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Prediction of transmembrane a-helices in prokaryotic membrane
proteins: the dense alignment surface method
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Gunnar von Heijnel, Arne Elofssort These proteins contain 262 transmembrane segments and a
Institute of Enzymology, Biological Research Center Hungarian Academy 0ft0ta| number_ of 15 467 residues. For four of the F?mte'”s the
Sciences, PO Box 7, H-1518 Budapest, Hungary ¥epartment of annotations in the database were found to contain erroneous
Biochemistry, Stockholm University, S-106 91 Stockholm, Sweden information compared with the published data. In KDPD
’Present addrgs;: University of Birmingham, School of Biochemistry, ECOLI (Zimmann et al, 1995) two false segments Were_
Fdgbaston, Birmingham B15 2TT, UK indicated (25-45 and 841-861). In TOLQ_ECOLI

To whom correspondence should be addressed (Kampfenkel and Braun, 1993; Viannest al, 1994) the

A new, simple method for predicting transmembrane seg- location of the first transmembrane segment was wrong (23—
ments in integral membrane proteins has been developed. 43 instead of 9-36). The following transmembrane segments
Itis based on low-stringency dot-plots of the query sequence were missing in the database annotations: GLPT_ECOLI: 28—
against a collection of non-homologous membrane proteins 44, 65-87, 98-113 and 293-310 "(G@nd Boos, 1988);
using a previously derived scoring matrix [CserZoet al, =~ SECD_ECOLIl: 476-497 and 586-605 (Pogliano and
1994, J. Mol. Biol., 243, 388-396]. This so-called dense Beckwith, 1994); TOLQ ECOLI: 127-159 and 162-191
alignment surface (DAS) method is shown to perform on (Kampfenkel and Braun, 1993; Viannest al, 1994). The

par with earlier methods that require extra information in number and location of the transmembrane segments were
the form of multiple sequence alignments or the distribution  corrected manually for these sequences. One should note that,
of positively charged residues outside the transmembrane while the membrane topology—after the proper correction—
segments, and thus improves prediction abilities when only is reliable, the precise ends of the transmembrane segments
single-sequence information is available or for classes are only approximate.

of membrane proteins that do not follow the ‘positive From the corrected feature tables, topology profiles were
inside’ rule. generated by setting the profile value to 1 for all residues in
Keywords transmembranen-helices/prokaryotic membrane transmembrane segments and to O for the rest of the sequence.
proteins We refer to these profiles as ‘experimental’.

The redundancy of the test set was checked by pairwise
: alignment of the sequences (‘gap’ tool of Wisconsin Package
Introduction ) o ) Version 8.1, Genetics Computer Group, Madison, WI; end-
Transmembrane helices in integral membrane proteins akgeight switch on, standard scoring matrix, default gap penalty).

composed of stretches of 15-30 predominantly hydrophobig, one case, the percentage identity was 39%, all other pairwise
residues separated by polar connecting loops (von Heijnggentities were below 30%.

1994). A number of algorithms designed to locate putative - i
transmembrane helices in the primary amino acid sequend@”S Nnydrophobicity profiles
have been developed, and current methods can identify arouridhe ‘dense alignment surface’ (DAS) method is based on a
90-95% of all true transmembrane segments with an oveitraditional dot-plot of two proteins (Cserzet al, 1994). If
prediction rate of only a few percent (von Heijne, 1992; Jonegwo segments of a certain length of the two proteins have a
et al, 1994; Persson and Argos, 1996; Resal., 1995; Rost  similarity score with a significance higher than a certain cut-
etal.,, 1996). The best results have been obtained when multiplgff, that region is marked on the dot-plot. DAS uses the RReM
aligned sequences can be analyzed; however, in many caseoring matrix (Tdos et al, 1990) which is based on the
there are no homologues in the database and improvements ‘ireighborhood selectivity’ (NS) of amino acids pairs (up to
single-sequence prediction performance are thus important. 10 residues distant from each other in the sequence) that
Recently, the so-called dense alignment surface (DASgharacterizes whether a certain amino acid pair is favored or
method was introduced in an attempt to improve sequencdisfavored in terms of its observed frequency versus its
alignments in the G-protein coupled receptor family of trans-expected frequency by chance. NS values were calculated over
membrane proteins (Csérzet al, 1994). We have now a large set of protein sequences<18) derived from
generalized this method to predict transmembrane segmen®&enBank. The RReM matrix is a measure of the similarity of
in any integral membrane protein without the need for multiplethe NS values of the various amino acids to each other. The
sequence information, and find that it performs on par withRReM matrix is found on a separate branch in a recent cluster
the best multiple-alignment based schemes when tested @malysis of published residue substitution tables, and is most
a set of prokaryotic inner membrane proteins with knownclosely related to various hydrophobicity measures (Tomii and

