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Prediction of transmembrane α-helices in prokaryotic membrane
proteins: the dense alignment surface method
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Gunnar von Heijne1, Arne Elofsson1 These proteins contain 262 transmembrane segments and a

total number of 15 467 residues. For four of the proteins theInstitute of Enzymology, Biological Research Center Hungarian Academy of
annotations in the database were found to contain erroneousSciences, PO Box 7, H-1518 Budapest, Hungary and1Department of

Biochemistry, Stockholm University, S-106 91 Stockholm, Sweden information compared with the published data. In KDPD_
2Present address: University of Birmingham, School of Biochemistry, ECOLI (Zimmann et al., 1995) two false segments were
Edgbaston, Birmingham B15 2TT, UK indicated (25–45 and 841–861). In TOLQ_ECOLI
3To whom correspondence should be addressed (Kampfenkel and Braun, 1993; Vianneyet al., 1994) the
A new, simple method for predicting transmembrane seg- location of the first transmembrane segment was wrong (23–
ments in integral membrane proteins has been developed. 43 instead of 9–36). The following transmembrane segments
It is based on low-stringency dot-plots of the query sequence were missing in the database annotations: GLPT_ECOLI: 28–
against a collection of non-homologous membrane proteins 44, 65–87, 98–113 and 293–310 (Go¨tt and Boos, 1988);
using a previously derived scoring matrix [Cserzo¨ et al., SECD_ECOLI: 476–497 and 586–605 (Pogliano and
1994, J. Mol. Biol., 243, 388–396]. This so-called dense Beckwith, 1994); TOLQ_ECOLI: 127–159 and 162–191
alignment surface (DAS) method is shown to perform on (Kampfenkel and Braun, 1993; Vianneyet al., 1994). The
par with earlier methods that require extra information in number and location of the transmembrane segments were
the form of multiple sequence alignments or the distribution corrected manually for these sequences. One should note that,
of positively charged residues outside the transmembrane while the membrane topology—after the proper correction—
segments, and thus improves prediction abilities when only is reliable, the precise ends of the transmembrane segments
single-sequence information is available or for classes are only approximate.
of membrane proteins that do not follow the ‘positive From the corrected feature tables, topology profiles were
inside’ rule. generated by setting the profile value to 1 for all residues in
Keywords: transmembraneα-helices/prokaryotic membrane transmembrane segments and to 0 for the rest of the sequence.
proteins We refer to these profiles as ‘experimental’.

The redundancy of the test set was checked by pairwise
alignment of the sequences (‘gap’ tool of Wisconsin Package

Introduction Version 8.1, Genetics Computer Group, Madison, WI; end-
Transmembrane helices in integral membrane proteins areweight switch on, standard scoring matrix, default gap penalty).
composed of stretches of 15–30 predominantly hydrophobicIn one case, the percentage identity was 39%, all other pairwise
residues separated by polar connecting loops (von Heijne,identities were below 30%.
1994). A number of algorithms designed to locate putative

DAS hydrophobicity profilestransmembrane helices in the primary amino acid sequence
The ‘dense alignment surface’ (DAS) method is based on ahave been developed, and current methods can identify around
traditional dot-plot of two proteins (Cserzo¨ et al., 1994). If90–95% of all true transmembrane segments with an over-
two segments of a certain length of the two proteins have aprediction rate of only a few percent (von Heijne, 1992; Jones
similarity score with a significance higher than a certain cut-et al., 1994; Persson and Argos, 1996; Rostet al., 1995; Rost
off, that region is marked on the dot-plot. DAS uses the RReMet al., 1996). The best results have been obtained when multiply
scoring matrix (Tu¨dös et al., 1990) which is based on thealigned sequences can be analyzed; however, in many cases
‘neighborhood selectivity’ (NS) of amino acids pairs (up tothere are no homologues in the database and improvements in
10 residues distant from each other in the sequence) thatsingle-sequence prediction performance are thus important.
characterizes whether a certain amino acid pair is favored orRecently, the so-called dense alignment surface (DAS)
disfavored in terms of its observed frequency versus itsmethod was introduced in an attempt to improve sequence
expected frequency by chance. NS values were calculated overalignments in the G-protein coupled receptor family of trans-

membrane proteins (Cserzo¨ et al., 1994). We have now a large set of protein sequences (~23107) derived from
generalized this method to predict transmembrane segmentsGenBank. The RReM matrix is a measure of the similarity of
in any integral membrane protein without the need for multiple-the NS values of the various amino acids to each other. The
sequence information, and find that it performs on par withRReM matrix is found on a separate branch in a recent cluster
the best multiple-alignment based schemes when tested onanalysis of published residue substitution tables, and is most
a set of prokaryotic inner membrane proteins with knownclosely related to various hydrophobicity measures (Tomii and
topologies. Kanehisa, 1996).

