinib therapy. We used ANN reported in 

[29] that has 30,698 input units, ten hidden layer units, and five output units. The activation 

function was rectified linear unit and solver was Adam (adaptive moment estimation) (Figure 2). 

This trained ANN was used to assign the 5 main PBMC subtype to the CLL samples before and 

during the therapy. The ANN was assessed as 95% accurate in classification of five PBMC cell 

types (BC, DC, MC, NK, and TC) [29].  We used radar plots to compare different patients on the 

same therapy day, and also compared changes of cell type proportions for each patient, over 

time. DC were excluded from further analysis because their absolute counts of DC in CLL are 

unknown and, because of their low frequency (around 1.5% of the total PBMC) in CLL samples 

DC frequencies are very close to zero, so these results were not informative. Although the 

prediction of cell types in CLL patients are not necessarily true cell types, the change and different 

proportion of each cell type between therapy points and patients reflect the effect of the 

Ibrutinib. 
 

 

 

 

Results 

 

Statistical analysis of the CLL data sets 

 

In comparison to data set from healthy PBMC violin plots that has leaf-like shape, moderate and 

narrow interquartile range (IQR), pre-therapy CLL PBMC have elongated, needle-like shape with 

high median value of counts and broad IQR (Figure 3 and Table 3). Patients CLL1 and CLL8 whose 

outcome was complete remission, showed rapid changes in their total count distributions: 

median distribution and the range of values of total counts rapidly declined to a very low level 

(their median values were lower than our standard QC threshold). Patient CLL6 whose outcome 

was partial remission showed no changes in total count median and the range of values during 

the first 120 days of Ibrutinib therapy. Only at treatment day 280, the violin plot showed low 

median value of total counts and a narrow IQR. Patient CLL5 whose outcome was relapse, showed 

an increase of total counts median and reduction of IQR at day 30 and the reduction of both 

measures at therapy day 150 but these values were above our standard QC threshold (670 

counts). The median value of counts in day 0 of CLL1, CLL6, and CLL8 were higher than the healthy 

control by 40-65%, while CLL5 had similar number of total counts as healthy control. On the other 

hand, all CLL samples had larger IQR ranges than healthy control (140-265% increase relative to 

the healthy control). 
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Figure 3. Violin plots show statistical distributions of the total counts in each data set. Healthy control 

(BroadS2) dataset is used as a reference. All plots have the same area size (seaborn.violinplot parameter 

“scale” value was set to “area”), allowing a direct comparison of total counts distribution. Patients CLL1 

and CLL8 (complete remission outcome) show rapid reduction of the number of total counts with very 

low median after 120 days. Patient CLL6 (partial remission outcome) showed little change in total counts 

distribution during the first 120 days but showed a marked reduction of median gene counts at treatment 

day 280. Patient CLL5 (relapse outcome) showed different patterns of total counts to the patterns seen in 

the other three patients.  

 

 

Table 3. The values of median gene counts and interquartile (IQR) ranges of data sets representing 

samples taken from individual patients on specific days. FR – full remission, PR – partial remission, RE – 

relapse. 

 Day 0 Day 30 Day 120 /150* Day 280 

PATIENT MEDIAN IQR MEDIAN IQR MEDIAN IQR MED IQR 

CLL1 (FR) 1922 1241 na na 161 271 na na 

CLL8 (FR) 2315 1222 527 548 307 338 na na 

CLL6 (PR) 2060 1045 1762 721 1615 785 529 299 

CLL5 (RE) 1483 822 1920 640 1095* 409* na na 

Healthy control 1397 340       
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Figure 4. Plot of the percentage of cells ≥ QCT (greater or equal than standard QC threshold of 670 total 

counts) vs. therapy day. CLL1 and CLL8 had full remission, CLL6 had partial remission, and CLL8 had 

relapse, as outcomes. Patients CLL1 and CLL8 showed a rapid decline of total gene expression counts (15% 

or less cells had total gene expression counts ≥ 670) by the therapy day 120. In the same period, the other 

two patients showed minor reduction of the total gene expression counts (90% or more cells had total 

gene expression counts ≥ 670). Patient CLL6 showed decline in total gene expression counts between days 

120 and 280, consistent with partial remission. Patient CLL5 who had relapse, showed minimal reduction 

in the total number of gene expression counts up to therapy day 150. 

