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Prediction of time series by statistical learning:
general losses and fast rates

Abstract

We establish rates of convergences in statistical learning for

time series forecasting. Using the PAC-Bayesian approach,

slow rates of convergence
√
d/n for the Gibbs estimator un-

der the absolute loss were given in a previous work [7], where

n is the sample size and d the dimension of the set of pre-

dictors. Under the same weak dependence conditions, we

extend this result to any convex Lipschitz loss function. We

also identify a condition on the parameter space that ensures

similar rates for the classical penalized ERM procedure. We

apply this method for quantile forecasting of the French GDP.

Under additional conditions on the loss functions (satisfied

by the quadratic loss function) and for uniformly mixing pro-

cesses, we prove that the Gibbs estimator actually achieves

fast rates of convergence d/n. We discuss the optimality of

these different rates pointing out references to lower bounds

when they are available. In particular, these results bring a

generalization the results of [29] on sparse regression esti-

mation to some autoregression.
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1. Introduction

Time series forecasting is a fundamental subject in the statistical processes literature. The parametric approach contains
a wide range of models associated with efficient estimation and prediction procedures [36]. Classical parametric models
include linear processes such as ARMA models [10]. More recently, non-linear processes such as stochastic volatility
and ARCH models received a lot of attention in financial applications - see, among others, the Nobel awarded paper [33],
and [34] for a survey of more recent advances. However, parametric assumptions rarely hold on data. Assuming that the
observations satisfy a model can bias the prediction and highly underevaluate the risks, see the polemical but highly
informative discussion in [61].
In the last few years, several universal approaches emerged from various fields such as non-parametric statistics, machine
learning, computer science and game theory. These approaches share some common features: the aim is to build a
procedure that predicts the time series as well as the best predictor in a restricted set of initial predictors Θ, without
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any parametric assumption on the distribution of the observed time series. Note however that the set of predictors
can be inspired by different parametric or non-parametric statistical models. We can distinguish two classes in these
approaches, with different quantifications of the objective, and different terminologies:

• in the “batch” approach, the family of predictors is sometimes referred to as “model” or “set of concepts”. All the
observations are given at the same time; the sample X1, . . . , Xn is modelled as random. Some hypotheses like
mixing or weak dependence are required: see [7, 21, 37, 47, 49, 55, 56, 66, 67].

• in the “online” approach, predictors are usually referred to as “experts”. At each date t, a prediction of the future
realization xt+1 is based on the previous observations x1, . . . , xt , the objective being to minimize the cumulative
prediction loss, see [18, 59] for an introduction. The observation are often modeled as deterministic in this context,
the problem is then referred as “prediction of individual sequences” - but a probabilistic model is also used
sometimes [13].

In both settings, one is usually able to predict the time series as well as the best expert in the set of experts Θ, up to
an error term that decreases with the number of observations n. This type of results is referred to as oracle inequalities
in statistical theory. In other words, one builds on the basis of the observations a predictor θ̂ such that, with probability
at least 1 − ε,

R (θ̂) ≤ inf
θ∈Θ

R (θ) + ∆(n, ε) (1)

where R (θ) is a measure of the risk of the predictor θ ∈ Θ. In general, the remainder term is of order ∆(n, ε) ≈√
d/n+ log(ε−1)/

√
n in both approaches, where d is a measure of the complexity or dimension of Θ. We refer the reader

to [18] for precise statements in the individual sequences case; for the batch case, the rate
√
d/n is established in [7]

for the absolute loss under a weak dependence assumption (up to a logarithmic term).
The method proposed in [7] is a two-step procedure: first, a set of randomized estimators is drawn, then, one of them is
selected by the minimization of a penalized criterion. In this paper, we consider the one step Gibbs estimator introduced
in [16] (the Gibbs procedure is related with online approaches like the weighted majority algorithm of [44, 64]). The
advantage of this procedure is that it is potentially computationally more efficient when the number of submodels M
is very large, this situation is thoroughly discussed in [3, 29] in the context of i.i.d. observations. We discuss the
applicability of the procedure for various time series. Also, under additional assumptions on the model, we prove that
the classical Empirical Risk Minimization (ERM) procedure can be used instead of the Gibbs estimator. On the contrary
to the Gibbs estimator, there is no tuning parameter for the ERM, so this is a very favorable situation. We finally
prove that, for a wide family of loss functions including the quadratic loss, the Gibbs estimator reaches the optimal
rate ∆(n, ε) ≈ d/n + log(ε−1)/n under φ−mixing assumptions. To our knowledge, this is the first time such a result
is obtained in this setting. Note however that [1, 22] proves similar results in the online setting, and proves that it is
possible to extend the results to the batch setting under φ−mixing assumptions. However, their assumptions on the
mixing coefficients is much stronger (our theorem only require summability while their result require exponential decay
of the coefficients).
Our main results are based on PAC-Bayesian oracle inequalities. This type of results were first established for supervised
classification [46, 60], but were later extended to other problems [3, 4, 16, 17, 28, 40, 57]. In PAC-Bayesian inequalities
the complexity term d = d(Θ) is defined thanks to a prior distribution on the set Θ.
The paper is organized as follows: Section 2 provides notations used in the whole paper. We give a definition of the
Gibbs and the ERM estimators in Section 2.2. The main hypotheses necessary to prove theoretical results on these
estimators are provided in Section 3. We give examples of inequalities of the form (1) for classical sets of predictors Θ

in Section 4. When possible, we also prove some results on the ERM in these settings. These results only require a
general weak-dependence type assumption on the time series to forecast. We then study fast rates under a stronger
φ−mixing assumptions of [38] in Section 5. As a special case, we generalize the results of [3, 29, 35] on sparse regression
estimation to the case of autoregression. In Section 6 we provide an application to French GDP forecasting. A short
simulation study is provided in Section 7. Finally, the proofs of all the theorems are given in Appendices 9 and 10.

2. Preliminaries

2.1. Notations

Let X1, . . . , Xn denote the observations at time t ∈ {1, . . . , n} of a time series X = (Xt)t∈Z
defined on (Ω,A,P). We

assume that this series takes values in R
p. We denote || · || and || · ||1 respectively the Euclidean and the ℓ1 norms
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Prediction of time series

of Rp, p ≥ 1. We denote k an integer k(n) ∈ {1, . . . , n} that might depend on n. We consider a family of predictors{
fθ : (Rp)k → R

p, θ ∈ Θ
}

. For any parameter θ and any time t, fθ (Xt−1, . . . , Xt−k ) is the prediction of Xt returned by
the predictor θ when given (Xt−1, . . . , Xt−k ). For the sake of shortness, we use the notation:

X̂ θ
t := fθ(Xt−1, . . . , Xt−k ).

Notice that no assumptions on k will be used on the paper, the choice of k is determined by the context. For example,
if X is a Markov process, it makes sense to fix k = 1. In a completely agnostic setting, one might consider larger k . We
assume that Θ is a subset of a vector space and that θ 7→ fθ is linear. We consider a loss function ℓ : Rp × R

p → R+

that measures a distance between the forecast and the actual realization of the series. Assumptions on ℓ will be given
in Section 3.

Definition 1.

For any θ ∈ Θ we define the prediction risk as

R (θ) = E

[
ℓ
(
X̂ θ
t , Xt

)]
.

The main assumption on the time series X is that the risk function R (θ) does effectively not depend on t. This is true
for any strongly stationary time series. Using the statistics terminology, note that we may want to include parametric
set of predictors as well as non-parametric ones (i.e. respectively finite dimensional and infinite dimensional Θ). Let us
mention classical parametric and non-parametric families of predictors:

Example 1.

Define the AR predictors with j parameters as

fθ(Xt−1, . . . , Xt−k ) = θ0 +

j−1∑

i=1

θiXt−i

for θ = (θ0, θ1, . . . , θj−1) ∈ Θ ⊂ R
j .

In order to deal with non-parametric settings, we will also use a model-selection type notation. By this, we mean that
we will consider many possible models Θ1, . . . ,ΘM , coming for example from different levels of approximation, and finally
consider Θ = ∪M

j=1Θj (see e.g. Chapter 1 in [45]). Note that M can be any integer and might depend on n.

Example 2.

Consider non-parametric auto-regressive predictors

fθ(Xt−1, . . . , Xt−k ) =

j∑

i=1

θiφi(Xt−1, . . . , Xt−k )

where θ = (θ1, . . . , θj ) ∈ Θj ⊂ R
j and (φi)

∞
i=0 is a dictionnary of functions (Rp)k → R

p (following e.g. [29], by

dictionnary of function we actually mean any family of functions, for example the Fourier basis, a wavelet basis, splines,

polynomials...). It is well-known that a small j will lead to poor approximations properties of Θj (large bias), while a

large j leads to a huge variability in the estimation. In this situation, our main results allow the case M = n and

provide an estimator on Θ = ∪n
j=1Θj that will achieve the optimal balance between bias and variance.
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2.2. The ERM and Gibbs estimators

Consider that Θ = ∪M
j=1Θj . As the objective is to minimize the risk R (·), we use the empirical risk rn(·) as an estimator

of R (·).

Definition 2.
For any θ ∈ Θ, rn(θ) = 1

n−k
∑n

i=k+1 ℓ
(
X̂ θ
i , Xi

)
.

Definition 3 (ERM).

For any 1 ≤ j ≤ M , the ERM in Θj is defined by

θ̂ERMj ∈ arg min
θj∈Θj

rn(θj ).

We will denote θ̂ERM the ERM defined on the entire parameter space Θ. It is well known that if Θ is a high dimensional
space then the ERM suffers overfitting. In such cases, we reduce the dimension of the statistical problem by selecting
a model through a penalization procedure. The resulting procedure is known under the name SRM (Structural Risk
Minimization) [63], or penalized risk minimization [12].

Definition 4 (SRM).

Define the two steps estimator as θ̂ERM
ĵ

where ĵ minimizes the function of j

rn(θ̂
ERM
j ) + penj

for some penalties penj > 0, 1 ≤ j ≤ M .

