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We present a method to determine the thermo-mechanical properties of compression moulded composite parts. 

The flow-induced fibre orientation is first calculated by numerical simulation, and the resulting orientation state is 

used as input in a micromechanical model that predicts the thermo-mechanical properties of the part. A two-step 

homogenization scheme based on the grain model approach is followed. First, the properties of a reference 

composite with aligned fibres are estimated by means of a mixture rule between the upper and lower Hashin- 
Shtrikman bounds (derived by Willis). This method is in agreement with the Mori-Tanaka estimates for moderate 

concentrations, and gives better results for higher concentrations. Next, the properties of the composite are 

obtained by averaging several reference composites with different fibre directions. An example of a 3-D 

compression moulded composite part is analyzed and the results are discussed. 0 1997 Elsevier Science Limited. 

(Keywords: thermomechanical properties; compression moulding; Ebre orientation: thermomechanical; micro- 

mechanics; computational modelling) 

INTRODUCTION 

Fibre reinforced polymers are extensively used in mass 

production, in view of their short shaping time in processes 

like injection or compression moulding, together with the 

good mechanical properties of the product. However, a non- 

homogeneous fibre orientation field is obtained which is 

sometimes highly anisotropic and difficult to predict for 

complex geometries. Thermo-mechanical properties 

strongly depend on fibre orientation, but also on the 

presence of fillers or on the part porosity. The lack of 

numerical tools to predict these properties can cause over- 

dimensioning of the parts, which results in an unwanted 

weight and cost increase. 

The purpose of this paper is to model the whole 

compression moulding process, from the flow calculation 

to the prediction of resulting properties. We first briefly 

present our flow and fibre orientation model. The multi- 

level homogenization scheme used to predict thermo- 

mechanical properties is then explained. Various types of 

inclusions can be taken into account in this scheme. 

including long or short fibres, fillers or voids. Finally the 

example of a SMC compression moulded container is 

analyzed, including mechanical loading simulation. 

FLOW SIMULATION AND FIBRE ORIENTATION 

PREDICTION 

As our aim is to calculate the evolution of fibre orientation 

during the compression moulding of thin parts, the 

lubrication approximation is used to calculate the flow 

field (which means that pressure variations across the 

thickness are neglected). A particular form of the Hele- 

Shaw model’-’ will be established from this approximation, 

in accordance with the thin-cavity limit model of Barone 

and Caulks, showing that the pressure field P satisfies the 

following form of the mass equation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V.(SVP) + iI= 0, (1) 

where S is the fluidity, which depends on the pressure 

gradient, the thickness of the cavity and the rheology of 

the suspension, and iz is the time derivative of the gap 

width (which differentiates the equation from the one 

governing injection moulding). In complex parts, h 

depends on the mould closing speed. but also on the local 

mid-surface orientation. 

Our rheological and fibre orientation model is derived for 

the isothermal flow of a concentrated and incompressible 

suspension of long fibres (long as compared with the gap 

width). The following simplifying assumptions are introduced: 
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?? the fibres are supposed to remain parallel to the mid-sur- 

face of the cavity, leading to a two-dimensional orienta- 

tion field: 
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the velocity profile in the gap is assumed to be flat, 

thereby giving rise to a so-called plug flow; 

a thin lubricating layer, of constant thickness 6, is 

assumed to be present along the walls and to govern the 

losses of head in the cavity; the in-plane stretching 

viscous forces induced by fibre-flow interaction in the 

core are therefore neglected with respect to the effect of 

friction in the skin layer; 

the 2D fibre orientation field is assumed to be governed by 

the flow through the Advani-Tucker theory9.‘, with a 

high fibre aspect ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAr and a vanishing interaction 

coefficient. 

This theory, which is confirmed by experimental 
._ . . 

measurements, is still under investigation’““’ and will be 

discussed in a further publication. 