 

 

We observed the pattern where patients who experienced complete remission (CLL1 and CLL8) 

had a fast reduction of both median values and IQR of total counts (Fig. 4 and Supplemental Table 

2). The decline of the number of total gene expression counts across all cells were observed in 

samples from patients that had remission as treatment outcome. The rapid decline of total 

counts was consistent with full CLL remission, while it was delayed in partial remission. Rapid 

decline of total counts was not observed in patient CLL5 that had CLL relapse as the outcome.  

 

 

Hierarchical clustering 

 

Hierarchical clustering was performed on 13 files using Pearson coefficient correlation to discover 

groupings in the SCT data of each sample. These groupings are formed by the algorithm that 

analyses individual single cell gene expression profiles (containing 30,698 features). The cells that 

have broadly similar gene expressions profiles are grouped together. CLL is characterised by 

clonal expansion of malignant B cells [33] and is subject to a profound dysregulation of immune 

cells from both innate and adaptive branches of immune function resulting in profound changes 

in populations of dendritic cells monocytes, NK cells, and T cells [35].  
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Figure 5. Cluster maps of CLL and a healthy control data set. Cluster maps are aligned by time (treatment 

days D0-D280) and patient (CLL1, CLL8, CLL 6, and CLL5, arranged by clinical outcomes).  

 

Hierarchical clustering of twelve CLL data sets and healthy control showed major differences in 

cluster maps (heatmaps), both between healthy and CL L and between pre-treatment and during-

treatment (Figure 5). The cluster map of a healthy sample (BroadS2) showed a large diversity of 

groups with tens of mini clusters showing mostly moderate mutual similarity, between 0.4 and 

0.6 (Figure 5). CLL cluster maps before treatment show a smaller number of clusters than healthy 

samples that show high inter-cluster similarity (mostly 0.5-0.9), with marginal changes on day 30 

of the treatment. Cluster maps on day 120 (CLL1, CLL8), and day 150 (CLL5) show visible changes 

in diversification of clusters. This diversification and reduction of inter-cluster similarity is 

pronounced in CLL1 day 120 but is also visible in CLL8. At therapy day 120, CLL5 shows the 

reduction of similarity within the main cluster region emergence of another cluster different from 

primary CLL (lower right corner of the cluster map), but with little diversity within the new 

emerging cluster. The CLL6 sample cluster maps show changes of cluster map similarities, even 

the overall increase of inter-cluster similarity on day 30 and 120, as compared to day 0. Marginal 

reduction of inter-cluster is visible on treatment day 280. The most exciting finding is that CLL1 
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started developing a healthy-like structure by day 120 (the bottom-right section of the cluster 

map). 

 

Prediction of similarity to healthy PBMC cell types by an ANN model 

 

We used the predictor of healthy PBMC to assess the similarity to healthy PBMC of CLL patients 

during the course of therapy. In response to Ibrutinib, CLL1 had complete remission and 

moderate lymphocytosis (an increase of the number of lymphocytes), CLL8 had complete 

remission and weak lymphocytosis, CLL5 had relapse after BTK mutation and fast lymphocytosis, 

while CLL6 had partial remission and extended lymphocytosis.  

 

We used ANN predictor that classifies healthy PBMC with high accuracy (95% in 5-class 

classification). The classifier tells us how similar gene expression of each cell is to the profiles of 

healthy PBMC cell types and quantifies the similarity of each cell to the healthy PBMC profile. 