In some models, risk bounds on the ERM are not available. In order to deal with these models, we introduce another
estimator: the Gibbs estimator. Let T be a σ-algebra on Θ and M1

+(Θ) denote the set of all probability measures on
(Θ, T ). The Gibbs estimator depends on a fixed probability measure π ∈ M1

+(Θ) called the prior. However, π should
not necessarily be seen as a Bayesian prior: as in [17], the prior will be used to define a measure of the complexity of
Θ (in the same way than the VC dimension of a set [63] measures its complexity).

Definition 5 (Gibbs estimator).
Define the Gibbs estimator with inverse temperature λ > 0 as

θ̂λ =

∫

Θ

θρ̂λ(dθ), where ρ̂λ(dθ) =
e−λrn(θ)π(dθ)∫
e−λrn(θ′)π(dθ′)

.

The choice of π and λ is discussed in Section 4. Consider the model-selection set-up Θ = ∪M
j=1Θj for disjoints Θj . In [7],

the following penalization procedure was studied: first, calculate a Gibbs estimator θ̂λ,j in each Θj , then, choose one of
them based on a penalized minimization criterion similar to the one in Definition 4. In this paper, even in the model
selection setup, we will define a probability distribution on the whole space Θ = ∪M

j=1Θj and use Definition 5 to define
the Gibbs estimator on Θ.
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Prediction of time series

2.3. Oracle inequalities

Consider some parameter space Θ that is the union of M disjoint sets Θ = ∪M
j=1Θj . Our results assert that the risk of

the estimators are close to the best possible risk up to a remainder term with high probability 1 − ε. The rate at which
the remainder term tends to zero with n is called the rate of convergence. We introduce the notation θj and θ with

R (θj ) = inf
θ∈Θj

R (θ) and R (θ) = inf
θ∈Θ

R (θ)

(we assume that these minimizers exists, they don’t need to be unique; when they don’t exist, we can replace these by
approximate minimizers). We want to prove that the ERM or Gibbs estimators satisfy, for any ε ∈ (0, 1) and any n ≥ 0,
the so-called oracle inequality:

P

(
R
(
θ̂
)

≤ min
1≤j≤M

[
R (θj ) + ∆j (n, ε)

])
≥ 1 − ε (2)

where the error terms ∆j (n, ε) → 0 as n → ∞ (we will also consider oracle inequalities when M = 1, in this case, we
will use the notation ∆(n, ε) instead of ∆1(n, ε)). Slow (resp. fast) rates of convergence correspond to ∆j (n, ε) = O(n−1/2)

(resp. O(n−1)) when ε > 0 is fixed for all 1 ≤ j ≤ M . It is also important to estimate the increase of the error terms
∆j (n, ε) when ε → 0. Here it is proportional to log(ε−1); that corresponds to an exponential tail behavior of the risk.
To establish oracle inequalities, we require some assumptions discussed in the next section.

3. Main assumptions

We prove in Section 4 oracle inequalities under assumptions of three different types. First, assumptions Bound(B ),
WeakDep(C) and PhiMix(C) hold on the dependence and boundedness of the time series. In practice, we cannot know
whether these assumptions are satisfied on data. However, these assumptions are satisfied for many classical time series
as shown in [23, 26].
Second, assumptions LipLoss(K ), Lip(L), Dim(d,D) and L1(Ψ) hold respectively on the loss function ℓ , the predictors X̂ θ

t

and the parameter spaces Θj . These assumptions can be checked in practice as the statistician know the loss function
and the predictors.
Finally, the assumption Margin(K) involve both the observed time series and the loss function ℓ . As in the iid case, it
is only required to prove oracle inequalities with fast rates.

3.1. Assumptions on the time series

Assumption Bound(B ), B > 0: for any t > 0 we have ||Xt || ≤ B almost surely.
It is possible to extend some of the results in this paper to unbounded time series using the truncation technique
developed in [7]. The price to pay is an increased complexity in the bounds, so, for the sake of simplicity, we only deal
with bounded series in this paper.
Assumption WeakDep(C) is about the θ∞,n(1)-weak dependence coefficients of [23, 53].

Definition 6.

For any k > 0, define the θ∞,k (1)-weak dependence coefficients of a bounded stationary sequence (Xt) by the relation

θ∞,k (1) := sup
f∈Λk1 ,0<j1<···<jk

∥∥∥
∥∥E
[
f (Xj1 , . . . , Xjk )|Xt , t ≤ 0

]
− E

[
f (Xj1 , . . . , Xjk )

]∥∥
∥∥∥

∞
,

(||V ||∞ refers to the essential supremum of the random variable ||V || where V is a random vector in R
p) where Λk

1 is the

set of 1-Lipshitz functions of k variables

Λk
1 =

{
f : (Rp)k → R,

|f (u1, . . . , uk ) − f (u′
1, . . . , u

′
k )|∑k

j=1 ||uj − u′
j ||

≤ 1

}
.
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The sequence (θ∞,k (1))k>0 is non decreasing with k . The idea is that as soon as Xk behaves “almost independently”
from X0, X−1, ... then θ∞,k (1) − θ∞,k−1(1) becomes negligible. Actually, it is known that for many classical models of
stationary time series, the sequence is upper bounded, see [23] for details.
Assumption WeakDep(C), C > 0: θ∞,k (1) ≤ C for any k > 0.

Example 3.

Examples of processes satisfying WeakDep(C) and Bound(B ) are provided in [7, 23, 32]. It includes Bernoulli shifts

Xt = H(ξt , ξt−1, . . . ) where the ξt are iid, ||ξ0|| ≤ b and H satisfies a Lipschitz condition:

||H(v1, v2, ...) −H(v ′
1, v

′
2, ...)|| ≤

∞∑

j=0

aj ||vj − v ′
j || with

∞∑

j=0

jaj < ∞.

Then (Xt) is bounded by B = H(0, 0, ...) + bC and satisfies WeakDep(C) with C =
∑∞

j=0 jaj . In particular, solutions

of linear ARMA models with bounded innovations satisfy WeakDep(C), as well a large class of Markov models and

non-linear ARCH models, see [32] p. 2003-2004.

In order to prove the fast rates oracle inequalities, a more restrictive dependence condition is assumed. It holds on the
uniform mixing coefficients introduced by [38].

Definition 7.

The φ-mixing coefficients of the stationary sequence (Xt) with distribution P are defined as

φr = sup
(A,B)∈ σ (Xt ,t≤0)×σ (Xt ,t≥r)

|P(B/A) − P(B)|

where σ (Xt , t ∈ I) is the σ-algebra generated by the set of random variables {Xt , t ∈ I}.

Assumption PhiMix(C), C > 0: 1 +
∑∞

r=1

√
φr ≤ C.

This assumption appears to be more restrictive than WeakDep(C) for bounded time series:

Proposition 1 ([53]).

Let (Xt) be any time series that satisfies Bound(B ) and PhiMix(C). Then it also satisfies WeakDep (CB ).

(This is a direct consequence of the last inequality in the proof of Corollaire 1 p. 907 in [53]).

3.2. Assumptions on the loss function

Assumption LipLoss(K ), K > 0: the loss function ℓ is given by ℓ(x, x ′) = g(x − x ′) for some convex K -Lipschitz function
g such that g(0) = 0 and g ≥ 0.

Example 4.

A classical example in statistics is given by ℓ(x, x ′) = ||x − x ′||, it is the loss used in [7], this loss is the absolute loss in

the case of univariate time series. It satisfies LipLoss(K ) with K = 1. In [47, 49], the loss function used is the quadratic

loss ℓ(x, x ′) = ||x − x ′||2. When Bound(B ) is satisfied, the quadratic loss satisfies LipLoss(2B ).
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Example 5.

The class of quantile loss functions introduced in [41] is given by

ℓτ (x, y) =

{
τ (x − y) , if x − y > 0

− (1 − τ) (x − y) , otherwise

where τ ∈ (0, 1) and x , y ∈ R. The risk minimizer of t 7→ E(ℓτ (V − t)) is the quantile of order τ of the random variable

V . Choosing this loss function one can deal with rare events and build confidence intervals [9, 13, 42]. In this case,

LipLoss(K ) is satisfied with K = max(τ, 1 − τ) ≤ 1.

Assumption Lip(Lj ), Lj > 0: for any θ ∈ Θj there are coefficients aj (θ) for 1 ≤ j ≤ k such that, for any x1, ..., xk and
y1, ..., yk ,

∥∥fθ (x1, . . . , xk ) − fθ (y1, . . . , yk )
∥∥ ≤

k∑

j=1

aj (θ)
∥∥xj − yj

∥∥ ,

with
∑k

j=1 aj (θ) ≤ Lj .

To define the Gibbs estimator we set a prior measure π on the parameter space Θ. The complexity of the parameter
space is determined by the growth of the volume of sets around the oracle θj :

Assumption Dim(dj , Dj ): there are constants dj = d(Θj , πj ) and Dj = D(Θj , πj ) satisfying

∀δ > 0, πj ({θ, R (θ) − R (θj ) < δ}) ≤
(
δ

Dj

)dj
.

This assumption basically states that the prior gives enough weight to the sets {θ : R (θ) − R (θ) < δ}. As discussed
in [7, 17], it holds for reasonable priors when Θj is a compact set in a finite dimensional space with dj depending on
the dimension and Dj depending on the diameter of Θj . In the case of the ERM, we need a more restrictive assumption
that states that we can compare the set {θ : R (θ) − R (θ) < δ} to some ℓ1 ball in Θ.

Assumption L1(Ψ), ψ > 0:
∥∥∥X̂ θ1

1 − X̂
θ2
1

∥∥∥ ≤ ψ
∥∥θ1 − θ2

∥∥
1

a.s. for all (θ1, θ2) ∈ Θ2.

3.3. Margin assumption

Finally, for fast rates oracle inequalities, an additional assumption on the loss function ℓ is required. In the iid case,
such a condition is also required. It is called Margin assumption or Bernstein hypothesis.