A sketch of the simplified gap velocity profile u(z) is 

depicted in Figure 1. Using the lubication approximation, 

the momentum equations read zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ap 

-0, dz- 

(2) 

(3) 

where n is the viscosity. A first integration of eqn (2) in the 

gap, with the condition &&z(O) = 0, provides the velocity 

gradient distribution: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
av 
-= "Qp. 
az r~ 

(4) 

From the assumptions of our model, the viscosity is very 

high in the core (where av/az is almost vanishing). In the 

skin layer, the viscosity is of the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n-1 

rl=To-i 3 (5) 

where no is the viscosity at zero shear rate, n is the power 

index (0 < n 5: 1) and i/ is the shear rate, 

T2=2D:D, (6) 

which, in Hele-Shaw flows, is well approximated by the 

following expression: 

.2 av av 
Y =g$’ (7) 

It is easy to combine eqns (4), (5) and (7) to obtain the shear 

rate and viscosity distributions in the skin layer. From 

h 

Figure 1 Simplified velocity profile in the gap 

eqn (4), the velocity gradient distribution is thus: 

& 1 vpllvpll - l+ ‘ln 

0 

5 

I/n 

, ifh-6<zsh, 
90 

=o, ifOsz<h-6. (8) 

Hence, as the skin is very thin (6/h < l), the average velo- 

city V, which is also the core velocity, is well approximated 

by the expression 

fi= -QpI/QpII-I+‘” h lin& 

0 
(9) 
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The relation between flow rate and pressure gradient can 

therefore be written in the form 

hv = -  SQP, (10) 

with a fluidity given by the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s=IIvPII-‘ +l’ n 

h’ + lin& 

(11) 

The mass equation is easily established from eqn (10). 

According to Advani and Tucker’, fibre orientation can 

be represented by using a probability distribution function 

$(x,&p), which is a function of the location x and time t, 

while p stands for the unit vector aligned with the fibre. 

Since calculating II/ means solving a four-dimensional 

problem in the 2D case, it is essential to simplify the 

model by introducing orientation tensors, which are defined 

as the successive moments (a2, u4,...) of the distribution 

function 1c/, 

a2 = 
I 

PP $6, t,p) dp, (12) o 

a4 = 
f 

PPPP $6~ t,P) dp, (13) o 

where the symbol 0 denotes the unit circle. According to the 

assumptions of our model, and following the Advani- 

Tucker theory, the evolution equation of the second order 

orientation tensor can be written as 

g2= -2Xa4: D, , (14) 

where au2 stands for a mixed convected time derivative of u2, 

z2 = 2 - w;a2 + a2.w, -  h(D;a2 + a2.D,) , (15) 

while Da2/Dt is the material derivative of u2, D, and w, are 

the rate of strain and rotation rate tensors in the core, and X 

is a function of the fibre aspect ratio, 

h = (Ar2 - 1)/(Ar2 + 1). (16) 

A drawback of this method is that the evolution equation for 

a2 involves the fourth-order tensor a4, which means that a 

closure approximation (expressing a4 as a function of a2) is 

required in order to relate the evolution of a2 to the velocity 

field. We have used the natural closure approximation of 

Verleye and Dupret’0.12, which was shown to be more 

accurate than the usual quadratic or hybrid closures, 

especially during flow transients. 
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THERMO-MECHANICAL PROPERTIES 

Our goal is to predict the homogenized thermo-mechanical 

properties everywhere in a composite part using the fibre 

orientation state obtained after mould filling. The composite 

is assumed to consist of a continuous phase (the matrix) 

in concentration v,,, and of fibres in concentration v,. 

Letting 0, 6, 4 and y denote the stress, strain, heat flux and 

thermal gradient, and assuming an isotropic matrix and 

transverse isotropic spheroidal inclusions of aspect ratio Ar. 

constitutive equations are written as follows: 

- in the matrix : CT=C,,] : e--&AT, d)=k;r; (17) 

- in the inclusions : u = Cj : E - PiAT, $J = ki.r ; (18) 

where C,,, ,,r ,, /3,, 0r ,, k,, o1 , are the stiffness tensor, the 

thermal stress tensor and the thermal conductivity tensor 

of the matrix or the inclusions, respectively. 

In this paper, the analysis is limited to linear materials, 

although the non-linear behaviour of the matrix phase is 

sometimes important, even if the mean stress in the 

composite is well below its ultimate stress. To take non 

linearity into account, an incremental approach using 

linearized constitutive equations is possible” , with the 

drawback that tangent properties are not constant across the 

matrix phase. “Mean” tangent properties are often used to 

simplify the problem. 

The orientation state of the inclusions is described by the 

second order orientation tensor u?. 

The homogenization volume is supposed to be large 

enough to contain a statistically representative amount of 

fibres. but small enough to let the orientation tensor be 

considered as uniform. 

