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Abstract A soft computational technique is applied to predict sediment loads in three
Malaysian rivers. The feed forward-back propagated (schemes) artificial neural network
(ANNs) architecture is employed without any restriction to an extensive database compiled
from measurements in Langat, Muda, Kurau different rivers. The ANN method demonstrated
a superior performance compared to other traditional sediment-load methods. The coefficient
of determination, 0.958 and the mean square error 0.0698 of the ANN method are higher
than those of the traditional method. The performance of the ANN method demonstrates
its predictive capability and the possibility of generalization of the modeling to nonlinear
problems for river engineering applications.

Keywords Alluvial channels · Artificial neural network · Total-sediment load ·
River engineering · Sediment transport

1 Introduction

Sand and gravel have long been used as aggregate for construction of roads and building.
Today, the demand for these materials continues to rise. In Malaysia, the main source of sand
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is from in-stream mining. In-stream sand mining is a common practice because the mining
locations are usually near the “markets” or along the transportation route, hence reducing
transportation costs.

In-stream sand mining can damage private and public properties as well as aquatic habi-
tats. Excessive removal of sand may significantly distort the natural equilibrium of a stream
channel. By removing sediment from the active channel bed, in-stream mines interrupt the
continuity of sediment transport through the river system, disrupting the sediment mass bal-
ance in the river downstream and inducing channel adjustments (usually incision) extending
considerable distances (commonly 1 km or more) beyond the extraction site itself.

In recent years, rapid development in Malaysia has led to an increased demand for river
sand as a source of construction material, which has resulted in a mushrooming of river
sand mining activities that have given rise to various problems that require urgent action
by the authorities. These include riverbank erosion, riverbed degradation, river buffer zone
encroachment and deterioration of river water quality. Very often, over-mining occurs, which
jeopardizes the health of the river and the environment in general. This study summarizes
the results based on field data collected at three river catchments in Malaysia, i.e., the River
Langat, the River Muda, and the River Kurau. Fieldwork on selected sites for the three riv-
ers was performed to assess the capacity of the river to convey both water and sediment.
Data collection on the bed material was used to characterize the physical characteristics
of the sediment responsible for sediment transport, which determines the river response in
terms of erosion and deposition. The three rivers clearly have bed material sizes in the sand-
gravel range based on the collected data in the present study [13]. This study shows that the
measured load can be predicted accurately for Malaysian rivers using the neural networks
approach.

The neural networks approach has been applied to many branches of engineering sciences.
This approach is becoming a valuable tool for providing civil and hydraulic (river) engineers
with sufficient details for design purposes and river-management practices. Motivated by
successful applications in modeling nonlinear system behavior in a wide range of areas.

ANNs have been applied in hydrology and hydraulics [14,19]. ANNs have been used for
rainfall-runoff modeling, flow predictions, flow/pollution simulation, parameter identifica-
tion, and modelling nonlinear/ input–output time series [4]. Jain [18] used the ANN approach
to establish an integrated stage–discharge–sediment concentration relation for two sites on
the Mississippi River in the United States.

Through Jain’s study, it was shown that the ANN results were better than those obtained by
the conventional technique [18]. Cigizoglu [9,10] employed ANNs to estimate suspended-
sediment concentrations and made a comparison between ANNs and sediment rating curves
for two rivers with very similar catchment areas and characteristics in northern England. He
used only discharge and sediment concentration parameters in his study. He showed that the
estimates obtained by the ANNs were significantly superior to the corresponding classical
sediment rating curve. Yang et al. [24] used ANN to evaluate total sediment load formu-
lae (where—river and location). Nagy [21] estimated that the natural sediment discharge in
rivers in terms of sediment concentration by ANN model yields better results compared to
several sediment-transport formulas [3,15,20,23]. Cigizoglu and Kisi [11] developed mod-
els of ANN to estimate suspended-sediment. Tayfur and Guldal [22] estimated daily total-
suspended sediment in natural rivers by ANN and a nonlinear black box model based upon
two-dimensional unit sediment-graph theory (2D-USGT) from precipitation data. The com-
parison of results revealed that the ANN has a significantly better performance than the
2D-USGT. Recently, Azamathulla et al. [7] used an ANFIS-based approach for predicting
the bed load for moderately sized rivers in Malaysia.
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2 Study area

This study covers three rivers, i.e., the River Langat, the River Muda, and the River Kurau,
that have different levels of sand mining activities. River Langat recently has been a major
source of sand for construction with the development of Putrajaya. River Muda has a long
history of sand mining activity along the upper reach. Less sand mining is ongoing in the
River Kurau upstream of the Bukit Merah reservoir.