The rough estimates of cell type content in healthy human PBMC are 5-15% BC, 1-2% DC, 10-30% 

MC, 5-10% NK, and 40-70% TC [9,36]. Our control data set BroadS2 is composed of 15.33% BC, 

2.2% of DC, 17.34% MC, 6.85% NK, and 58.28% TC.  

 

 

  
Figure 6. Predicted percentages of BC, TC, NK and MC along the treatment days. Over time, CLL1, CLL5, 

and CLL8 show the decline of the percentage of cells whose gene expression profiles resemble healthy B 

cells.  CLL1, CLL5, and CLL8 show the increased percentages of cells that look like healthy T cells and NK 

cells. CLL1 and CLL5 show the increase of the number of cells that look like healthy monocytes while CLL8 

shows a decline to the near-zero value. CLL6 shows distinctly different profile changes as compared to the 

other three patients. 
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Figure 7. Radar graphs showing predicted percentages of cell types using ANN predictor for healthy PBMC 

(BC, MC, NK, and TC) from the CLL samples. The graphs show predictions on Day 0 for full remission 

outcomes (CLL1 and CLL8, upper left); Day 120 CLL1 and CLL8, upper right), Day 0 of relapse (CLL5) and 

partial remission (CLL6) (lower left); Day 120 of CLL6 and Day 150 of CLL5 (lower right). All patients show 

profound changes between Day 0 and Day 120/150. CLL1, CLL8 and CLL5 show similar prediction profiles, 

while CLL6 shows different prediction profile to the other three patients. 

 

 

 

Therapy Day 0 (Figure 6). Predicted B cells percentages were elevated in CLL5 (81% of the total), 

CLL1 (67%), and CLL8 (45%) while in CLL6 (16%) they were comparable to healthy control (15%). 

Predicted percentages of T cells were low in CLL5 (18% of the total) and CLL1 (33%), low-normal 

in CLL8 (48%), and high-normal in CLL6 (70%). Predicted percentages of monocytes were low in 

CLL1 (0%), CLL5 (0%), CLL8 (5%), and normal in CLL6 (13%). Predicted percentages of NK cells 

were low in all patients – 2.5% in CLL8 and below 0.5% in other patients.  
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Therapy Day 30 (Figure 6). Predicted percentages of B cells for CLL5, CLL6, and CLL8 were 

between 20% and 30%, above normal but lower than on Day 0. Predicted percentages of T cells 

increased but were below normal range in CLL1 (33%), low-normal in CLL8 (48%), and high-

normal in CLL6 (70%). Predicted percentages of monocytes were low in CLL5 (1%), CLL6 (0%) and 

CLL8 (1%). Predicted percentages of NK cells were low in all patients – 1% in CLL5 and CLL8 and 

0% in CLL6. In comparison with Day 0, in all patients the percentages of predicted B cells declined, 

percentages of T cells increased, while monocytes and NK cells remained low.  Day 30 data were 

not available for CLL1. 

 

Therapy Day 120/150 (Figure 6). Predicted percentages of B cells further declined in all patients 

– CLL1 (22%), CLL5 (5%), CLL6 (8%), and CLL8 (13%), while those of T cells increased to normal 

ranges in CLL1 (66%), CLL8 (78%), and in CLL5 (80%) reached normal or high-normal range, while 

in CLL6 (92%) exceeded normal range. Predicted percentages of monocytes were below normal 

healthy ranges in all patients – CLL1 (5%), CLL5 (3%) and CLL6 (0%), and CLL8 (8%). Predicted 

percentages of NK cells varied – 1% in CLL6 and CLL8, 5% in CLL1 and 11% CLL8. In comparison 

with Day 0, in all patients the percentages of predicted B cells declined, percentages of T cells 

increased, while changes in monocytes and NK cells varied.   

 

Other (Figure 6). Day 280 in CLL6 had high percentage of B cells (20%), high-normal of T cells 

(78%), and low of monocytes (1%) and NK cells (0%). No data at this time point are available for 

other patients. 