Assumption Margin(K), K > 0: for any θ ∈ Θ,

E

{[
ℓ
(
Xq+1, fθ(Xq, ..., X1)

)
− ℓ
(
Xq+1, fθ(Xq, ..., X1)

)]2
}

≤ K
[
R (θ) − R (θ)

]
.

As assumptions Margin(K) and PhiMix(C) won’t be used before Section 5, we postpone examples to this section.

4. Slow rates oracle inequalities

In this section, we give oracle inequalities in the sense of Equation 2 with slow rates of convergence ∆j (n, ε). The proofs
of these results are given in Section 10. Note that the results concerning the Gibbs estimator are actually corollaries
of a general result, Theorem 7, stated in Section 9. We introduce the following notation for the sake of shortness.

Definition 8.
When Bound(B ), LipLoss(K ), Lip(Lj ) and WeakDep(C) are satisfied, we say that the model Θ satisfies Assumption

SlowRates(κj ) for κj := K (1 + Lj )(B + C)/
√

2.
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4.1. The experts selection problem with slow rates

Consider the so-called V -aggregation problem [51] with a finite set of predictors.

Theorem 1.

Assume that |Θ| = N ∈ N and that SlowRates(κ) is satisfied for κ > 0. Let π be the uniform probability distribution

on Θ. Then the oracle inequality (2) is satisfied by the Gibbs estimator θ̂λ for λ > 0, ε > 0 with

∆(n, ε) =
2λκ2

n (1 − k/n)2
+

2 log (2N/ε)

λ
.

The choice of λ in practice in this example is not trivial. The choice λ =
√

log(N)n yields the oracle inequality:

R (θ̂λ) ≤ R (θ) + 2

√
log(N)

n

(
κ

1 − k/n

)2

+
2 log (2/ε)√
n log(N)

.

This choice is not optimal and one would like to choose λ as the minimizer of the upper bound

2λκ2

n (1 − k/n)2
+

2 log (N) .

λ

But κ = κ(K, L, B , C) and the constants B and C are, usually, unknown. However, under our assumptions, the ERM
predictor reaches the same bound without any calibration parameter.

Theorem 2.
Assume that |Θ| = M and that SlowRates(κ) is satisfied for κ > 0. Then the ERM estimator θ̂ERM satisfies the oracle

inequality (2) for any ε > 0 with

∆(n, ε) = inf
λ>0

[
2λκ2

n (1 − k/n)2
+

2 log (2N/ε)

λ

]
=

4κ

1 − k/n

√
log (2N/ε)

n
.

We now discuss the optimality of these results. First, note that to our knowledge, no lower bounds for estimation under
dependence assumption are known in this context. But, as iid observations satisfy our weak dependence assumptions,
we can compare our upper bounds to the lower bounds known in the iid case. In the context of a finite parameter set and
bounded outputs, the optimal rate in the iid case still depends on the loss function. For the absolute loss, it is proved
in [6], Theorem 8.3 p. 1618 that the rate

√
log(N)/n cannot be improved. This means that the rates in Theorems 1 and 2

cannot be improved without any additional assumption.

4.2. The Gibbs and ERM estimators when M = 1

In the previous subsection we focused on the case where Θ is a finite set. Here we deal with the general case, in the
sense that Θ can be either finite or infinite. Note that we won’t consider model selection issues in this subsection, say
M = 1. The case where Θ = ∪M

i=1Θi with M > 1 is postponed to the next subsection.

Theorem 3.

Assume that SlowRates(κ) and Dim(d,D) are satisfied. Then the oracle inequality (2) is satisfied for the Gibbs estimator

θ̂λ for λ > 0 with

∆(n, ε) =
2λκ2

n (1 − k/n)2
+ 2

d log (Deλ/d) + log (2/ε)

λ
.
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Prediction of time series

Here again λ = O(
√
nd) yields slow rates of convergence O(

√
d/n logn). But an exact minimization of the bound with

respect to λ is not possible as the constant κ is not known and cannot be estimated efficiently (estimations of the weak
dependence coefficients are too conservative in practice). A similar oracle inequality holds for the ERM estimator, that
does not require any calibration, but this time, this result requires a more restrictive assumption on the structure of Θ

(see Remark 1 below).

Theorem 4.

Assume that Θ = {θ ∈ R
d :

∥∥θ
∥∥

1
≤ R} for some R > 0, and that SlowRates(κ) holds on the extended model

Θ′ = {θ ∈ R
d :
∥∥θ
∥∥

1
≤ R + 1}. If L1(Ψ) is satisfied then the oracle inequality (2) is satisfied for any ε > 0 with

∆(n, ε) = 2 inf
λ≥2Kψ/d

[
λκ2

n (1 − k/n)2
+
d log (2eKψ(R + 1)λ/d) + log (2/ε)

λ

]
.

For n sufficiently large and λ = ((1 − k/n)/κ)
√
dn ≥ 2Kψ/d we obtain the oracle inequality

R (θ̂ERM ) ≤ R (θ) +
2κ

1 − k/n

(√
d

n
log

(
2eKψ(R + 1)

κ

√
n

d

)
+

log (2/ε)√
dn

)
.

Thus, the ERM procedure achieves predictions that are close to the oracle, with a slow rate of convergence. On the
one hand, this rate of convergence can be improved under more restrictive assumption on the loss, the parameter spaces
and the observations. On the other hand, the general result holds for any quantile losses and any parameter spaces in
bijection with a ℓ1 ball in R

d. In particular it applies very easily to linear predictors of any orders.

Example 6.
When Θ = {θ ∈ R

d : ||θ||1 ≤ R}, the linear AR predictors with j parameters satisfy Lip(L) with L = R + 1. The

assumptions of Theorem 4 are satisfied with d = j and ψ = B . Moreover, thanks to Remark 1 below, the assumptions

of Theorem 3 are satisfied with D = (KB ∨ K 2B 2)(R + 1).

Note that the context of Theorem 4 are less general than the one of Theorem 3:

Remark 1.
Under the assumptions of Theorem 4 we have for any θ ∈ Θ

R (θ) − R (θ) = E

{
g
(
X̂ θ

1 − X1

)
− g

(
X̂ θ

1 − X1

)}
≤ E

{
K
∥∥∥X̂ θ

1 − X̂ θ
1

∥∥∥
}

≤ Kψ||θ − θ||1.

Consider the Gibbs estimator with prior distribution π uniform on Θ′ = {θ ∈ R
d : θ1 ≤ R + 1}. We have

log
1

π{θ : R (θ) − R (θ) < δ}
≤ log

1

π{θ : ||θ − θ||1 < δ
Kψ

}





= d log
(
Kψ(R+1)

δ

)
when δ/Kψ ≤ 1

≤ d log (Kψ(R + 1)) otherwise.

Thus, in any case,

log
1

π{θ : R (θ) − R (θ) < δ}
≤ d log

(
(Kψ ∨ K 2ψ2)(R + 1)

δ

)

and Dim(d,D) is satisfied for d = d and D = (Kψ ∨ K 2ψ2)(R + 1).
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Remark 2.

We obtain oracle inequalities for the ERM on parameter spaces in bijection with the ℓ1-ball in R
d. The rates of

convergence are O(
√
d/n logn). In the iid case, procedures can achieve the rates O(

√
log(d)/n) which is optimal as

shown by [39] - but, to our knowledge, lower bounds in the dependent case are still an open issue. It nevertheless

indicates that the ERM procedure might not be optimal in the setting considered here. Note however that, as the

results on the Gibbs procedure are more general, they do not require the parameter space to be an ℓ1-ball. For example,

when Θ is finite, one can deduce a result similar to Theorem 1 from Theorem 3. This proves that Theorem 3 cannot be

improved in general.

4.3. Model aggregation through the Gibbs estimator

We know tackle the case Θ = ∪M
i=1Θj with M ≥ 1. In this case, it is convenient to define the prior π as π =

∑
1≤i≤M piπi

where πi(Θi) = 1, pi ≥ 0 and
∑

1≤i≤M pi = 1.

Theorem 5.
Assume that SlowRates(κj ) and Dim(dj , Dj ) are satisfied for all 1 ≤ j ≤ M . For each θ ∈ Θ, as there is only one j

such that θ ∈ Θj , we define κ(θ) := κj . Define a modified Gibbs estimator as:

θ̃λ =

∫
θρ̃λ(dθ) where ρ̃λ(dθ) ∝ exp

[
−λrn(θ) − λ2κ(θ)2

n(1 − k
n
)2

]
π(dθ)

(note that when all the Lj are equal, this coincides with the Gibbs estimator θ̂λ). Let us define the grid Λ =

{20, 21, 22, . . . } ∩ [1, n] and

λ̃ = arg min
λ∈Λ

{∫ [
rn(θ) +

λκ(θ)2

n (1 − k/n)2

]
ρ̃λ(dθ) +

K(ρ̃λ, π)

λ

}
.

Then, with probability at least 1 − ε,

R (θ̃λ̃) ≤ min
1≤j≤M

{
R (θj ) + inf

λ∈[1,n]

[
4λκ2

j

n (1 − k/n)2
+ 2

dj log
(

2Dj
√
eλ

dj

)
+ log

(
2 log2(2n)

εpj

)

λ

]}
.

Note that when M ≤ n, the choice pj = 1/M leads to a rate O(
√
dj /n log(n)). However, when the number of model is

large, this is not a good choice. Calibration of pj is discussed in details in [7], the choice pj ≥ exp(−dj ), when possible,
has the advantage that it does not deteriorate the rate of convergence.
Note that it is possible to prove a similar result for a penalized ERM (or SRM) under additional assumptions: L1(Ψj )

for each model Θj . However, as for the Gibbs estimator, the SRM requires the knowledge of κj , so there is no advantage
at all in using the SRM instead of the Gibbs estimator in the model selection setup.

5. Fast rates oracle inequalities

5.1. Discussion on the assumptions

In this section, we provide oracle inequalities like (2) with fast rates of convergence ∆j (n, ε) = O(dj /n). One need
additional restrictive assumptions.