topologies. Kanehisa, 1996).

. In the DAS method hits are marked on the dot-plot surface
Materials and methods at a very low cut-off, by default 1 standard deviation (SDU).
Experimental hydrophobicity profiles For unrelated membrane proteins, the hits are unevenly distrib-

A test set of 44 prokaryotic transmembrane proteins withuted with the highest density of hits at the intersections of the
experimentally determined topologies was selected from the transmembrane segments. This results in a chess-board |
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Table I. Pairwise correlation coefficients of the various profiles for each
protein sequence separately
SwissProt code | Il 1] v
ALKB_PSEOL.sw 0.7378 0.7079 0.6282 0.7310
ATPL_ECOLIl.sw 0.8882 0.7164 0.8079 0.6950
COX2_PARDE.sw 0.6824 0.4256 0.7347 0.4276
COX3_PARDE.sw 0.5012 0.3881 0.5193 0.5711
CX1B_PARDE.sw 0.6557 0.6381 0.6115 0.6251 Q
CYDA_ECOLIl.sw 0.7448 0.6137 0.7746 0.6956 é
CYDB_ECOLI.sw 0.8190 0.6800 0.7893 0.7822 ey
CYOA_ECOLIl.sw 0.7195 0.5193 0.5557 0.5946 Q
CYOB_ECOLIL.sw 0.7207 0.5895 0.6543 0.6980 g
CYOC_ECOLIl.sw 0.7052 0.6534 0.7536 0.6706 o
CYOD_ECOLIl.sw 0.8388 0.7452 0.5583 0.7459 £
CYOE_ECOLI.sw 0.5645 0.4231 -0.0039 0.3687
DHG_ECOLI.sw 0.8208 0.5279 0.7768 0.7280
DMSC_ECOLI.sw 0.7283 0.6419 0.7308 0.7188
DSBB_ECOLI.sw 0.7001 0.6018 0.6747 0.6385
ENVZ_ECOLIl.sw 0.8137 0.5625 0.8658 0.9603
EXBB_ECOLIl.sw 0.8265 0.6134 0.8421 0.8920
EXBD_ECOLI.sw 0.8509 0.6578 0.8726 0.9145
FTSH_ECOLI.sw 0.7794 0.5424 n.a. 0.7503
FTSL_ECOLIl.sw 0.8893 0.7834 0.9394 0.9711
FUCP_ECOLI.sw 0.6302 0.7101 0.6444 0.8972 ! : ; J
GLPT _ECOLI.sw 0.6941 0.6888 0.6910 0.8576 0 60 120 180 240 300
HISM_SALTY.sw 0.6385 0.6366 0.5792 0.5696 COX3_PARDE. sw
HISQ_SALTY.sw 0.6995 0.3838 0.5179 0.6077
HOXN_ALCEU.sw 0.6042 0.5686 0.5152 0.5205 Fig. 1. DAS plot of two arbitrarily chosen proteins (COX3_PARDE versus
IMMA_CITFR.sw 0.7847 0.6530 0.7759 0.8311 CYDB_ECOLI). The cross weighted cumulative score profile (dotted line)
KDPD_ECOLI.sw 0.7536 0.4873 0.8968 0.8051 and the global DAS profile (continuous line) calculated as the average of
KGTP_ECOLLsw 0.6977 0.7086 0.7016 0.7657 the cumulative score profiles obtained for comparisons with the other 43
LACY_ECOLI.sw 0.6902 0.6314 0.5858 0.7282 proteins in the test set are also shown for COX3_PARDE. COX3_PARDE
LSPA_ECOLI.sw 0.6799 0.5568 0.8061 0.7708 has seven and CYDB_ECOLI has eight transmembrane segments.
MALG_ECOLIl.sw 0.6937 0.6950 0.7994 0.7098
MELB_ECOLI.sw 0.6473 0.6528 0.7532 0.7170
MOTA_ECOLIl.sw 0.7143 0.6050 0.8529 0.9078 P
MOTB_ECOLI.sw 0.7109 0.5437 0.9245 0.8253 Reference predictions
MTR_ECOLI.sw 0.6930 0.4595 0.6567 0.7162 For reference, standard hydrophobicity profiles were calculated
OPPB_SALTY.sw 0.8031 0.6835 0.8185 0.9462 for the proteins in the test set. A sliding window averaging
OPPC_SALTY.sw 0.7947 0.6574 0.7906 08040 \yith a trapezoid window was used (von Heijne, 1992). The
PHOR_ECOLI.sw 0.7752 0.5252 0.7782 0.5434 . K . .
RHAT ECOLI.sw 0.6238 0.6738 0.6183 0.8655 wlndow core size was 9 aqd the full size 11 to match the wmdqw
SECD_ECOLL.sw 0.7765 0.6542 0.6953 0.6897 Size used in the DAS profile calculation. The Engelman—Steitz
SECE_ECOLI.sw 0.7407 0.7092 0.6844 0.8951 hydrophobicity scale was used (Engelnedral., 1986). These
?gfg-ggg'[:szv o aas oo ooaae o Profiles are referred to asH> profiles.
TOLR ECOLIsw 0.8154 05171 0.8242 0.7450 Transmembran_e helices were predlcted_ using the TO_PPRED
average 0.7312 0.6134 0.7113 0.7373 algorithm (core window, 11 residues; full window, 21 residues),