In the DAS method hits are marked on the dot-plot surface
Materials and methods at a very low cut-off, by default 1 standard deviation (SDU).
Experimental hydrophobicity profiles For unrelated membrane proteins, the hits are unevenly distrib-

uted with the highest density of hits at the intersections of theA test set of 44 prokaryotic transmembrane proteins with
experimentally determined topologies was selected from the transmembrane segments. This results in a chess-board like
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Table I. Pairwise correlation coefficients of the various profiles for each
protein sequence separately

SwissProt code I II III IV

ALKB_PSEOL.sw 0.7378 0.7079 0.6282 0.7310
ATPL_ECOLI.sw 0.8882 0.7164 0.8079 0.6950
COX2_PARDE.sw 0.6824 0.4256 0.7347 0.4276
COX3_PARDE.sw 0.5012 0.3881 0.5193 0.5711
CX1B_PARDE.sw 0.6557 0.6381 0.6115 0.6251
CYDA_ECOLI.sw 0.7448 0.6137 0.7746 0.6956
CYDB_ECOLI.sw 0.8190 0.6800 0.7893 0.7822
CYOA_ECOLI.sw 0.7195 0.5193 0.5557 0.5946
CYOB_ECOLI.sw 0.7207 0.5895 0.6543 0.6980
CYOC_ECOLI.sw 0.7052 0.6534 0.7536 0.6706
CYOD_ECOLI.sw 0.8388 0.7452 0.5583 0.7459
CYOE_ECOLI.sw 0.5645 0.4231 -0.0039 0.3687
DHG_ECOLI.sw 0.8208 0.5279 0.7768 0.7280
DMSC_ECOLI.sw 0.7283 0.6419 0.7308 0.7188
DSBB_ECOLI.sw 0.7001 0.6018 0.6747 0.6385
ENVZ_ECOLI.sw 0.8137 0.5625 0.8658 0.9603
EXBB_ECOLI.sw 0.8265 0.6134 0.8421 0.8920
EXBD_ECOLI.sw 0.8509 0.6578 0.8726 0.9145
FTSH_ECOLI.sw 0.7794 0.5424 n.a. 0.7503
FTSL_ECOLI.sw 0.8893 0.7834 0.9394 0.9711
FUCP_ECOLI.sw 0.6302 0.7101 0.6444 0.8972
GLPT_ECOLI.sw 0.6941 0.6888 0.6910 0.8576
HISM_SALTY.sw 0.6385 0.6366 0.5792 0.5696
HISQ_SALTY.sw 0.6995 0.3838 0.5179 0.6077
HOXN_ALCEU.sw 0.6042 0.5686 0.5152 0.5205 Fig. 1. DAS plot of two arbitrarily chosen proteins (COX3_PARDE versus
IMMA_CITFR.sw 0.7847 0.6530 0.7759 0.8311 CYDB_ECOLI). The cross weighted cumulative score profile (dotted line)
KDPD_ECOLI.sw 0.7536 0.4873 0.8968 0.8051 and the global DAS profile (continuous line) calculated as the average of
KGTP_ECOLI.sw 0.6977 0.7086 0.7016 0.7657 the cumulative score profiles obtained for comparisons with the other 43
LACY_ECOLI.sw 0.6902 0.6314 0.5858 0.7282 proteins in the test set are also shown for COX3_PARDE. COX3_PARDE
LSPA_ECOLI.sw 0.6799 0.5568 0.8061 0.7708 has seven and CYDB_ECOLI has eight transmembrane segments.
MALG_ECOLI.sw 0.6937 0.6950 0.7994 0.7098
MELB_ECOLI.sw 0.6473 0.6528 0.7532 0.7170
MOTA_ECOLI.sw 0.7143 0.6050 0.8529 0.9078 Reference predictionsMOTB_ECOLI.sw 0.7109 0.5437 0.9245 0.8253
MTR_ECOLI.sw 0.6930 0.4595 0.6567 0.7162 For reference, standard hydrophobicity profiles were calculated
OPPB_SALTY.sw 0.8031 0.6835 0.8185 0.9462 for the proteins in the test set. A sliding window averaging
OPPC_SALTY.sw 0.7947 0.6574 0.7906 0.8040 with a trapezoid window was used (von Heijne, 1992). The
PHOR_ECOLI.sw 0.7752 0.5252 0.7782 0.5434

window core size was 9 and the full size 11 to match the windowRHAT_ECOLI.sw 0.6238 0.6738 0.6183 0.8655
size used in the DAS profile calculation. The Engelman–SteitzSECD_ECOLI.sw 0.7765 0.6542 0.6953 0.6897