• now p = 1, i.e. the process (Xt)t∈Z is real-valued;

• we assume additionally Margin(K) for some K > 0;

• the dependence condition WeakDep(C) is replaced by PhiMix(C).
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Prediction of time series

As stated above, the margin (or Bernstein) assumption is required even in the iid setting to achieve fast rates. We
provide now some examples of processes satisfying the uniform mixing assumption: PhiMix(C). In the three following
examples (εt) denotes an iid sequence (called the innovations).

Example 7 (AR(p) process).

Consider the stationary solution (Xt) of an AR(p) model: ∀t ∈ Z, Xt =
∑p

j=1 ajXt−j + εt . Assume that (εt) is bounded

with a distribution possessing an absolutely continuous component. If A(z) =
∑p

j=1 ajz
j has no root inside the unit disk

in C then (Xt) is a geometrically φ-mixing process, see [5], and PhiMix(C) is satisfied for some C.

Example 8 (MA(p) process).
Consider the stationary process (Xt) such that Xt =

∑p
j=1 bjεt−j for all t ∈ Z. By definition, the process (Xt) is stationary

and φ-dependent - it is even p-dependent, in the sense that φr = 0 for r > p. Thus PhiMix(C) is satisfied for some

C > 0.

Example 9 (Non linear processes).
For extensions of the AR(p) model of the form Xt = F (Xt−1, . . . , Xt−p; εt), the stationary solution is φ-mixing, the

coefficients are estimated and can satisfy PhiMix(C). See e.g. [50].

We now provide an example of predictive model satisfying all the assumptions required to obtain fast rates oracle
inequalities, in particular Margin(K), when the loss function ℓ is quadratic, i.e. ℓ(x, x ′) = (x − x ′)2:

Example 10.
Consider Example 2 where

fθ(Xt−1, . . . , Xt−k ) =
N∑

i=1

θiφi(Xt−1, . . . , Xt−k ),

for functions (φi)
∞
i=0 of (Rp)k to R

p, and θ = (θ1, . . . , θN) ∈ R
N . Assume the φi upper bounded by 1 and Θ =

{θ ∈ R
N , ||θ||1 ≤ L} such that Lip(L) is satisfied. Moreover LipLoss(K ) is satisfied with K = 4B . Assume that

θ = arg minθ∈RN R (θ) ∈ Θ in order to have:

E

{[(
Xq+1 − fθ(Xq, ..., X1)

)2

−
(
Xq+1 − fθ(Xq, ..., X1)

)2
]2
}

= E

{
[fθ(Xq, ..., X1) − fθ(Xq, ..., X1)]2 [2Xq+1 − fθ(Xq, ..., X1) − fθ(Xq, ..., X1)]2

}

≤ E

{
[fθ(Xq, ..., X1) − fθ(Xq, ..., X1)]2 16B 2(1 + L)2

}

≤ 16B 2(1 + L)2
[
R (θ) − R (θ)

]
by Pythagorean theorem.

Assumption Margin(K) is satisfied with K = 16B 2(1 + L)2. According to Theorem 6 below, the oracle inequality with

fast rates holds as soon as Assumption PhiMix(C) is satisfied.

We introduce the following notation for the sake of shortness.

Definition 9.

When Margin(K), LipLoss(K ), Bound(B ), PhiMix(C), Lip(L) are satisfied, we will say for short that Θ satisfies Assumption

FastRates(κ) for κ := 4KC(4 ∨ KLB ).

75



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

P. Alquier, X. Li, O. Wintenberger

5.2. Gibbs estimator for model selection

We only give oracle inequalities for the Gibbs estimator in the model-selection setting. Obviously, when there is only
one models, all the results can be obtained by taking M = 1 (in this case, this result can be extended to the ERM
predictor at the cost of additional assumptions, so we won’t present any results on the ERM here).

Theorem 6.

Assume that FastRates(κ) and Dim(dj , Dj ) hold for any j ∈ {1, ...,M}. Then for λ = (n − k)/κ, we obtain the oracle

inequality (1) is satisfied with

∆(n, ε) = 4 inf
j



R (θj ) − R (θ) + κ

dj log
(
Dje(n−k)

16kCdj

)
+ log

(
2
εpj

)

n− k



 .

Compare with the slow rates case, we don’t have to optimize with respect to λ as the optimal order for λ is independent
of j . In practice, the value of λ provided by Theorem 6 is too conservative. In the iid case, it is shown in [29] that the
value λ = n/(4σ 2), where σ 2 is the variance of the noise of the regression yields good results. In our simulations results,
we will use λ = n/ ˆvar(X ), where ˆvar(X ) is the empirical variance of the observed time series.
The rate d/n is known to be optimal in the i.i.d. case for the quadratic loss, see e.g. (1.3) page 1676 in [14]. Let us
compare the rates in Theorem 6 to the ones in [1, 22, 47, 49]. In [47, 49], the rate 1/n is never obtained. The paper [1]
proves fast rates for online algorithms that are also computationally efficient, see also [22]. The fast rate 1/n is achieved
when the coefficients (φr) are geometrically decreasing. In other cases, the rate is slower. Note that we do not suffer
such a restriction: we only need the partial sums of the coefficients to converge. The Gibbs estimator of Theorem 6 can
also be computed efficiently thanks to MCMC procedures, see [3, 29].

5.3. Corollary: sparse autoregression

Consider the linear predictors

X̂ θ
t = θ0 +

j∑

i=1

Xt−iθi.

For any J ⊂ {1, . . . , p}, define the model:

ΘJ = {θ ∈ R
p : ||θ||1 ≤ L and θj 6= 0, j ∈ J}.

Let us remark that we have the disjoint union Θ = ∪J⊂{1,...,p}ΘJ = {θ ∈ R
p : ||θ||1 ≤ L}. We choose πJ as the uniform

probability measure on ΘJ and pj = 2−|J|−1
(
p
|J|
)−1

.

Corollary 1.
Assume that PhiMix(C) is satisfied for some C > 0 as well as Bound(B ). Then the oracle inequality (1) is satisfied with

∆(n, ε) = cst.
|J| log

(
(n− k)p/|J|

)
+ log

(
2
ε

)

n− k

for some constant cst = cst(B , C, L) and where J is the unique subset of {1, . . . , p} such that θ ∈ ΘJ .

This extends the results of [3, 29, 35] to the case of autoregression. The upper bound is optimal up to the n in the log

term, see e.g. (1.3) page 1676 in [14].

Proof. The proof follows the computations of Example 10 that we do not reproduce here: we check the conditions
LipLoss(K ) with K = 4B , Lip(L) and Margin(K) with K = 16B 2(1 + L)2. We can apply Theorem 6 with dJ = |J| and
Dj = L.
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Prediction of time series

6. Application to French GDP forecasting

6.1. Uncertainty in GDP forecasting

Every quarter t ≥ 1, the French national bureau of statistics, INSEE (Institut National de la Statistique et des Etudes

Economiques http://www.insee.fr/), publishes the growth rate of the French GDP (Gross Domestic Product). Since it
involves a huge amount of data that take months to be collected and processed, the computation of the GDP growth rate
log(GDPt/GDPt−1) takes a long time (two years). This means that at time t, the value log(GDPt/GDPt−1) is actually
not known. However, a preliminary value of the growth rate is published 45 days only after the end of the current
quarter t. This value is called a flash estimate and is the quantity that INSEE forecasters actually try to predict, at
least in a first time. As we want to work under the same constraint as the INSEE, we will now focus on the prediction
on the flash estimate and let ∆GDPt denote this quantity. To forecast at time t, we will use:

1. the past forecastings ∆GDPj , 0 < j < t (it has been checked that to replace past flash estimates by the actual
GDP growth rate when it becomes available do not improve the quality of the forecasting [48]);

2. past climate indicators Ij , 0 < j < t, based on business surveys.

Business surveys are questionnaires of about ten questions sent monthly to a representative panel of French companies
(see [24] for more details). As a consequence, these surveys provide informations from the economic decision makers.
Moreover, they are available each end of months and thus can be used to forecast the french GDP. INSEE publishes
a composite indicator, the French business climate indicator that summarizes information of the whole business survey,
see [19, 25]. Following [20], let It be the mean of the last three (monthly based) climate indicators available for each
quarter t > 0 at the date of publication of ∆GDPt . All these values (GDP, climate indicator) are available from the
INSEE website. Note that a similar approach is used in other countries, see e.g. [8] on forecasting the European Union
GDP growth thanks to EUROSTATS data.
In order to provide a quantification of the uncertainty of the forecasting, associated interval confidences are usually
provided. The ASA and the NBER started using density forecasts in 1968, while the Central Bank of England and
INSEE provide their prediction with a fan chart, see ee [30, 62] for surveys on density forecasting and [11] for fan charts.
However, the statistical methodology used is often crude and, until 2012, the fan charts provided by the INSEE was
based on the homoscedasticity of the Gaussian forecasting errors, see [20, 27]. However, empirical evidences are

1. the GDP forecasting is more uncertain in a period of crisis or recession;

2. the forecasting errors are not symmetrically distributed.

6.2. Application of Theorem 4 for the GDP forecasting

Define Xt as the data observed at time t: Xt = (∆GDPt , It)
′ ∈ R

2. We use the quantile loss function (see Example 5
page 71) for some 0 < τ < 1 of the quantity of interested ∆GDPt :

ℓτ ((∆GDPt , It), (∆GDP′
t , I

′
t)) =

{
τ
(
∆GDPt − ∆GDP′

t

)
, if ∆GDPt − ∆GDP′

t > 0

− (1 − τ)
(
∆GDPt − ∆GDP′

t

)
, otherwise.

We use the family of forecasters proposed by [20] given by the relation

fθ(Xt−1, Xt−2) = θ0 + θ1∆GDPt−1 + θ2It−1 + θ3(It−1 − It−2)|It−1 − It−2| (3)

where θ = (θ0, θ1, θ2, θ3) ∈ Θ(B). Fix D > 0 and

Θ =

{
θ = (θ0, θ1, θ2, θ3) ∈ R

4, ||θ||1 =
3∑

i=0

|θi| ≤ D

}
.
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Let us denote Rτ (θ) := E [ℓτ (∆GDPt , fθ(Xt−1, Xt−2))] the risk of the forecaster fθ and let rτn denote the associated
empirical risk. We let θ̂ERM,τ denote the ERM with quantile loss ℓτ :

θ̂ERM,τ ∈ arg min
θ∈Θ

rτn(θ).