2.1 River Langat

The River Langat basin occupies the south and southeastern parts of the State of Selangor
and small portions of Negeri Sembilan and Wilayah Persekutuan. The basin is bounded on
the east by the Main Range and the Straits of Malacca on the west. The basin has diverse
topography ranging from mountainous areas in the northeast, low rolling hilly areas in the
middle to lowlands in the south-west part of the basin. The geographic location of the basin
is shown in Fig. 1(a).

The river system flows through the State of Selangor, Negeri Sembilan, and the Federal
Territory of Putrajaya. The main river, the River Langat, has a total length of about 180 km,
and it forms one of the four major river systems in the State of Selangor. The River Langat
basin (the basin) has a total catchment area of 2,350 km2 and an average annual flow of
35 m3/s, and the mean-annual flood is 300 m3/s. Use of River Langat is not limited to water
supply and includes other purposes such as recreation, fishing, effluent discharge, irrigation
and even sand mining.

2.2 River Muda

The River Muda is the longest river in the state of Kedah, and it is situated in northern
Peninsular Malaysia with its origin in the northern mountainous area of the state adjoining
Thailand, as shown in Fig. 1(b). The basin has a drainage area of approximately 4,210 km2.
However, small portions of the catchment lie within the upper boundary of the State of Pulau
Pinang. In terms of administrative boundaries, the upper and middle reaches of the basin
belong to the State of Kedah, while the downstream of the river forms the boundary between
the states of Kedah and Pulau Pinang.

The main channel of River Muda has a length of about 180 km with a slope of 1/2,300
(or 0.00043 m/m) from the river mouth to Muda Dam. The channel width is typically around
100 m and widens up to about 300 m near the river mouth. The channel tends to erode due
to sand mining operations, aggravating bank erosion, and river total degradation. Per river
surveys in 2000, the shallowest point in the river is located 2.5 km upstream of the river
mouth, and it causes difficulty in navigation during low tides. At the upstream end of the
River Muda is the Muda Dam, which acts as an extra storage for the Pedu dam. The two
dams are part of the irrigation scheme. In general, the River Muda is still in its natural state,
with riparian vegetation and flood plains made up of paddy fields along the riverbanks.

2.3 River Kurau

The River Kurau (Fig. 1c) represents the main drainage artery of the basin, draining an area
of approximately 682 km2, which is generally low lying. The river originates partly in the
Bintang Range and partly in the Main Range where the terrain in the upper reaches are steep
and mountainous. The mid-valley of the river is characterized by low to undulating terrain,
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                                                                         Peninsular Malaysia 

(b) River Muda             

(a) River Langat            

(c) River Kurau

Fig. 1 Study area

which gives way to broad and flat floodplains. Ground elevation at the river headwaters is
moderately high, at 1,200 and 900 m in Batu Besar and Batu Ulu Trap, respectively. The
slopes in the upper 6.5 km of the river average 12.5%, while those lower down in the valleys
are much lower, on the order of 0.25–5%. The River Kurau basin is important as the main
water resource for the Kerian Irrigation Scheme as well as the main domestic water supply
for the Kerian District and the Larut and Matang District, State of Perak.