HOMOGENIZATION OF A TWO-PHASE COMPOSITE 

WITH ALIGNED INCLUSIONS 

The homogenized thermo-mechanical properties of a two- 

phase composite depend on the properties of the inclusions 

and the matrix, and the distribution of strain and thermal 

gradient between them. This distribution can be described 

by introducing a fourth order deformation concentration 

tensor p and a second order thermal gradient concentration 

tensor By: 

(E); = B’: (E),, 1 w; = BY .wm , (19 

where ( Lr; denote the average in the matrix or the inclu- 

sions, respectively, in the homogenization volume. Using 

these tensors, the homogenized thermomechanical proper- 

ties can be expressed as 

C= (ViCj : B’ + v,C,,,) : (UjBE + V,14)~ ’  ) (20) 

k = (v,k;@ + v,,k,).(v;ijY + v,&- ’ , (21) 

6 = Vjpi + V,p,P* + ViV,,(C, - Cm) 1 (gE - 14) 1 

(v;P + “Jd) - ’ : (CTCm-‘:@;-&). (22) 

Details are given in Appendix A. 

Simple bounds for these tensors can be obtained without 

any assumption about the geometry of the phases by using 

the Voigt or Reuss hypotheses: 

?? for the Voigt bound, strain and thermal gradient are the 

same in the matrix and the inclusions: 

Bt=I,. BY+, (23) 

?? for the Reuss bound, stress and thermal flux are the same 

in the matrix and the inclusions: 

B’ = C,- ’ : C,,, , p = k;- ’ .k,,, . (24) 

These bounds are too wide to be useful, but tighter 

bounds can be obtained for the B tensors by using 

geometrical information about the inclusions. The 

Hashin-Shtrickman-Willis bounds“’ are established for a 

randomly dispersed set of aligned ellipsoidal inclusions. 

which gives: 

- as lower bounds : 

“‘i? =& +E,;“,,,.: (Cl, ‘: C, --I,)jm ’ . 

“‘By = (I2 + Ek ,,,. A,. : (k,, ’ k, -- L)) -- ’ . (25 ) 

- as upper bounds : 

upBc = (4 + EC,,A,. : (C; ’ : C,,, - 4)) , 

“PBY=(12+Ek,,Ar:(kr-‘: k,,,-I,)), (26) 

where Ia and 1, are the fourth and second order unit tensors, 

EC,+ is the fourth order Eshelby tensor’5.‘6 of eigenstrain 

concentration in a spheroidal inclusion of aspect ratio Ar if 

the material has a stiffness C. and Ek,Ar is the second order 

Eshelby tensorI of eigen thermal gradient concentration in 

a spheroidal inclusion of aspect ratio Ar if the material has a 

conductivity of k. 

The Mori-Tanaka theory” , which gives exact homo- 

genized properties for dilute concentrations (i.e. when fibres 

do not interact), predicts l? tensors that coincide with the 

lower bounds of eqn (25). The upper bounds of eqn (26) can 

also be obtained by using the Mori-Tanaka method, by 

considering that fibres become the continuous phase, and 

that the matrix becomes the dispersed phase with an 

ellipsoidal geometry. The upper bounds are thus accurate 

estimates of the B tensors for very high concentrations 

(which are reached above the maximum fibre packing, when 

the matrix becomes dilute and discontinuous). An accurate 

prediction of B can therefore be obtained in the intermediate 

concentration range by using a mixture rule between the 

lower and upper bounds: 

B’ = ((1 - F,,,,,(U,))(‘“B’)~’ + F,,*,,,(L’i)(“‘B’)~~ ‘)~I . 

ily = ((1 - F (v.))(%~)- ’ 
I 

rnrl I + F,,,,,(v,)(‘““BY)- ‘1 

(27) 

The mixture function F,,,,(vi) must be monotonously 

increasing and must satisfy F,,,,,,(O) = 0 and F,,,(l) = I. 
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Ideally, it has to be fitted to experimental data. For example, 

the simple function F,,l(Ui) = (Vi + $)/2 gives very good 

results and has been used in the present work. 

A comparison between this approach and other widely 

used predictive models is made in Figure 2. For low 

fibre concentration (Figure 2a), all models are accurate. 

At higher concentration, however, the Halpin-Tsai and 

Mori-Tanaka results underestimate the elastic stiffness. 