We apply Theorem 4 as Lip(L) is satisfied Θ′ with L = D + 1 and LipLoss(K ) with K = 1. If the observations are
bounded, stationary such that WeakDep(C) holds for some C > 0, the assumptions of Theorem 4 are satisfied with ψ = B
and d = 4:

Corollary 2.

Let τ ∈ (0, 1). If the observations are bounded, stationary such that WeakDep(C) holds for some C > 0 then for any

ε > 0 and n large enough, we have

P

{
Rτ (θ̂ERM,τ ) ≤ inf

θ∈Θ
Rτ (θ) +

2κ
√

2√
n (1 − 4/n)

log

(
2e2B (D + 1)

√
n

κε

)}
≥ 1 − ε.

In practice the choice of D has little importance as soon as D is large enough (only the theoretical bound is influenced).
As a consequence we take D = 100 in our experiments.

6.3. Results

The results are shown in Figure 1 for forecasting corresponding to τ = 0.5. Figure 2 represents the confidence intervals
of order 50%, i.e. τ = 0.25 and τ = 0.75 (left) and for confidence interval of order 90%, i.e. τ = 0.05 and τ = 0.95 (right).
We report only the results for the period 2000-Q1 to 2011-Q3 (using the period 1988-Q1 to 1999-Q4 for learning).

Fig 1. French GDP forecasting using the quantile loss function with τ = 0.5.

We denote θ̂ERM,τ [t] the estimator computed at time t − 1, based on the observations Xj , j < t. We report the online
performance:

mean abs. pred. error = 1
n

∑n
t=1

∣∣∣∆GDPt − fθ̂ERM,0.5 [t](Xt−1, Xt−2)
∣∣∣

mean quad. pred. error = 1
n

∑n
t=1

[
∆GDPt − fθ̂ERM,0.5 [t](Xt−1, Xt−2)

]2

and compare it to the INSEE performance, see Table 1. We also report the frequency that the GDPs fall above the
predicted τ-quantiles for each τ , see Table 2. Note that this quantity should be close to τ .
The methodology fails to forecast the importance of the 2008 subprime crisis as it was the case for the INSEE forecaster,
see [20]. However, it is interesting to note that the confidence interval is larger at that date: the forecast is less reliable,
but thanks to our adaptive confidence interval, it would have been possible to know at that time that the prediction was
not reliable. Another interesting point is that the lower bound of the confidence intervals are varying over time while
the upper bound is almost constant for τ = 0.95. It supports the idea of asymmetric forecasting errors. A parametric
model with gaussian innovations would lead to underestimate the recessions risk.
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Fig 2. French GDP online 50%-confidence intervals (left) and 90%-confidence intervals (right).

Table 1. Performances of the ERM and of the INSEE.

Predictor Mean absolute prediction error Mean quadratic prediction error

θ̂ERM,0.5 0.2249 0.0812

INSEE 0.2579 0.0967

Table 2. Empirical frequencies of the event: GDP falls under the predicted τ-quantile.

τ Estimator Frequency

0.05 θ̂ERM,0.05 0.1739

0.25 θ̂ERM,0.25 0.4130

0.5 θ̂ERM,0.5 0.6304

0.75 θ̂ERM,0.75 0.9130

0.95 θ̂ERM,0.95 0.9782

7. Simulation study

In this section, we finally compare the ERM or Gibbs estimators to the Quasi Maximum Likelihood Estimator (QMLE)
based method used by the R function ARMA [52]. We want to check that the ERM and Gibbs estimators can be safely
used in various contexts as their performances are close to the standard QMLE even in the context where the series
is generated from an ARMA model. It is also the opportunity to check the robustness of our estimators in case of
misspecification.

7.1. Parametric family of predictors

Here, we compare the ERM to the QMLE.
We draw simulations from an AR(1) models (4) and a non linear model (5):

Xt = 0.5Xt−1 + εt (4)

Xt = 0.5 sin(Xt−1) + εt (5)

where εt are iid innovations. We consider two cases of distributions for εt : the uniform case, εt ∼ U[−a, a], and the
Gaussian case, εt ∼ N (0, σ 2). Note that, in the first case, both models satisfy the assumptions of Theorem 6: there
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Table 3. Performances of the ERM estimators and ARMA, on the simulations. The first row “ERM abs.” is for the ERM estimator with absolute
loss, the second row “ERM quad.” for the ERM with quadratic loss. The standard deviations are given in parentheses.

n Model Innovations ERM abs. ERM quad. QMLE

100 (4) Gaussian 0.1436 (0.1419) 0.1445 (0.1365) 0.1469 (0.1387)

Uniform 0.1594 (0.1512) 0.1591(0.1436) 0.1628 (0.1486)

(5) Gaussian 0.1770 (0.1733) 0
¯
.1699 (0.1611) 0.1728 (0.1634)

Uniform 0.1520 (0.1572) 0.1528 (0.1495) 0.1565 (0.1537)

1000 (4) Gaussian 0.1336 (0.1291) 0.1343 (0.1294) 0.1345 (0.1296)

Uniform 0.1718 (0.1369) 0.1729 (0.1370) 0.1732 (0.1372)

(5) Gaussian 0.1612( 0.1375) 0.1610 (0.1367) 0.1613 (0.1369)

Uniform 0.1696 (0.1418) 0.1687 (0.1404) 0.1691 (0.1407)

exists a stationary solutions (Xt) that is φ-mixing when the innovations are uniformly distributed and WeakDep(C) is
satisfied for some C > 0. This paper does not provide any theoretical results for the Gaussian case as it is unbounded.
However, we refer the reader to [7] for truncations techniques that allows to deal with this case too. We fix σ = 0.4 and
a = 0.70 such that Var(εt) ≃ 0.16 in both cases. For each model, we simulate first a sequence of length n and then
we predict Xn using the observations (X1, . . . , Xn−1). Each simulation is repeated 100 times and we report the mean
quadratic prediction errors on the Table 3.
It is interesting to note that the ERM estimator with absolute loss performs better on model (4) while the ERM with
quadratic loss performs slightly better on model (5). The difference tends be too small to be significative, however, the
numerical results tends to indicate that both methods are robust to model mispecification. Also, both estimators seem
to perform better than the R QMLE procedure when n = 100, but the differences tends to be less perceptible when n
grows.

7.2. Sparse autoregression

To illustrate Corollary 1, we compare the Gibbs predictor to the model selection approach of the ARMA procedure in the
R software. This procedure computes the QMLE estimator in each AR(p) model, 1 ≤ p ≤ q, and then selects the order
p by Akaike’s AIC criterion [2]. The Gibbs estimator is computed using a Reversible Jump MCMC algorithm described
in Section 4 in the preprint version of [3] (available on arXiv as http://arxiv.org/pdf/1009.2707v1.pdf). The parameter λ
is taken as λ = n/ ˆvar(X ), the empirical variance of the observed time series.
We draw the data according to the following models:

Xt = 0.5Xt−1 + 0.1Xt−2 + εt (6)

Xt = 0.6Xt−4 + 0.1Xt−8 + εt (7)

Xt = cos(Xt−1) sin(Xt−2) + εt (8)

where εt are iid innovations. We still consider the uniform (εt ∼ U[−a, a]) and the Gaussian (εt ∼ N (0, σ 2)) cases
with σ = 0.4 and a = 0.70. We compare the Gibbs predictor performances to those of the estimator based on the AIC
criterion and to the QMLE in the AR (q) model, so called “full model”. For each model, we first simulate a time series
of length 2n, use the observations 1 to n as a learning set and n + 1 to 2n as a test set, for n = 100 and n = 1000.
Each simulation is repeated 20 times and we report in Table 4 the mean and the standard deviation of the empirical
quadratic errors for each method and each model.
The three procedures seem not significatively different. Although notice that the Gibbs predictor performs better on
Models (7) and (8) while the AIC predictor performs slightly better on Model (6). Note that the Gibbs predictor performs
also well in the case of a Gaussian noise where the boundedness assumption is not satisfied.
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Table 4. Performances of the Gibbs, AIC and “full model” predictors on simulations.

n Model Innovations Gibbs AIC Full Model

100 (6) Uniform 0.165 (0.022) 0.165 (0.023) 0.182 (0.029)

Gaussian 0.167 (0.023) 0.161 (0.023) 0.173 (0.027)

(7) Uniform 0.163 (0.020) 0.169 (0.022) 0.178 (0.022)

Gaussian 0.172 (0.033) 0.179 (0.040) 0.201 (0.049)

(8) Uniform 0.174 (0.022) 0.179 (0.028) 0.201 (0.040)

Gaussian 0.179 (0.025) 0.182 (0.025) 0.202 (0.031)

1000 (6) Uniform 0.163 (0.005) 0.163 (0.005) 0.166 (0.005)

Gaussian 0.160 (0.005) 0.160 (0.005) 0.162 (0.005)

(7) Uniform 0.164 (0.004) 0.166 (0.004) 0.167 (0.004)

Gaussian 0.160 (0.008) 0.161 (0.008) 0.163 (0.008)

(8) Uniform 0.171 (0.005) 0.172 (0.006) 0.175 (0.006)

Gaussian 0.173 (0.009) 0.173 (0.009) 0.176 (0.010)

8. Conclusion

This paper provides oracle inequalities for the empirical risk minimizer and the Gibbs estimator that generalizes earlier
results by Catoni [17] to the context of time series forecasting. While essentially theoretical, these results are used
in a real-life example with promising results. Future work might include a more intensive simulation study. Probably,
more efficient Monte-Carlo algorithms should be investigated. Just before we submitted the final version of this paper, a
preprint appeared on arXiv [58] where the computation time needed to compute an accurate approximation of the estimator
by Monte-Carlo is upper-bounded. This is a very promising research direction. Equally important, on the theoretical
side, while the assumptions needed to obtain the slow rates of convergence are rather general, the assumptions we used
to get the fast rates are restrictive. Further work will include an investigation on the optimality of these assumptions.
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9. A general PAC-Bayesian inequality

Theorems 1 and 3 are actually both corollaries of a more general result that we would like to state for the sake of
completeness. This result is the analogous of the PAC-Bayesian bounds proved by Catoni in the case of iid data [17].