A dam was constructed 65 km upstream at the mid section of the rivers to form the Bukit
Merah Reservoir. This dam is operated principally to irrigate the paddy areas immediately
below the Reservoir. Upstream of the reservoir are two subsystems, namely the Kurau subsys-
tem and the Merah River subsystem. Both drain through undulating to steep terrain. Areas in
the former subsystem were developed extensively for tree crop agriculture, while the Pondok
Tanjong Forest Reserve forms the main land use of the latter subsystem. Largely rural in
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Table 1 Range of field data for three rivers

Study area Study area

River Langat River Muda River Kurau

Q(m3/s) 2.75–120.76 2.59–343.71 0.63–28.94

V (m/s) 0.23–1.01 0.14–1.45 0.27–1.12

B (m) 16.4–37.6 9.0–90.0 6.30–26.00

Yo(m) 0.64–5.77 0.73–6.90 0.36–1.91

A(m2) 8.17–153.57 5.12–278.34 1.43–33.45

R (m) 0.45–3.68 0.55–3.90 0.177–1.349

So 0.00065–0.00185 0.00008–0.000235 0.00050–0.00210

Tb (kg/s) 0.027–0.363 0–0.191 0.080–0.488

Tt (kg/s) 0.2860–99.351 0.024–15.614 0.001–2.660

Tj (kg/s) 0.525–99.398 0.099–15.644 0.089–2.970

d50 ( mm) 0.31–3.00 0.29–2.10 0.41–1.90

Manning n 0.034–0.195 0.021–0.108 0.014–0.066

nature, the River Kurau basin has many riverine villages established from the mid to lower
reaches of the river.

3 River conveyance and sediment transport capacity

The data collection program for this study was implemented at three major rivers in Malaysia
from 2007 until 2008 to assess the current state of river morphology based on on-site data and
to determine the capacity of the river to act as it would naturally. Six study sites were chosen
from each river for a detailed analysis of river conveyance and sediment transport capacity.

The surveyed cross sections for the River Muda and the River Langat are single thread
channels with the top width ranging between 22.5 and 134.0 m, representing medium-sized
rivers, and the top width for River Kurau ranges between 25.8 and 41.0 m, representing a
small-medium river. The slopes are between 0.00008 and 0.0021, indicating that the cross
sections are still natural. The details of the morphological and hydrological descriptors and
range of field data are given in Table 1. The data collection includes flow discharge (Q), sus-
pended load (Tt), bed load (Tb) and water surface slope (So). In addition, the bed elevation,
water surface and thalweg measurement (the minimum bed elevation for a cross section) were
also determined at the selected cross sections. The total bed material load (Tj) is composed of
the suspended load and bed load. The total bed material load must be specified for sediment
transport, scour, and deposition analysis. Details of the measurement methodology are given
in [2]. The measured total bed material rating curves for these six sites at the three rivers are
illustrated in Figs. 2–4.

4 Sediment transport equations assessments

A detailed sediment transport study at six sites for each river was conducted and it was found
that Yang and Engelund-Hansen equations are able to predict the trend of sediment transport
for the three rivers.
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Fig. 2 Comparison of River Langat sediment rating curve for this study and Eq. 4

0.01

0.1

1

10

100

1000100101

T
ot

al
 B

ed
 M

at
er

ia
l L

oa
d,

 T
j

(K
g/

s)

Discharge, Q (m3/s)

Measured Data @ River Muda

Equation 4

Present Study

Fig. 3 Comparison of River Muda sediment rating curve for this study and Eq. 4

Yang [23] related the bed material load to the rate of energy dissipation of the flow as an
agent for sediment transport. The theory of minimum rate of energy dissipation states that
when a dynamic system reaches its equilibrium condition, its rate of energy dissipation is
at a minimum. The minimum value depends on the constraints applied to the system. For
a uniform flow of energy dissipation due to the sediment transport can be neglected. Yang
equation for sand transport is:
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Fig. 4 Comparison of River Kurau sediment rating curve for this study and Eq. 4

log CT = 5.435 − 0.286 log
WSd50
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U∗
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+
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1.799 − 0.409 log
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− 0.314 log

U∗
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)
× log

(
V SO
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− VCSO
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)}

(1)

where

Cv (ppm) = Ct (ppm)

SS

Critical velocity, VC is given by:

VC

WS
= 2.5

log U∗
V − 0.06

+ 0.06

Re∗ = U∗d50

V
= 1.2 − 70

Vcr

WS
= 2.05 for Re∗ ≥ 70

where Ct is total sand concentration (in ppm by weight), WS is terminal fall velocity, d50 is
average particle diameter of granular material, υ is kinematic viscosity, U∗ is shear velocity,
VS is unit stream power, and VCS is critical unit stream power required at incipient motion,
Cv is sediment concentration by volume.