SECE_ECOLI.sw 0.7407 0.7092 0.6844 0.8951 hydrophobicity scale was used (Engelmanet al., 1986). These
SECY_ECOLI.sw 0.7468 0.6661 0.8448 0.8604 profiles are referred to as,H. profiles.
TOLQ_ECOLI.sw 0.8303 0.8204 0.7476 0.6993 Transmembrane helices were predicted using the TOPPREDTOLR_ECOLI.sw 0.8154 0.5171 0.8242 0.7450

algorithm (core window, 11 residues; full window, 21 residues),average 0.7312 0.6134 0.7113 0.7373
where the distribution of positively charged residues in the

I, experimental versus DAS; II, experimental versus,H.; III, experimental loops connecting the transmembrane helices is optimized in
versus PHDhtm; IV, experimental versus TOPPRED the final prediction (von Heijne, 1992). These predictions were

transformed to topology profiles by setting a value of 1 for
the predicted transmembrane regions and 0 for the rest. Thesepattern. The DAS plot of two arbitrary chosen proteins of the
profiles are referred to as TOPPRED profiles.database is shown in Figure 1. By summation, a ‘cross-

Finally, transmembrane helices were predicted using theweighted cumulative score’ profile (Cserzo¨ et al., 1994)
PHDhtm server (Rostet al., 1995) at http://www.embl-can be calculated for each of the two proteins, with the
heidelberg.de/predictprotein, a program based on a trainedtransmembrane segments appearing as peaks.
neural network and multiply aligned test sequences. From theA global DAS profile was calculated for each of the test
predicted topologies, PHDhtm profiles with a value of 1proteins by averaging the 43 individual cumulative score
for predicted transmembrane regions and 0 elsewhere wereprofiles obtained for pairwise alignments with the other test
generated.set proteins. The RReM scoring matrix and default parameters
Statistical tests(window 10 residues, cut-off 1.0 SDU) were used.

Since the DAS method compares each transmembrane To convert the DAS and,H. profiles into predictions of
transmembrane segments, they were transformed so that thesegment against all the other transmembrane segments in the

test set, the global DAS profile is very insensitive to the values were set to 1 where the original profiles were above a
certain cut-off and to 0 in the rest of the sequence. Thisproteins included in the test set. In fact, the cross-weighted

cumulative score profile for a given pair of sequences is in transformation resulted in square shaped profiles similar to the
experimental, TOPPRED and PHDhtm profiles. The simil-most cases almost identical to the global DAS profile, as

illustrated in Figure 1. arities of the different profiles (experimental, DAS,,H.,
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TOPPRED and PHDhtm) were measured by their pairwise
correlation coefficients calculated for each protein separately
as well as for all the profiles together. In the latter test, the 44
profiles were concatenated and treated as a single, long profile.

The experimental determination of the ends of the transmem-
brane segments is uncertain and it is thus questionable to base
the evaluation of the different methods on single-residue
prediction performances. To minimize this problem the number
of predicted transmembrane segments for a protein and the
number of transmembrane segments overlapping with an
experimental transmembrane segment were counted. The actual
length of the overlapping portion was ignored. These tests
are not sensitive to the uncertainties in the location of the
transmembrane segments. The efficiency of the predictions
were measured in terms of the following two ratios:

M 5 Em/Et 1

C 5 Pm/Pt 2

where Em is the number of experimental transmembrane
segments that overlap with a predicted transmembrane segment,
Et is the total number of experimental transmembrane segments,Fig. 2. Correlation coefficients of the transformed DAS (continuous line)

and,H. (dotted line) profiles against the experimental ones as thePm is the number of predicted transmembrane segments that
function of the applied cut-off of the transformation. The correspondingoverlap with an experimental transmembrane segment andPt
value for the PHDhtm and TOPPRED profiles are marked by ‘*’ and ‘#’.is the total number of predicted transmembrane segments.Em

is not equal toPm as in some cases the matching peaks are
coefficients of 0.66 and 0.72 at cut-off 0.6 and 1.5 for thesplit and the same experimental transmembrane segment is
,H. and the DAS profiles, respectively (the actual positionthereby matched twice. There are also some examples of
of the optimum reflects only to the different scaling of thepredictions when the same predicted peak matches two experi-
two types of profiles). The PHDhtm and TOPPRED profilesmental transmembrane segments.
are optimized from the beginning, and their correlation
coefficients in this test are 0.73 and 0.76, respectively.