Theorem 7 (PAC-Bayesian Oracle Inequality for the Gibbs estimator).
Let us assume that LowRates(κ) is satisfied for some κ > 0. Then, for any λ, ε > 0 we have

P

{
R
(
θ̂λ

)
≤ inf

ρ∈M1
+(Θ)

[∫
Rdρ +

2λκ2

n (1 − k/n)2
+

2K(ρ, π) + 2 log (2/ε)

λ

]}
≥ 1 − ε.

This result is proved in Appendix 10, but we can now provide the proofs of Theorems 1 and 3.
Proof of Theorem 1. We apply Theorem 7 for π = 1

M

∑
θ∈Θ δθ and restrict the inf in the upper bound to Dirac masses

ρ ∈ {δθ , θ ∈ Θ}. We obtain K(ρ, π) = logM , and the upper bound for R (θ̂λ) becomes:

R
(
θ̂λ

)
≤ inf

ρ∈{δθ ,θ∈Θ}

[∫
Rdρ +

2λκ2

n (1 − k/n)2
+

2 log (2M/ε)

λ

]
= inf

θ∈Θ
R (θ) +

2λκ2

n (1 − k/n)2
+

2 log (2M/ε)

λ
.

�

Proof of Theorem 3. An application of Theorem 7 yields that with probability at least 1 − ε

R (θ̂λ) ≤ inf
ρ∈M1

+(Θ)

[∫
Rdρ +

2λκ2

n (1 − k/n)2
+

2K(ρ, π) + 2 log (2/ε)

λ

]
.

Let us estimate the upper bound at the probability distribution ρδ defined as

dρδ
dπ

(θ) =
1{R (θ) − R (θ) < δ}∫

t∈Θ
1{R (t) − R (θ) < δ}π(dt)

.

Then we have:

R
(
θ̂λ

)
≤ inf

δ>0

[
R (θ) + δ +

2λκ2

n (1 − k/n)2
+ 2

− log
∫
t∈Θ

1{R (t) − infΘ R < δ}π(dt) + log
(

2
ε

)

λ

]
.

Under the assumptions of Theorem 3 we have:

R
(
θ̂λ

)
≤ inf

δ>0

[
R (θ) + δ +

2λκ2

n (1 − k/n)2
+ 2

d log (D/δ) + log
(

2
ε

)

λ

]
.

The infimum is reached for δ = d/λ and we have:

R
(
θ̂λ

)
≤ R (θ) +

2λκ2

n (1 − k/n)2
+ 2

d log
(
D

√
eλ/d

)
+ log

(
2
ε

)

λ
.

�
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10. Proofs

10.1. Preliminaries

We will use Rio’s inequality [53] that is an extension of Hoeffding’s inequality in a dependent context. For the sake of
completeness, we provide here this result when the observations (X1, . . . , Xn) come from a stationary process (Xt)

Lemma 1 (Rio [53]).

Let h be a function (Rp)n → R such that for all x1, ..., xn, y1, ..., yn ∈ R
p,

|h(x1, . . . , xn) − h(y1, . . . , yn)| ≤
n∑

i=1

||xi − yi||. (9)

Then, for any t > 0, we have

E (exp(t {E [h(X1, . . . , Xn)] − h(X1, . . . , Xn)})) ≤ exp
( t2n

(
B + θ∞,n(1)

)2

2

)
.

Others exponential inequalities can be used to obtain PAC-Bounds in the context of time series: the inequalities
in [26, 54] for mixing time series, and [23, 65] under weakest “weak dependence” assumptions, [57] for martingales.
Lemma 1 is very general and yields optimal low rates of convergence. For fast rates of convergence, we will use
Samson’s inequality that is an extension of Bernstein’s inequality in a dependent context.

Lemma 2 (Samson [54]).
Let N ≥ 1, (Zi)i∈Z be a stationary process on R

k and φZr denote its φ-mixing coefficients. For any measurable function

f : Rk → [−M,M ], any 0 ≤ t ≤ 1/(MK 2
φZ

), we have

E(exp(t(SN (f ) − ESN (f )))) ≤ exp
(

8KφZNσ
2(f )t2

)
,

where SN (f ) :=
∑N

i=1 f (Zi), KφZ = 1 +
∑N

r=1

√
φZr and σ 2(f ) = Var(f (Zi)).

Proof of Lemma 2. This result can be deduced easily from the proof of Theorem 3 of [54] which states a more general
result on empirical processes. In page 457 of [54], replace the definition of fN (x1, . . . , xn) by fN (x1, . . . , xn) =

∑n
i=1 g(xi)

(following the notations of [54]). Then check that all the arguments of the proof remain valid, the claim of Lemma 2 is
obtained page 460, line 7. �

We also remind the variational formula of the Kullback divergence.

Lemma 3 (Donsker-Varadhan [31] variational formula).

For any π ∈ M1
+(E), for any measurable upper-bounded function h : E → R we have:

∫
exp(h)dπ = exp

(
sup

ρ∈M1
+(E)

(∫
hdρ − K(ρ, π)

))
. (10)

Moreover, the supremum with respect to ρ in the right-hand side is reached for the Gibbs measure π{h} defined by

π{h}(dx) = eh(x)π(dx)/π[exp(h)].

Actually, it seems that in the case of discrete probabilities, this result was already known by Kullback (Problem 8.28 of
Chapter 2 in [43]). For a complete proof of this variational formula, even in the non integrable cases, we refer the reader
to [15, 17, 31].
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10.2. Technical lemmas for the proofs of Theorems 2, 4, 5 and 7

Lemma 4.

We assume that LowRates(κ) is satisfied for some κ > 0. For any λ > 0 and θ ∈ Θ we have

E

(
eλ(R (θ)−rn(θ))

)
∨ E

(
eλ(rn(θ)−R (θ))

)
≤ exp

( λ2κ2

n (1 − k/n)2

)
.

Proof of Lemma 4. Let us fix λ > 0 and θ ∈ Θ. Let us define the function h by:

h(x1, . . . , xn) =
1

K (1 + L)

n∑

i=k+1

ℓ(fθ(xi−1, . . . , xi−k ), xi).

We now check that h satisfies (9), remember that ℓ(x, x ′) = g(x − x ′) so

∣∣∣h (x1, . . . , xn) − h (y1, . . . yn)
∣∣∣ ≤ 1

K (1 + L)

n∑

i=k+1

∣∣∣g(fθ(xi−1, . . . , xi−k ) − xi) − g(fθ(yi−1, . . . , yi−k ) − yi)
∣∣∣

≤ 1

1 + L

n∑

i=k+1

∥∥∥
(
fθ(xi−1, . . . , xi−k ) − xi

)
−
(
fθ(yi−1, . . . , yi−k ) − yi

)∥∥∥

where we used Assumption LipLoss(K ) for the last inequality. So we have

∣∣∣h (x1, . . . , xn) − h (y1, . . . yn)
∣∣∣ ≤ 1

1 + L

n∑

i=k+1

(∥∥∥fθ(xi−1, . . . , xi−k ) − fθ(yi−1, . . . , yi−k )
∥∥∥+

∥∥∥xi − yi

∥∥∥
)

≤ 1

1 + L

n∑

i=k+1




k∑

j=1

aj (θ)||xi−j − yi−j || + ||xi − yi||




≤ 1

1 + L

n∑

i=1


1 +

k∑

j=1

aj (θ)


 ||xi − yi|| ≤

n∑

i=1

||xi − yi||

where we used Assumption Lip(L). So we can apply Lemma 1 with h(X1, . . . , Xn) = n−k
K (1+L)

rn(θ), E(h(X1, . . . , Xn)) =
n−k

K (1+L)
R (θ), and t = K (1 + L)λ/(n− k):

E
(
eλ[R (θ)−rn(θ)]

)
≤ exp

(λ2K 2(1 + L)2
(
B + θ∞,n(1)

)2

2n (1 − k/n)2

)
≤ exp

(λ2K 2(1 + L)2 (B + C)2

2n
(
1 − k

n

)2

)

by Assumption WeakDep(C). This ends the proof of the first inequality. The reverse inequality is obtained by replacing
the function h by −h. �

We are now ready to state the following key Lemma.

Lemma 5.

Let us assume that LowRates(κ) is satisfied satisfied for some κ > 0. Then for any λ > 0 we have

P





∀ρ ∈ M1
+(Θ),∫

Rdρ ≤
∫
rndρ + λκ2

n(1−k/n)2
+ K(ρ,π)+log(2/ε)

λ

and∫
rndρ ≤

∫
Rdρ + λκ2

n(1−k/n)2
+ K(ρ,π)+log(2/ε)

λ





≥ 1 − ε. (11)

86



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Prediction of time series

Proof of Lemma 5. Let us fix θ > 0 and λ > 0, and apply the first inequality of Lemma 4. We have:

E

(
exp

(
λ
(
R (θ) − rn(θ) − λκ2

n (1 − k/n)2

)))
≤ 1,

and we multiply this result by ε/2 and integrate it with respect to π(dθ). An application of Fubini’s Theorem yields

E

∫
exp

(
λ(R (θ) − rn(θ)) − λ2κ2

n (1 − k/n)2
− log (2/ε)

)
π(dθ) ≤ ε

2
.

We apply Lemma 3 and we get:

E exp
(

sup
ρ

{
λ

∫
(R (θ) − rn(θ))ρ(dθ) − λ2κ2

n (1 − k/n)2
− log (2/ε) − K(ρ, π)

})
≤ ε

2
.