where the distribution of positively charged residues in the
I, experimental versus DAS; II, experimental versusl>; Ill, experimental loops connecting the transmembrane helices is optimized in
versus PHDhtm; 1V, experimental versus TOPPRED the final prediction (von Heijne, 1992). These predictions were
transformed to topology profiles by setting a value of 1 for

pattern. The DAS plot of two arbitrary chosen proteins of the'[he predicted transmembrane regions and O for the rest. These

database is shown in Figure 1. By summation, a ‘Crosspr(ljzfilgsllj r?r;ifsgg%é?aiiTr?e';(F:)eF;Ev?/eetraOfg?esdicted using the
weighted cumulative score’ profile (Csérzet al, 1994) PHDhtm server (Rostet al, 1995) at http://www.embl-

can be calculated for each of the two proteins, with theheidelberg.de/predictprotein, a program based on a trained

transmembrane segments appearing as peaks. X ;
A global DAS prgofile waspcr:)alculaqted f[c))r each of the testneural network and multiply aligned test sequences. From the

proteins by averaging the 43 individual cumulative scorepmd'c'[e‘.]I topologies, PHDhtm PFOf"eS with a value of 1
profiles obtained for pairwise alignments with the other testfor predicted transmembrane regions and 0 elsewhere were
set proteins. The RReM scoring matrix and default parametergen?r"’_‘ted'
(window 10 residues, cut-off 1.0 SDU) were used. Statistical tests