Our model and the improved Halpin-Tsai”  equations 

(which increase the reinforcing factor at high volume 

fraction) do not show this drawback. Figure 2b shows 

predictions of the stiffness of foams. In this case, the matrix 

is stiffer than the inclusions (voids). The Halpin-Tsai 

equations (improved or not) give poor predictions. Although 

the Mori-Tanaka theory provides better predictions, our 

model behaves best, especially for high void concentration. 

The experimental data shown in Figure 2 are from 

Termonia” . 

EXTENSION TO COMPOSITES WITH NON ALIGNED 

INCLUSIONS 

Predicting the B tensors is difficult for a two-phase 

composite containing non-aligned fibres, since no precise 

bounds can be established as in the previous case. To tackle 

this problem, we have used the grain decomposition 

approach*‘. 

As represented in Figure 3, the representative volume is 

decomposed into a set of aggregates containing the matrix in 

the same concentration u, as in the representative volume, 

and aligned fibres with a concentration Ui = 1 - u,. To keep 

unchanged the statistical description of the representative 

volume (i.e. the concentration and orientation distribution of 

the fibres), the aggregates containing fibres of direction p 

must have a relative volume dV/ V, = rc/@)dp. Each 

aggregate is first homogenized using the above described 

technique, in order to provide an equivalent isotropic 

transverse homogeneous material of stiffness ?, conductiv- 

ity k and thermal stress 6. 

In a second step, the different aggregates are themselves 

homogenized into a single anisotropic material, using 

various assumptions for the distribution of strain and 

thermal gradient between the aggregates. Three possible 

hypotheses are: 

the Voigt upper bound, which assumes a parallel assem- 

bly with constant mean strain and thermal gradient over 

each aggregate: 

F =(C),, i =(k), , i =@),>, . (28) 

the Reuss lower bound, which assumes a series assembly 

with constant mean stress and thermal flux over each 

aggregate: 

E =((C-‘)&’ ) g =((I;-‘)$)-’ , 

; = E:((c-‘:p,,,. (29) 

and the Mori-Tanaka assumption, which assumes 

0’ I 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.2 0.4 0.6 0.6 

Vi 

a 

i 
0 0.2 0.4 0.6 0.6 1 

PfoMI I Pm&ix 

b 

Figure 2 (a) Volume fraction dependence of the transverse Young 

modulus of a glass fibre/polyester composite. The fibres are aligned and 

continuous. (b) Density ratio dependence of the Young modulus of different 

foams 

First Homogenisation Second Homogenisation 

Figure 3 Grain model as a two-step homogenization method 

constant mean strain and thermal gradient over the 

matrix of each aggregate: 

F =(Ui(Ci 1 B’)$+U,Cm): (Ui(B’)~+U,Z4)-‘, 
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Z = (Ui(kj 1 By)+ + U,,k,) 1 (Ui(B’)$ + U,Zz)- ‘, 

a = (U,~p,, + Uj(pj - C; : (I4 - gE) : (Ci - C,)- ’ : 

(pj - p,,)))~ + ~ : (Uj(Z4 - B’) : (Ci - C,)- ’ : 

(Pi - P,,,))~ . (30) 

where B’ and 8’ are the concentration tensors for one 

aggregate with aligned inclusions. 

Orientation averaging over the aggregates can be 

calculated directly using the a2 and a4 orientation 

tensorsg,‘“,” . When a2 is the only known orientation 

tensor, (14 can be determined using the natural closure 

approximation. 

Let us emphasize that, for two-phase composites contain- 

ing inclusions of different shapes or orientations, the Mot+ 

Tanaka assumption gives a higher estimate of stiffness or 

conductivity than the Voigt upper bound when the 

inclusions are stiffer or more conductive than the matrix, 

and that an estimate below the Reuss lower bound is 

provided in the opposite case. This can be explained as 

follows: consider, for instance, the stiffness of a composite 

containing stiffer inclusions than its matrix. The most rigid 

aggregates are the ones which have the highest B’ tensor. If 

the mean strain is the same in the matrix of each aggregate, 

the total mean strain is higher in the aggregates having a 

larger B’ tensor. The Mori-Tanaka assumption thus leads to 

a non-physical behaviour, the stiffest grains undergoing the 

largest deformation. In this work, we have therefore chosen 

to use the Voigt upper bound for the second homogeniza- 

tion. An example of aggregate averaging is given in 

Figure 4. 