Results and discussion The ends of the transmembrane segments listed in SwissProt
To measure the similarities of the experimental versus predictedare uncertain, and the limited precision of the database is thus
topology profiles, correlation coefficients were calculatedmixed up with the limitation of the applied methods. To
between them for each sequence separately, Table I. Theaddress this problem, only the number of predicted segments
average correlations are 0.73, 0.61, 0.74 and 0.71 for the DAS,and the number of segments overlapping with an experimental
,H., TOPPRED and PHDhtm profiles, respectively (for segment were counted. The actual length of the overlapping
FTSH_ECOLI the neural network did not predict any trans-portion was ignored. The efficiency of the prediction at a
membrane segment, thus the correlation coefficient is notgiven cut-off was measured by the ratiosM andC (Materials
applicable in this case. The corresponding values for DAS,and methods, Eqns 1 and 2).M decreases andC increases
,H. and TOPPRED were ignored in the averaging.) with the cut-off. The behavior ofM and C as a function of

DAS profiles are on average better correlated with thethe cut-off is shown in Figure 3 for the DAS and,H.
experimental profiles than are the,H. profiles. In only two profiles. The optimal cut-off is found around the intersection
cases is the,H. profile better correlated with the experimental of the M and C curves. The efficiency of the predictions in
profiles than the corresponding DAS profile. terms of the probability to match a real peak (M) and the

The correlation between the PHDhtm and TOPPRED profilesprobability that a predicted peak is a real one (C) are given in
and the experimental ones behaves differently. For most ofTable II. The geometric mean of these values are also presented
the proteins these profiles are as good as the DAS profile,in the last column to characterize the overall predictive power
however, in a few cases they are much better while in a fewof the methods. Again, the DAS method is found to perform
other cases they are much worse. We could not find anybetter than,H., on par with PHDhtm and slightly worse
correlation between the number of aligned sequences or theirthan TOPPRED.
percentage identity to the query used in the multiple alignment A common problem in all methods that try to predict
and the accuracy of the PHDhtm prediction compared withtransmembrane segments is that closely spaced pairs of seg-
the accuracy of the DAS method (data not shown). ments sometimes show up as a single, wide peak in the

In the next step the DAS and,H. profiles were transformed prediction output, and, conversely, that a single transmembrane
into square shaped prediction profiles as described in Materialssegment sometimes shows up as a pair of closely spaced,
and methods. The correlation of the transformed profilesnarrow peaks. To address this problem, one usually resorts to
with the concatenated experimental profile (see Materials andad hoc rules that are found to increase the method’s performance
methods) as a function of the applied cut-off is shown in(Rostet al., 1995, 1996). However, given that the number of
Figure 2. At low cut-off values transmembrane segments areerroneous predictions on the present test set is small from the
predicted everywhere resulting in an elevated number of falseoutset, the statistical significance of these extra rules is often
predictions, whereas at high cut-offs the predictions missdoubtful and one always runs the risk of over-fitting the rules

to a few, special cases that happen to be present.the real peaks. This behavior results in optimal correlation
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sequence we might consider the DAS profiles as relatively
independent from errors in the database.

In conclusion, we have compared the performance of four
different transmembrane segment prediction methods: a sliding
window averaging with trapezoid window (,H.), a method
(TOPPRED) based on the ‘positive inside’ rule (von Heijne,
1992), a neural network method (PHDhtm) including informa-
tion from multiply aligned sequences (Rostet al., 1995, 1996)
and the new DAS method. The predictive power of DAS and
PHDhtm is essentially the same while the single-sequence
based,H. method performs significantly worse when applied
to a test set of 44 well characterized prokaryotic membrane
proteins. Incorporating extra information related to the positive
inside rule (TOPPRED) brings the predictive power to the
level of the two other methods. This suggests that the DAS
method, which uses only single sequence information, is on
par with the PHDhtm method (which uses multiple sequence
alignments) and TOPPRED (which uses extra information in
the form of the distribution of positively charged residues)
in predicting transmembrane segments in prokaryotic inner
membrane proteins.

Fig. 3. Ratio of correct matches (M, continuous lines) and ratio of correct A WWW server running the DAS algorithm is available at
predictions (C, dotted lines) as the function of the applied cut-off of the http://www.biokemi.su.se/~server/DAS/.transformation for the DAS (thick lines) and,H. (thin lines) profiles. The
corresponding values for the PHDhtm and TOPPRED profiles are marked
by ‘*’ and ‘#’. Acknowledgements
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sequential neighborhood. It is thus not directly related to the
hydrophobic properties of amino acids in transmembrane
segments, although it correlates reasonably well with hydro-
phobicity indices (Tomii and Kanehisa, 1996). As a con-
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