Since the DAS method compares each transmembrane To convert the DASHrdprofiles into predictions of
segment against all the other transmembrane segments in ttransmembrane segments, they were transformed so that the
test set, the global DAS profile is very insensitive to the  values were set to 1 where the original profiles were above :
proteins included in the test set. In fact, the cross-weightedertain cut-off and to 0 in the rest of the sequence. This
cumulative score profile for a given pair of sequences is in  transformation resulted in square shaped profiles similar to th
most cases almost identical to the global DAS profile, aexperimental, TOPPRED and PHDhtm profiles. The simil-
illustrated in Figure 1. arities of the different profiles (experimental, DAS{>,
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TOPPRED and PHDhtm) were measured by their pairwise
correlation coefficients calculated for each protein separately ° #
as well as for all the profiles together. In the latter test, the 44 ’
profiles were concatenated and treated as a single, long profile.
The experimental determination of the ends of the transmem-
brane segments is uncertain and it is thus questionable to base
the evaluation of the different methods on single-residue
prediction performances. To minimize this problem the number
of predicted transmembrane segments for a protein and the
number of transmembrane segments overlapping with an
experimental transmembrane segment were counted. The actual
length of the overlapping portion was ignored. These tests
are not sensitive to the uncertainties in the location of the
transmembrane segments. The efficiency of the predictions

SL”
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were measured in terms of the following two ratios: -f;_
M = E/E 1 :
C = P,/P, 2 o . . . :
where E,, is the number of experimental transmembrane "o 05 ' C:t'osff ? 2 ’

segments that overlap with a predicted transmembrane segment,
E IS the total number of expe”mental transmembrane segmentsig. 2. Correlation coefficients of the transformed DAS (continuous line)
P, is the number of predicted transmembrane segments thatd <H> (dotted line) profiles against the experimental ones as the

overlap with an experimental transmembrane segmentPand function of the applied cut-off of the transformation. The corresponding
is the total number of predicted transmembrane segmEepts. value for the PHDhtm and TOPPRED profiles are marked by * and ‘#'.
is not equal toP,, as in some cases the matching peaks are

tsr? é'rtegndrégfcﬁ :(;n ?W?é(g e;l_wéarr;ta;rtéagfsrgeg:)t;rr]aeneexzt?ﬁrrllsg t j H> and the DAS profiles, respectively (the actual position
redict)i/ons when the sarﬁe redicted peak matches twopex e f the optimum reflects only to the different scaling of the
P P P Pt types of profiles). The PHDhtm and TOPPRED profiles

mental transmembrane segments. are optimized from the beginning, and their correlation
. . coefficients in this test are 0.73 and 0.76, respectively.
Results and discussion The ends of the transmembrane segments listed in SwissProt
To measure the similarities of the experimental versus predicteare uncertain, and the limited precision of the database is thus
topology profiles, correlation coefficients were calculatedmixed up with the limitation of the applied methods. To
between them for each sequence separately, Table |. Thaldress this problem, only the number of predicted segments
average correlations are 0.73, 0.61, 0.74 and 0.71 for the DAQnd the number of segments overlapping with an experimental
<H>, TOPPRED and PHDhtm profiles, respectively (for segment were counted. The actual length of the overlapping
FTSH_ECOLI the neural network did not predict any trans-portion was ignored. The efficiency of the prediction at a
membrane segment, thus the correlation coefficient is nagiven cut-off was measured by the ratiglsand C (Materials
applicable in this case. The corresponding values for DASand methods, Eqns 1 and 2)1 decreases an@ increases
<H> and TOPPRED were ignored in the averaging.) with the cut-off. The behavior oM and C as a function of

DAS profiles are on average better correlated with thehe cut-off is shown in Figure 3 for the DAS andH>
experimental profiles than are tkeH> profiles. In only two  profiles. The optimal cut-off is found around the intersection
cases is thecH> profile better correlated with the experimental of the M and C curves. The efficiency of the predictions in
profiles than the corresponding DAS profile. terms of the probability to match a real peaW)(and the