As ex ≥ 1R+ (x), we have:

P

{
sup
ρ

{
λ

∫
(R (θ) − rn(θ))ρ(dθ) − λ2κ2

n (1 − k/n)2
− log (2/ε) − K(ρ, π)

}
≥ 0

}
≤ ε

2
.

Using the same arguments than above but starting with the second inequality of Lemma 4:

E exp
(
λ
(
rn(θ) − R (θ) − λκ2

n (1 − k/n)2

)))
≤ 1.

we obtain:

P

{
sup
ρ

{
λ

∫
[rn(θ) − R (θ)]ρ(dθ) − λ2κ2

n
(
1 − k

n

)2
− log

(
2

ε

)
− K(ρ, π)

}
≥ 0

}
≤ ε

2
.

A union bound ends the proof. �

The following variant of Lemma 5 will also be useful.

Lemma 6.

Let us assume that LowRates(κ) is satisfied satisfied for some κ > 0. Then for any λ > 0 we have

P





∀ρ ∈ M1
+(Θ),∫

Rdρ ≤
∫
rndρ + λκ2

n(1−k/n)2
+ K(ρ,π)+log(2/ε)

λ

and

rn(θ) ≤ R (θ) + λκ2

n(1−k/n)2
+ log(2/ε)

λ





≥ 1 − ε.

Proof of Lemma 6. Following the proof of Lemma 5 we have:

P

{
sup
ρ

{
λ

∫
(R (θ) − rn(θ))ρ(dθ) − λ2κ2

n (1 − k/n)2
− log (2/ε) − K(ρ, π)

}
≥ 0

}
≤ ε

2
.

Now, we use the second inequality of Lemma 4, with θ = θ:

E

(
exp

(
λ
(
rn(θ) − R (θ) − λκ2

n (1 − k/n)2

)))
≤ 1.

But then, we directly apply Markov’s inequality to get:

P

{
rn(θ) ≥ R (θ) +

λκ2

n (1 − k/n)2
+

log (2/ε)

λ

}
≤ ε

2
.

Here again, a union bound ends the proof. �
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10.3. Proof of Theorems 7 and 5

In this subsection we prove the general result on the Gibbs predictor.
Proof of Theorem 7. We apply Lemma 5. So, with probability at least 1 − ε we are on the event given by (11). From
now, we work on that event. The first inequality of (11), when applied to ρ̂λ(dθ), gives

∫
R (θ)ρ̂λ(dθ) ≤

∫
rn(θ)ρ̂λ(dθ) +

λκ2

n (1 − k/n)2
+

1

λ
log (2/ε) +

1

λ
K(ρ̂λ, π).

According to Lemma 3 we have:

∫
rn(θ)ρ̂λ(dθ) +

1

λ
K(ρ̂λ, π) = inf

ρ

(∫
rn(θ)ρ(dθ) +

1

λ
K(ρ, π)

)

so we obtain ∫
R (θ)ρ̂λ(dθ) ≤ inf

ρ

{∫
rn(θ)ρ(dθ) +

λκ2

n (1 − k/n)2
+

K(ρ, π) + log (2/ε)

λ

}
. (12)

We now estimate from above r(θ) by R (θ). Applying the second inequality of (11) and plugging it into Inequality 12
gives ∫

R (θ)ρ̂λ(dθ) ≤ inf
ρ

{∫
Rdρ +

2

λ
K(ρ, π) +

2λκ2

n (1 − k/n)2
+

2

λ
log (2/ε)

}
.

We end the proof by the remark that θ 7→ R (θ) is convex and so by Jensen’s inequality
∫
R (θ)ρ̂λ(dθ) ≥ R

(∫
θρ̂λ(dθ)

)
=

R (θ̂λ). �

Proof of Theorem 5. Follow, for each λ ∈ Λ, the proof of Lemma 5 with κ(θ) instead of κ, and fixed confidence level
ε/|Λ| > 0. We obtain, for all λ ∈ Λ,

P





∀ρ ∈ M1
+(Θ),

∫
Rdρ ≤

∫ [
rn(θ) + λκ(θ)2

n(1−k/n)2

]
ρ(dθ) +

K(ρ,π)+log
(

2|Λ|
ε

)

λ

and
∫
rndρ ≤

∫ [
R (θ) + λκ(θ)2

n(1−k/n)2

]
ρ(dθ) +

K(ρ,π)+log
(

2|Λ|
ε

)

λ





≥ 1 − ε/|Λ|.

A union bound provides:

P





∀λ ∈ Λ,∀ρ ∈ M1
+(Θ),

∫
Rdρ ≤

∫ [
rn(θ) + λκ(θ)2

n(1−k/n)2

]
ρ(dθ) +

K(ρ,π)+log
(

2|Λ|
ε

)

λ

and
∫
rndρ ≤

∫ [
R (θ) + λκ(θ)2

n(1−k/n)2

]
ρ(dθ) +

K(ρ,π)+log
(

2|Λ|
ε

)

λ





≥ 1 − ε. (13)

From now, we only work on that event of probability at least 1 − ε. Remark that

R (θ̃) = R (θ̃λ̃) ≤
∫
R (θ)ρ̃λ̃(dθ) by Jensen’s inequality

≤
∫ [

rn(θ) +
λ̃κ(θ)2

n (1 − k/n)2

]
ρ̃λ̃(dθ) +

K(ρ̃λ̃, π) + log
(

2|Λ|
ε

)

λ̃

by (13)

= min
λ∈Λ





∫ [
rn(θ) +

λκ(θ)2

n (1 − k/n)2

]
ρ̃λ(dθ) +

K(ρ̃λ, π) + log
(

2|Λ|
ε

)

λ




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by definition of λ̂

= min
λ∈Λ

inf
ρ∈M1

+(Θ)





∫ [
rn(θ) +

λκ(θ)2

n (1 − k/n)2

]
ρ(dθ) +

K(ρ, π) + log
(

2|Λ|
ε

)

λ





by Lemma 3

≤ min
λ∈Λ

inf
ρ∈M1

+(Θ)





∫ [
R (θ) +

2λκ(θ)2

n (1 − k/n)2

]
ρ(dθ) + 2

K(ρ, π) + log
(

2|Λ|
ε

)

λ





by (13) again

≤ min
λ∈Λ

min
1≤j≤M

inf
δ>0



R (θj ) + δ +

2λκ2
j

n (1 − k/n)2
+ 2

dj log
(
Dj /δ

)
+ log

(
2|Λ|
εpj

)

λ





by restricting ρ as in the proof of Cor. 3 page 72

≤ min
1≤j≤M

min
λ∈Λ



R (θj ) +

2λκ2
j

n (1 − k/n)2
+ 2

dj log
(
Dj

√
eλj

dj

)
+ log

(
2|Λ|
εpj

)

λ





by taking δ =
dj

λj

= min
1≤j≤M



R (θj ) + inf

λ∈[1,n]





4λκ2
j

n (1 − k/n)2
+ 2

dj log
(

2Dj
√
eλ

dj

)
+ log

(
2|Λ|
εpj

)

λ









as, for any λ ∈ [1, n], there is λ′ ∈ Λ such that λ′ ≤ λ ≤ 2λ′. Finally, note that |Λ| ≤ log2(n) + 1 = log2(2n). �

10.4. Proof of Theorems 2 and 4

Let us now prove the results about the ERM.
Proof of Theorem 2. We choose π as the uniform probability distribution on Θ and λ > 0. We apply Lemma 6. So we
have, with probability at least 1 − ε,

{
∀ρ ∈ M1

+(Θ′),
∫
Rdρ ≤

∫
rndρ + λκ2

n(1−k/n)2
+ K(ρ,π)+log(2/ε)

λ

and rn(θ) ≤ R (θ) + λκ2

n(1−k/n)2
+ log(2/ε)

λ
.

We restrict the inf in the first inequality to Dirac masses ρ ∈ {δθ , θ ∈ Θ} and we obtain:





∀θ ∈ Θ, R (θ) ≤ rn(θ) + λκ2

n(1−k/n)2
+

log( 2M
ε )

λ

and rn(θ) ≤ R (θ) + λκ2

n(1−k/n)2
+ log(2/ε)

λ
.

In particular, we apply the first inequality to θ̂ERM . We remind that θ minimizes R on Θ and that θ̂ERM minimizes rn
on Θ, and so we have

R (θ̂ERM ) ≤ rn(θ̂
ERM ) +

λκ2

n (1 − k/n)2
+

log(M) + log (2/ε)

λ

≤ rn(θ) +
λκ2

n (1 − k/n)2
+

log(M) + log (2/ε)

λ

≤ R (θ) +
2λκ2

n (1 − k/n)2
+

log(M) + 2 log (2/ε)

λ

≤ R (θ) +
2λκ2

n (1 − k/n)2
+

2 log (2M/ε)

λ
.
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The result still holds if we choose λ as a minimizer of

2λκ2

n (1 − k/n)2
+

2 log (2M/ε)

λ
.

�

Proof of Theorem 4. Let us denote Θ′ = {θ ∈ R
d : ||θ||1 ≤ D + 1} and π as the uniform probability distribution on Θ′.

We apply Lemma 6. So we have, with probability at least 1 − ε,

{
∀ρ ∈ M1

+(Θ′),
∫
Rdρ ≤

∫
rndρ + λκ2

n(1−k/n)2
+ K(ρ,π)+log(2/ε)

λ

and rn(θ) ≤ R (θ) + λκ2

n(1−k/n)2
+ log(2/ε)

λ
.