 

We compared data of Day 0 and Day 120/150 by radar plots of ANN predictions (Figure 7). The 

healthy control showed deltoid shape (dashed line in Figure 7). On Day 0, CLL1, CLL8, and CLL5 

showed triangular shapes: shift from T cells to B cells and close-to-zero percentage values of 

monocytes and NK cells. CLL6 showed a completely different shape: similar to healthy PBMC but 

with zero NK cells. At Day 120/150, ANN predictions of CLL1 and CLL8 were similar to the healthy 

sample, but with very low monocyte percentage. On Day 120, CLL6 showed very high predictions 

of T cells (92%), a low number of B cells (8%) and negligible numbers of predicted monocytes and 

NK cells. On Day 150, CLL5 resembled the healthy profile but with a larger number of T cells. 

 

Interpretation of results 

 

We analyzed SCT data sets representing treatment time-points of four CLL patients and one 

healthy control data set using five comparison tools. These tools provide a comparative analysis 

between different types of patients: two patients with complete remissions, one patient with 

partial remission, and one patient with relapse of CLL. The first tool, violin plots, provided the 

analysis of total counts and their statistical distributions. All pre-treatment distributions had 

elongated needle-like shapes with high medians and broad IQR ranges. Samples representing 

complete remission showed a rapid reduction of total counts, as early as on Day 30, resulting in 

a very low median and very narrow IQR at Day 120. Partial remission samples show little changes 

from pre-treatment up to Day 120, but low median and IQR at Day 280. The second tool, analysis 

of expression relative to our standard QC threshold of 670 total counts per cell provided further 

insight into quantitative changes of gene expression. By Day 120, samples representing total 
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remission had only 10-15% of cells with gene expression counts above the QC threshold. Partial 

remission sample had this pattern delayed, while the relapse sample at day 120 had 93% of 

samples with counts above the QC threshold.  

 

The results of the first two tools are consistent with the reported changes in gene expression 

upon Ibrutinib therapy. These changes involve inhibitory effects across multiple signalling 

pathways, large reduction of pathway signature scores, and the absence of upregulated 

biological pathways. It was observed that 76.3% of differentially expressed genes decreased and 

23.7% increased their level of expression upon Ibrutinib therapy [37]. It was proposed that 

Ibrutinib therapy shifts CLL cells into resting state with much of the signalling pathways turned 

down. Our results indicate that successful shutdown of signalling pathways may be apparent 

within the first 30 days of the therapy (Figure 4). The rapid decline of median value of total gene 

expression counts compared to the pre-treatment baseline is a possible early predictor of 

successful Ibrutinib therapy. 

 

The third tool we used was the hierarchical clustering of all cells in the samples. The healthy 

control data set shows a large diversity and the presence of numerous micro-clusters. In contrast, 

the baseline CLL shows a high similarity of groupings of cells by clustering (Figure 5). On Day 

120/150, the complete remission samples showed the emergence of healthy-like cluster maps 

(lower right corner), more pronounced in CLL1, but also emerging in CLL8 and CLL5, while it was 

not apparent in CLL6. Our hierarchical clustering results suggest that at Day 120 from the start of 

the therapy, the emergence of the diversity of gene expression resembling those in healthy 

control data sets is noticeable. 

 

The fourth and the fifth tools focus on the analysis of CLL samples by using healthy PBMC cell 

type classifier. The classification of cells from CLL samples by ANN does not necessarily predict 

the cell type in CLL samples but it predicts their similarity to healthy PBMC cell types considering 

the total gene expression. Overall, CLL1, CLL8, and CLL5 (complete remission and relapse) showed 

similar trends for B cells, T cells, and NK, but not for the monocytes (Figure 6). CLL6 showed 

different patterns of PBMC percentage predictions to the other three CLL samples. Interestingly, 