Engelund and Hansen [15] applied Bagnold’s stream power concept and the similarity
principle to obtain the sediment transport equation below.

qs = 0.05ρsV 2
[

d50

g (Ss − 1)

]1/2 [
τ

(ρs − ρ) d50

]3/2

, (2)

where qs is total sediment discharge by weight per unit width, V is average flow velocity, S is
energy slope, ρ is density of water, ρs is density of sediment, d50 is median particle diameter,
g is acceleration due to gravity, and τ is shear stress along the bed.
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Table 2 Summary of discrepancy ratio for three rivers using Yang and Engelund-Hansen equations

Location Total of data Discrepancy ratio (DR) between 0.5 and 2.0

Yang equation Engelund-Hansen equation

Number of data % Number of data %

River Langat 60 30 50.00 31 51.67

River Muda 76 16 21.05 19 25.00

River Kurau 78 33 42.31 38 48.72

The assessment of two existing sediment-transport equations, the Yang [23] and Engelund-
Hansen [15] equation, was performed after removing outliers for the 214 sets of data for this
study (Table 2). The assessment was based on the average size of the sediment (d50). The
performances of the equations were measured using the discrepancy ratio (DR), which is
the ratio of the estimated load to the measured load (DR = estimated/measured). A discrep-
ancy ratio of 0.5–2.0 (DR = 0.5–2.0) was used as a criterion in the evaluation of the selected
equations. The evaluation using these equations shows that all the existing equations, in most
cases, over-estimated the measured values, as shown in Table 2.

5 Multiple linear regression

Ab. Ghani [1] shows that good prediction of sediment transport in pipes could be obtained
from simple regression equations. It’s therefore decided to keep the form of the equation as
simple and as easy to use as possible.

Based on dimensional analysis from previous works [1,21], the proposed function is given
as follows:

Cv = f

(
V√

gd50 (Ss − 1)
,

R

d50
,

B

yo

)
, (3)

where R is hydraulic radius, and B is water surface width. Utilizing all data from the three
rivers in this study, the best equation is given as follows:

Cv = 2.42 × 10−5 ×
(

V√
2g (d50) (Ss − 1)

)0.022 (
R

d50

)−0.2016 (
B

yo

)0.104

. (4)

Figures 2–4 show the sediment rating curves for three rivers using Eq. 4.

6 ANN schemes

From the above analysis, we have attempted ANN—back propagation schemes for this study.
Artificial Neural Network is architecture that fully connects elemental units, called neurons
[16]. It draws its power, talent of learning, and generalization through the connectionist
network. The ANN is trained to provide a desired response to a specific stimulus (input
set). Generalization means that the trained and validated ANN model may produce log-
ical outputs from independent inputs not used in the training and validation stages [16].
The learning process might be supervised or unsupervised; the network may be feed for-
ward or radial based, and so onwards. Hornik et al. [17] stated that multi-layer feed forward
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networks with as few as one hidden layer are indeed capable of universal approximation
in a precise and satisfactory sense. They also concluded that if there is any lack of suc-
cess in applications, the fact may arise from inadequate learning, insufficient numbers of
hidden units, or the lack of a deterministic relationship between input and output. In this
study, ANNs were developed for sediment data sets, the net work input –output as shown in
Fig. 5.

The present ANN structure consists of the input layer (with various numbers of inputs),
one hidden layer, and the output layer. The feed-forward calculation starts at the input layer,
moves forward to the next layer, and determines the output values for each neuron. Each unit
or neuron in the network sums the weighted inputs and a bias passed from the previous layer,
and then applies a nonlinear activation function to generate an output.

6.1 Selection of input parameters for the ANN

The selection of the input parameters is a very important aspect of neural network model-
ing. In order to use ANN structures effectively, input variables in the phenomenon must be
selected with great care. This highly depends on the better understanding of the problem. In
a firm ANN architecture, in order not to confuse training process key variables must be intro-
duced and unnecessary variables must be avoided. For this purpose, a sensitivity analysis can
be used to find out the key parameters. Also sensitivity analysis can be useful to determine
the relative importance of the parameters when sufficient data are available. The sensitivity
analysis is used to determine the effect of changes and to determine relative importance or
effectiveness of a variable on the output. The input variables that do not have a significant
effect on the performance of an ANN can be excluded from the input variables, resulting in
a more compact network. Then, it becomes necessary to work on methods like sensitivity
analysis to make ANNs work effectively [4]. The parameters that affect the total sediment
load can be given in a form as: Tj = f (Q, V, B, Yo, R, So) to establish an ANN architecture
(Fig. 5).