EXTENSION TO MULTIPHASE COMPOSITES 

Although it is not possible to fully describe the thermo- 

mechanical behaviour of a multiphase composite by means 

of the two tensors B” and BY, it is easy to extend the grain 

model to composites containing more than one type of 

inclusion: in that case, the representative volume is 

decomposed into aggregates containing a matrix of 

concentation u, and aligned inclusions of only one type of 

concentration 1 - u,,,. This set of aggregates is then 

homogenized using the same assumptions as previously. An 

example showing the prediction of conductivity for a three 

phase composite is given in Figure 5. 

EXAMPLE AND DISCUSSION 

We consider the filling of a 5 mm thick container with Sheet 

Moulding Compound (SMC). In view of symmetry, only a 

quarter of the part is analyzed. Data from a common 

polyester-glass fibre SMC have been used in isothermal 

flow calculations. The aspect ratio of the fibres is 1000. The 

Constant Strain 
Constant Stress 
M-T assumption 

/ !  

,’ 

3 A-L- 
O 0.2 0.4 0.6 0.6 

all 

Figure 4 Longitudinal Yound modulus of a glass fibre (Ar  = 100. u, = 

508)lpolyamide 6-6 composite for different states of planar orientation 

01,-. J 
0 0.2 0.4 0.6 0.6 1 

VI Iv, 

Figure 5 Thermal conductivity of a three phase composite made of 

perfectly conductive spheres of concentration v ,, non-conductive spheres of 

concentration v? and matrix of concentration v,,, := 50% 

fixed finite element mesh covering the whole part is 

represented in Figure 6a, while an example of temporary 

mesh generated during filling is shown in Figure 6~. The 

rectangular-shaped initial load and the successive fronts of 

material during compression are represented in Figure 6h. 

The orientation field is represented at different stages of the 

filling in Figures 6d, e and ,f’ by means of the two 

eigenvector-eigenvalue products of the second order 

orientation tensor. It is interesting to note that the final 

orientation state obtained by compression moulding greatly 

differs from what can be observed for injection moulded 

parts. The injection gate is indeed often followed by a 

divergent region, where fibres orient perpendicularly to the 

velocity. The final orientation is therefore rather anisotropic 

in injection moulding. However, in compression moulding, 

fibres tend to be less oriented (since a compressed isotropic 

disc remains isotropic, for instance). For multi-faceted parts 

like the container, important differences in gap width 
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Figure 6 Compression moulding of a container: (a) fixed mesh; (b) initial load and successive flow-front; (c) temporary mesh example; (d and e) transient 

orientation fields during filling; (f) final orientation field. Only a quarter of the part is represented 

between the facets are observed during the flow, which 

induce a sharp contraction tending to align the fibres with 

the fluid velocity (Figures 6d and e). The more compression 

progresses, the less this effect is important as the gap width 

becomes uniform at the end of the filling (Figure 6fi. 

These effects, combined with in-plane deformation and 

transport, give rise to an unexpected final orientation 

pattern. 

The calculated fibre orientation field in the part has 

been used as input to predict its thermo-mechanical 

properties. The bending and tension stiffness matrices 

have subsequently been computed for each element of 

the fixed mesh, using the classical Kirchoff theory, and 

have been introduced as a material property in the 

Finite Element structure computation code SAMCEF 

(which is able to deal with anisotropic materials). Figure 

7 shows the deformation and the von Mises stress in 

the container when it is clamped on its lower 

horizontal face and is loaded with an internal pressure 

of 1 bar. The behaviour of the part (Figure 7~) is compared 

to a simplified case where fibre orientation is supposed to 

be isotropic (Figure 7b). One can observe that the shape 

of the deformed part and the stress distribution are 

mainly dependent on the geometry of the part. However, 

the camber is significantly lower in the case of the flow- 

induced fibre orientation. 

CONCLUSIONS 

We have presented a global model that is able to predict 

the linear thermo-mechanical properties of complex com- 

posite parts from the flow-induced fibre orientation state. 

A decoupled approach has been used to calculate the 

flow kinematics and the fibre orientation during the 

compression moulding process. This model leads to 

qualitatively good results in the case of concentrated long 

fibres. The influence of fibre-fibre and fibre-polymer 

interactions on the flow however is neglected. Our 

micromechanical model is also appropriate when various 

types and concentrations of reinforcements are present in 

the composite. This model can provide a very efficient 
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w=O.l72m 

Geometrical scale 
(1.200 

Displacements multiplication 

factor: 0.75 

a. Plow-induced fiber orientation 

Von Mises Stress 

45e6 

0e6 

z 

x Y 

w = 0.226 m 

b. Planar isotropic fiber orientation 

Figure 7 Behaviour of the container under 1 bar pressure. Comparison between the moulded container with the flow induced orientation and a reference case 

with planar isotropic orientation. Isovalues indicate the van Mises stress. and u’ is the camber 

tool to optimize the design of composite parts, taking 

processing conditions into account. To validate this 

approach, comparisons with experimental results will be 

made to test both fibre orientation and thermo-mechanical 

properties. 