CLL5 showed the highest increase of monocytes (0.3% to 11.3%) between Day 0 and Day 150.  It 

was found that the high level of circulating monocytes (monocyte-derived cells in CLL 

environment) is associated with adverse clinical outcomes for CLL patients [38]. This is consistent 

with our observation that the complete remission patients (CLL1 and CLL8) showed low count 

(<5%) of cells whose gene expression resembles profiles of healthy monocytes (predicted as 

monocytes by our ANN) (Figure 6 and 7). The low number of predicted monocytes was 

maintained through Day 120 of the therapy. The partial remission patient CLL6 showed higher 

number of monocyte predictions (within the healthy range) on Day 0, and Day 150 the number 

of predicted monocytes reverted to zero. The patient CLL5 (relapse) had zero monocyte count 

but the predicted monocytes were similar to the healthy sample on Day 120. The number of 

predicted NK cells was low in all cases (<3%) on Day 0 and increased in all patients except for the 

patient with partial remission (CLL6). 
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Conclusion and discussion 

 

We developed a set of tools that support supervised machine learning for classification of CLL 

cells by their similarity to healthy PBMC and the analysis of gene expression changes during 

Ibrutinib therapy. The distribution of gene expression medians and IQR in individual data sets 

were calculated. The absolute value of gene expression was compared across different therapy 

days in individual patients. The similarity of gene expression between individual cells within each 

sample was studied using ANN classification. Individual cells from PBMC were labelled by ANN 

by their similarity of gene expression to the profiles of healthy PBMC. The PBMC samples from 

CLL patients were taken at several treatment timepoints (Days 0, 30, 120/150, and 280), as 

available. After each cell in individual CLL samples was labelled, the proportions of BC, MC, NK, 

and TC were calculated. We observed specific patterns that show consistency with the results of 

previous clinical studies.  

 

We observed several patterns in gene expression changes in CLL patients change during the 

ibrutinib therapy: 

• Gene expression patterns in CLL patients before Ibrutinib therapy show high median and 

broad interquartile ranges. Patients with complete remission within three years showed 

rapid drop of both median gene expression and the corresponding IQR. The patient with 

relapse showed lower median gene expression and IQR than other patients at Day 0. The 

same patient showed an increase in median gene expression and IQR at Day 30, and 

reduction of both terms after Day 150. The patient with partial remission showed marked 

reduction of median gene expression and IQR by Day 280 of therapy. A clear pattern of rapid 

decline of both the median gene expression and IQR was seen in patients with the full 

remission of CLL (Figure 3). 

• The intensity of gene expression, measured as the percentage of cells in samples that have 

more or equal to 670 total counts is low in samples CLL1 and CLL8, associated with positive 

outcomes in this study (Figure 4). Persistent high intensity of gene expression was observed 

on Day 0 and day 120/150. These observations are consistent with the results published in 

[37]. Ibrutinib therapy shows strong inhibitory effect on multiple molecular pathways 

resulting in broad gene expression changes in CLL cells. Ibrutinib induces “silencing” of 

cancer cells and the cancer microenvironment bringing cancer to resting-state followed by 

the attrition of residual cancer over time [37]. It was reported that as early as after two days 

of therapy Ibrutinib shuts down ongoing inflammatory responses in peripheral blood and 

lymph nodes [40]. The “silencing” pattern was observed in CLL1 and CLL8 samples, was not 

observed in the relapse sample CLL5, and was delayed in the partial remission sample CLL6 

(Figure 4).  

• Hierarchical clustering of all cells has shown a high level of similarity between cells within 

each sample on therapy Day 0 and low diversity of clusters. On day 120 the sample CLL1 

showed clear emergence of healthy-like cell diversity (lower right corner of CLL1 Day 120). 

Another full remission sample CLL8 showed similar emergence of cluster diversity (lower 

right corner of CLL8 Day 120), but it was less pronounced than in CLL1, consistent with the 

observed level of lymphocytosis – moderate in CLL1 and weak in CLL8 (Supplemental Table 

1). We hypothesise that the increase in the number of lymphocytes represents the 
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lymphocytes that show gene expression profiles similar to healthy cells. 