So for any ρ,

R (θ̂ERM ) =

∫
[R (θ̂ERM ) − R (θ)]ρ(dθ) +

∫
Rdρ

≤
∫

[R (θ̂ERM ) − R (θ)]ρ(dθ) +

∫
rndρ +

λκ2

n (1 − k/n)2
+

K(ρ, π) + log (2/ε)

λ

≤
∫

[R (θ̂ERM ) − R (θ)]ρ(dθ) +

∫
[rn(θ) − rn(θ̂

ERM )]ρ(dθ) + rn(θ̂
ERM )

+
λκ2

n (1 − k/n)2
+

K(ρ, π) + log (2/ε)

λ

≤ 2Kψ

∫ ∥∥∥θ − θ̂ERM
∥∥∥

1
ρ(dθ) + rn(θ) +

λκ2

n (1 − k/n)2
+

K(ρ, π) + log (2/ε)

λ

≤ 2Kψ

∫ ∥∥∥θ − θ̂ERM
∥∥∥

1
ρ(dθ) + R (θ) +

2λκ2

n (1 − k/n)2
+

K(ρ, π) + 2 log (2/ε)

λ
.

Now we define, for any δ > 0, ρδ by

dρδ
dπ

(θ) =
1{
∥∥∥θ − θ̂ERM

∥∥∥ < δ}
∫
t∈Θ′ 1{

∥∥∥t − θ̂ERM
∥∥∥ < δ}π(dt)

.

So in particular, we have, for any δ > 0,

R (θ̂ERM ) ≤ 2Kψδ + R (θ) +
2λκ2

n (1 − k/n)2
+

log 1∫
t∈Θ′ 1{

∥∥∥t−θ̂ERM
∥∥∥<δ}π(dt)

+ 2 log (2/ε)

λ
.

But for any δ ≤ 1,

− log

∫

t∈Θ′
1{
∥∥∥t − θ̂ERM

∥∥∥ < δ}π(dt) = d log

(
D + 1

δ

)
.

So we have

R (θ̂ERM ) ≤ inf
δ≤1

{
2Kψδ + R (θ) +

2λκ2

n (1 − k/n)2
+
d log

(
D+1
δ

)
+ 2 log (2/ε)

λ

}
.

We optimize this result by taking δ = d/(2λKψ), which is smaller than 1 as soon as λ ≥ 2Kψ/d, we get:

R (θ̂ERM ) ≤ R (θ) +
2λκ2

n (1 − k/n)2
+
d log

(
2eKψ(D+1)λ

d

)
+ 2 log (2/ε)

λ
.

We just choose λ as the minimizer of the r.h.s., subject to λ ≥ 2Kψ/d, to end the proof. �
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10.5. Some preliminary lemmas for the proof of Theorem 6

Lemma 7.

Under the hypothesis of Theorem 6, we have, for any θ ∈ Θ, for any 0 ≤ λ ≤ (n− k)/(2kKLBC),

E exp

{
λ

[(
1 − 8kCλ

n− k

)(
R (θ) − R (θ)

)
− r(θ) + r(θ)

]}
≤ 1,

and

E exp

{
λ

[(
1 +

8kCλ
n− k

)(
R (θ) − R (θ)

)
− r(θ) + r(θ)

]}
≤ 1.

Lemma 7. We apply Lemma 2 to N = n− k , Zi = (Xi+1, . . . , Xi+k ),

f (Zi) =
1

n− k

[
R (θ) − R (θ) − ℓ (Xi+k , fθ(Xi+k−1, . . . , Xi+1)) + ℓ (Xi+k , fθ(Xi+k−1, . . . , Xi+1))2

]
,

and so

SN (f ) = [R (θ) − R (θ) − r(θ) + r(θ)],

and the Zi are uniformly mixing with coefficients φZr = φ⌊r/q⌋. Note that 1 +
∑n−q

r=1

√
φZr = 1 +

∑n−q
r=1

√
φ⌊r/k⌋ ≤ k C by

PhiMix(C). For any θ and θ′ in Θ let us put

V (θ, θ′) = E

{[
ℓ
(
Xk+1, fθ(Xk , ..., X1)

)
− ℓ
(
Xk+1, fθ′ (Xk , ..., X1)

)]2
}
.

We are going to apply Lemma 2. Remark that σ 2(f ) ≤ V (θ, θ)/(n− k)2. Also,

∣∣∣ℓ (Xi+k , fθ(Xi+k−1, . . . , Xi+1)) − ℓ (Xi+k , fθ(Xi+k−1, . . . , Xi+1))
∣∣∣ ≤ K |fθ(Xi+k−1, . . . , Xi+1) − fθ(Xi+k−1, . . . , Xi+1)| ≤ KLB

where we used LipLoss(K ) for the first inequality and Lip(L) and PhiMix(B , C) for the second inequality. This implies
that ||f ||∞ ≤ 2KLB /(n− k), so we can apply Lemma 2 for any 0 ≤ λ ≤ (n− k)/(2kKLBC)], we have

lnE exp
[
λ
(
R (θ) − R (θ) − r(θ) + r(θ)

)]
≤ 8kCV (θ, θ)λ2

n− k
.

Notice finally that Margin(K) leads to

V (θ, θ) = K
[
R (θ) − R (θ)

]

This proves the first inequality of Lemma 7. The second inequality is proved exacly in the same way, but replacing f by
−f .

We are now ready to state the following key Lemma.

Lemma 8.

Under the hypothesis of Theorem 6, we have, for any 0 ≤ λ ≤ (n− k)/(2kKLBC), for any 0 < ε < 1,

P





∀ρ ∈ M1
+(Θ),(

1 − 8kCλ
n−k
) (∫

Rdρ − R (θ)
)

≤
∫
rdρ − r(θ) + K(ρ,π)+log(2/ε)

λ

and∫
rdρ − r(θ) ≤

(∫
Rdρ − R (θ)

) (
1 + 8kCλ

n−k
)

+ K(ρ,π)+log(2/ε)
λ





≥ 1 − ε.
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Proof of Lemma 8. Let us fix ε, λ and θ ∈ Θ, and apply the first inequality of Lemma 7. We have:

E exp

{
λ

[(
1 − 8kCλ

n− k

)(
R (θ) − R (θ)

)
− r(θ) + r(θ)

]}
≤ 1,

and we multiply this result by ε/2 and integrate it with respect to π(dθ). Fubini’s Theorem gives:

E

∫
exp

{
λ

[(
1 − 8kCλ

n− k

)(
R (θ) − R (θ)

)
− r(θ) + r(θ) + log(ε/2)

]}
π(dθ) ≤ ε

2
.

We apply Lemma 3 and we get:

E exp

{
sup
ρ

λ

[(
1 − 8kCλ

n− k

)(∫
Rdρ − R (θ)

)
−
∫
rdρ + r(θ) + log(ε/2) − K(ρ, π)

]}
≤ ε

2
.

As ex ≥ 1R+ (x), we have:

P

{
sup
ρ

λ

[(
1 − 8kCλ

n− k

)(∫
Rdρ − R (θ)

)
−
∫
rdρ + r(θ) + log(ε/2)

]
− K(ρ, π) ≥ 0

}
≤ ε

2
.

Let us apply the same arguments starting with the second inequality of Lemma 7. We obtain:

P

{
sup
ρ

λ

[(
1 +

8kCλ
n− k

)(
R (θ) −

∫
Rdρ

)
− r(θ) +

∫
rdρ + log(ε/2) − K(ρ, π)

]
≥ 0

}
≤ ε

2
.

A union bound ends the proof. �

10.6. Proof of Theorem 6

Fix 0 ≤ λ = (n− k)/(4kKLBC) ∧ (n− k)/(16kC) ≤ (n− k)/(2kKLBC). Applying Lemma 8, we assume from now that the
event of probability at least 1 − ε given by this lemma is satisfied. In particular we have ∀ρ ∈ M1

+(Θ),

∫
Rdρ − R (θ) ≤

∫
rdρ − r(θ) + K(ρ,π)+log(2/ε)

λ(
1 − 8kCλ

n−k
) .

In particular, thanks to Lemma 3, we have:

∫
Rdρ̂λ − R (θ) ≤ inf

ρ∈M1
+(Θ)

∫
rdρ − r(θ) + K(ρ,π)+log(2/ε)

λ(
1 − 8kCλ

n−k
) .

Now, we apply the second inequality of Lemma 8:

∫
Rdρ̂λ − R (θ) ≤ inf

ρ∈M1
+(Θ)

(
1 + 8kCλ

n−k
) [∫

Rdρ − R (θ)
]

+ 2 K(ρ,π)+log(2/ε)
λ(

1 − 8kCλ
n−k
)

≤ inf
j

inf
ρ∈M1

+(Θj )

(
1 + 8kCλ

n−k
) [∫

Rdρ − R (θ)
]

+ 2
K(ρj ,π)+log

(
2
εpj

)

λ(
1 − 8kCλ

n−k
)

≤ inf
j

inf
δ>0

(
1 + 8kCλ

n−k
) [
R (θj ) + δ − R (θ)

]
+ 2

dj log

(
Dj
δ

)
+log

(
2
εpj

)

λ(
1 − 8kCλ

n−k
)
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Prediction of time series

by restricting ρ as in the proof of Theorem 3. First, notice that our choice λ ≤ (n− k)/(16kC) leads to

∫
Rdρ̂λ − R (θ) ≤ 2 inf

j
inf
δ>0





3

2

[
R (θj ) + δ − R (θ)

]
+ 2

dj log
(
Dj
δ

)
+ log

(
2
εpj

)

λ





≤ 4 inf
j

inf
δ>0



R (θj ) + δ − R (θ) +

dj log
(
Dj
δ

)
+ log

(
2
εpj

)

λ



 .

Taking δ = dj /λ leads to

∫
Rdρ̂λ − R (θ) ≤ 4 inf

j



R (θj ) − R (θ) +

dj log
(
Djeλ

dj

)
+ log

(
2
εpj

)

λ



 .

Finally, we replace the last occurences of λ by its value:

∫
Rdρ̂λ − R (θ) ≤ 4 inf

j



R (θj ) − R (θ) + (16kC ∨ 4kKLBC)

dj log
(
Dje(n−k)

16kCdj

)
+ log

(
2
εpj

)

n− k



 .

Jensen’s inequality leads to:

R
(
θ̂λ

)
− R (θ) ≤ 4 inf

j



R (θj ) − R (θ) + 4kC (4 ∨ KLB )

dj log
(
Dje(n−k)

16kCdj

)
+ log

(
2
εpj

)

n− k



 .

�
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