6.2 Determination of ANN architecture

A total of 214 cross-section averaged load observations were divided into two parts. Seventy
percent of the data was reserved for training, the rest for testing. The training data set was

123



316 Environ Fluid Mech (2011) 11:307–318

Fig. 6 Observed versus predicted Sediment load ANN—BFG (inputs: eight hidden neurons)

used to determine the best weights and biases for the network. The testing data pattern was
used to measure the generalization performance of the selected model [16]. Data for each set
were selected randomly but statistical consistency between the sets was ensured. The division
of data is a complex task [8]. The data from all rivers were uniformly distributed among the
training and test data sets.

The logistic function, which is used in all layers of the proposed network, is constrained
between 0 and 1. Thus, the entire data set was rescaled so that one predictor did not dom-
inate the model [12]. There are many different alternative standardization methods used
to create data with zero mean and unit standard deviation, but herein, for all ANN mod-
els, the input(s) and the output were rescaled between 0.0 and 1.0. Researchers [5–7] used
ANN techniques in modeling have used many different criteria to evaluate model perfor-
mance. There is no generally accepted standard for the assessment of ANN performance. A
common procedure is the use of the root-mean-square error (RMSE) and the coefficient of
determination R2 when evaluating the goodness of fit of models. After selecting the model
and the network type, the outputs predicted on the basis of the trained and the validated
weight bias matrices were compared with the three traditional total sediment load discharge
models.

Because there is no specific method to determine the network structure, it was found that
the best model representing the total load phenomena is in the form of the ANN (6,10,1). The
number of neurons in the hidden layers was determined through a trial-and-error approach.
The ANN model was shown in Fig. 5 dimensional input parameters and one desired result,
i.e., the sediment load. The model was trained using 150 data sets and tested with the remain-
ing 64 data sets. The input 8, 1 hidden layer with 10 hidden nodes and 1 output, the trained
network yields satisfactory performance with R2 = 0.958 for BFG scheme (Fig. 6). The
other schemes were attempted and presented in Table 3.
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Table 3 Error measures for
different ANN schemes

ANN
schemes

Iteration number
(Epoch)

Coefficient of
determination, R2

Mean square
error

BFG 2000 0.958 0.070

CGF 1000 0.717 11.788

CGP 1200 0.694 12.567

OSS 600 0.746 10.457

LM 40 0.959 0.075

GDA 120 0.656 12.845

GDX 150 0.704 12.689

RP 200 0.813 5.678

SCG 80 0.876 1.234

CGP 1500 0.699 12.678

Yang [23] 0.722 10.376

Engelund–Hansen [15] 0.623 12.735

7 Conclusions

Total load transport in rivers is a complex phenomenon. The nature and motivation of tra-
ditional total load models differ significantly. These approaches are normally able to make
predictions within about one order of magnitude of the actual measurements. To overcome
the complexity and uncertainty associated with total-load estimation, this research demon-
strates that an ANN model can be applied for accurate prediction of total-load transport.
A feed forward-back propagated (BFG) ANN model with one hidden layer with 10 hidden
neurons was found to perform adequately. The ANN model was able to successfully predict
total load transport in a great variety of fluvial environments, including both sand and gravel
rivers. Also, the ANN prediction of mean total load was in almost perfect agreement with the
measured mean total load. The high value of the coefficient of determination (R2 = 0.958)
implies that the ANN model provides an excellent fit for the measured data. These results sug-
gest that the proposed ANN model is a robust total load predictor. This study demonstrates a
successful application of the ANN modeling concept to total load sediment transport. Despite
having five index parameters, the conclusion that only eight parameters are required to pre-
dict total load, is in agreement with previous works [24]. The value of the ANN approach
is that the nonlinear function need not be the same for all fluvial environments. The genetic
programming will be used to predict sediment load in the future with more database.
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