• The analysis of similarity of gene expression profiles between Ibrutinib treatment samples 

and healthy control PBMC by ANN (similarity of CLL PBMC to healthy cells) showed similar 

profiles in patients with complete remission (CLL1 and CLL8): a large proportion of predicted 

B-cells, reduced proportions of predicted T cells and minimal numbers of predicted NK cells 

and monocytes at Day 0. At Day 120, the predicted profiles shifted to healthy ranges (as a 

percent of the total PBMC) of T cells, slightly elevated (relative to healthy ranges) numbers 

of B cells, close to zero predicted monocytes, and low-normal range of predicted NK cells 

(Figure 7). The relapse case CLL5 showed similarity to CLL1 and CLL8 at Day 0, but similarity 

to healthy PBMC profile at Day 120. The partial remission sample CLL6 showed predicted T 

cells in healthy range, predicted B cells slightly elevated healthy range, predicted monocytes 

within the healthy range, and no predicted NK cells. At day 150, predicted T cells were 93% 

with the rest of predicted cells labelled as B cells. Taken together, the predictor of healthy 

PBMC cell types showed that patterns in CLL1 and CLL8 samples (successful therapy) were 

similar, while partial remission sample CLL6 and relapsed sample CLL5 showed different 

patterns. We note that the analysis of common cell type markers indicates that actual cell 

type in CLL and predicted cell types by ANN healthy PBMC classifier are not necessarily the 

same. PBMC in CLL are highly dysregulated and many of the cells display markers of multiple 

cell types (data not shown). In this analysis we only look at overall similarity of predicted cell 

types in comparison with healthy PBMC (comparison of proportions) but did not attempt to 

assign the actual cell type.  

 

 

Figure 8. The model of response to Ibrutinib based on clinical observations [33,35,37-40] and the results 

of the analysis in this study. Gene expression counts from single cell samples in patients with complete 

remission within 3 years show rapid drop of total gene counts within the first few days of the therapy. The 

samples from partial remission patients show little changes at the beginning, followed by gradual 

reduction of total gene counts in CLL PBMC. Relapsed CLL cases do not show notable decline of the total 

gene counts. This proposed model needs further validation and refinement. 
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Overall, the results of this study suggest that patients that experience full remission show early 

and large reduction in median gene expression level, their IQR, and the majority of actual counts 

reduced by 5-fold or more mostly below the usual QC level for single cell analysis (Figure 3 and 

4). This is combined with the increase of the diversity of cell clusters (comparable to healthy 

cluster maps) and reduction of CLL-like clusters and gradual restoration of cells that resemble 

healthy PBMC (Fig. 5, 6 and 7). While the number of CLL patients in this study is insufficient for 

strong conclusion, we suggest the possibility of early prediction of responders by observing the 

patterns of gene expression consistent with the rapid shutdown of molecular pathways by 

Ibrutinib. We propose new single cell analytical tools that use combination of clustering and 

supervised classification to predict early responders in Ibrutinib therapy. A prognostic scoring 

system for survival of CLL patients treated with ibrutinib was reported [40]. This prognostic 

system uses four independent variables (aberration of TP53, relapsed CLL, B2 microglobulin 

concentration ≥ 5 mg/L, and lactate dehydrogenase > 250 Units/L) to stratify patients into three 

risk groups: high, intermediate, and low risk. We propose a model of early response to Ibrutinib 

for an early response associated with complete remission, based on the analysis of single cell 

gene expression counts (Figure 8) and supervised Machine learning (Figures 6 and 7). This model 

needs to be validated with additional data and further studies. Furthermore, gene expression in 

CLL before and during therapy appears to reflect patterns of dysregulation in PBMC samples. This 

raises an attractive hypothesis that the type of responses to Ibrutinib may be predicted before 

the therapy. This is subject of our ongoing research. 
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