APPENDIX 

The homogenised properties of a representative volume of 

composite are defined for imposed mean strain <E >, 

temperature AT and mean thermal gradient < y > by the 

following relations: 
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- stiffness c and thermal stress b : (a) = c : (6) - BAT . 

(Al) 

- thermal conductivity i : < qb> =k. <y> (A2) 

To derive the expression of c, a mean strain E is supposed to 

be imposed on a representative volume of composite. This 

mean strain can be expressed as a function of the mean 

strain in the matrix phase using the definition (19): 

(4 = Vi(E); + U,(E), = (u,B’ + uJ4) : (& (A31 

The mean stress is obtained using the constitutive equations 
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(17) and (18) with AT = 0: 

(U) = Ui(0)i + U,(U), = UiCi 1 (E)i + U,Cm 1 (e), 

= (UiCi 1 B’ + U,Cm) L(E),. (A4) 

By inverting relation (A3), the mean stress can be expressed 

as a function of mean strain in the representative volume of 

composite, giving the expression (20) for C. The expression 

(21) for k is obt_ained in exactly the same way. 

Computing /3 is less immediate. The representative 

volume is supposed to undergo a temperature difference 

AT and a constant strain e is imposed in all this volume. 

The stress must be equal in the inclusions and the matrix for 

equilibrium: 

*e = (Ci - Cm)- ’ : (pi - P,)AT . (A5) 

Next, an opposte mean strain - E is superposed, in such a 

way that the total mean strain vanishes. Using the relation 

(A3) and (19), the mean strain in the matrix and the inclu- 

sions can easily be computed: 

(c)i = E - B’ 1 (UigE + U,Z4)- ’ 1 E 9 (‘46) 

(E), = E - (UigE + U,Z4)- ’ 1 E. (A7) 

It is easy to verify that ui(e)i + U,(E), = 0. With the help of 

the constitutive equations (17) and (18), the mean stress in 

the matrix and the inclusions is: 

(U)i = Ci : (14 -BE : (UiB’+ U,Z4)-l): E-_~AT) (A8) 

(U), = C, : (Z, - (UiB~ + u,Z~)- ‘) : E - P,AT. (A9) 

Finally, the expression (22) for the homogenized thermal 

stress tensor /3 is obtained using the definition (Al). 
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NOMENCLATURE 

P 

x 

S 

D 

I” , 

14 

P 

GGn) 

a2 

a4 

B 

a2 

CJ 

ZIT 

4 

Y 

; 

k 

E CAr 

Ek,Ar 

<x> 

<x> y 

cx> # 

pressure (Pa) 

strain rate (s-l) 

normal closure velocity (ms -‘) 

fluidity of the fibre suspension in the mould (m3s-‘Pa-‘) 

strain rate tensor (s-l) 

rotation rate tensor (s-l) 

second order unit tensor 

fourth order unit tensor 

fibre orientation unit vector 

fibre orientation distribution function 

= second order orientation tensor 

= fourth order orientation tensor 

= dimensionless parameter related to fibre aspect ratio 

= mixed convected derivative of a2 

stress tensor (Pa) 

deformation tensor 

temperature difference (K) 

heat flux (Wmm2) 

thermal gradient (Km-‘) 

stiffness tensor (Pa) 

thermal stress tensor (PaK-‘) 

thermal conductivity tensor (WK-‘mm’) 

fourth order Eshelby tensor for eigenstrain concentration for 

a material of stiffness C, in an spheroidal inclusion of aspect 

ratio Ar 

second order Eshelby tensor for eigen thermal gradient 

concentration for a material of conductivity k, in a 

spheroidal inclusion of aspect ratio Ar 

the average of the tensor X on the representative volume 

the average of the tensor X on the matrix of the 

representative volume if y = m, on the inclusions of the 

representative volume if y = i 

$X@ )$@ )dp, which means average of the transverse 

isotropic tensor X over all the orientations 