The correlation between the PHDhtm and TOPPRED profileprobability that a predicted peak is a real o ére given in
and the experimental ones behaves differently. For most ofable Il. The geometric mean of these values are also presented
the proteins these profiles are as good as the DAS profilén the last column to characterize the overall predictive power
however, in a few cases they are much better while in a fevof the methods. Again, the DAS method is found to perform
other cases they are much worse. We could not find anpetter than<H>, on par with PHDhtm and slightly worse
correlation between the number of aligned sequences or thetihan TOPPRED.
percentage identity to the query used in the multiple alignment A common problem in all methods that try to predict
and the accuracy of the PHDhtm prediction compared withransmembrane segments is that closely spaced pairs of seg-
the accuracy of the DAS method (data not shown). ments sometimes show up as a single, wide peak in the

In the next step the DAS andH> profiles were transformed prediction output, and, conversely, that a single transmembrane
into square shaped prediction profiles as described in Materialegment sometimes shows up as a pair of closely spaced,
and methods. The correlation of the transformed profilesarrow peaks. To address this problem, one usually resorts to
with the concatenated experimental profile (see Materials andd hoc rules that are found to increase the method’s performance
methods) as a function of the applied cut-off is shown in(Rostet al., 1995, 1996). However, given that the number of
Figure 2. At low cut-off values transmembrane segments arerroneous predictions on the present test set is small from the
predicted everywhere resulting in an elevated number of falseutset, the statistical significance of these extra rules is often
predictions, whereas at high cut-offs the predictions misgloubtful and one always runs the risk of over-fitting the rules
the real peaks. This behavior results in optimal correlatiorto a few, special cases that happen to be present.

efficients of 0.66 and 0.72 at cut-off 0.6 and 1.5 for the
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sequence we might consider the DAS profiles as relatively
independent from errors in the database.

In conclusion, we have compared the performance of four
different transmembrane segment prediction methods: a sliding
window averaging with trapezoid window<{H>), a method
(TOPPRED) based on the ‘positive inside’ rule (von Heijne,
1992), a neural network method (PHDhtm) including informa-
tion from multiply aligned sequences (Radtal., 1995, 1996)
and the new DAS method. The predictive power of DAS and
PHDhtm is essentially the same while the single-sequence
based<H> method performs significantly worse when applied
to a test set of 44 well characterized prokaryotic membrane
proteins. Incorporating extra information related to the positive
inside rule (TOPPRED) brings the predictive power to the
level of the two other methods. This suggests that the DAS
method, which uses only single sequence information, is on
par with the PHDhtm method (which uses multiple sequence
alignments) and TOPPRED (which uses extra information in

uoT3oTpaxd syl JO ADUSTIOTIIH

p = T . . . e .
@0 0.5 1 1.5 2 2.5 3 the form of the distribution of positively charged residues)
cutoff in predicting transmembrane segments in prokaryotic inner
membrane proteins.
Fig. 3. Ratio of correct matches\, continuous lines) and ratio of correct A WWW server running the DAS algorithm is available at

predictions C, dotted lines) as the function of the applied cut-off of the
transformation for the DAS (thick lines) andH> (thin lines) profiles. The
corresponding values for the PHDhtm and TOPPRED profiles are marked
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methods typically are optimized to match the transmembrane

segments given in SwissProt, they are sensitive to errors in

the database itself. On the other hand the ‘RReM’ matrix—

which is responsible for the sensitivity of transmembrane

detection of the DAS method—was not optimized for trans-

membrane protein predictions but was derived from ‘neighbor-

hood selectivity’ data over a large set of proteins that reflects

how the different amino acids prefer the others in their

sequential neighborhood. It is thus not directly related to the

hydrophobic properties of amino acids in transmembrane

segments, although it correlates reasonably well with hydro-

phobicity indices (Tomii and Kanehisa, 1996). As a con-
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