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P R E D I C T I O N  O F  T W O  P E R I O D S  

B Y  S I M P L E  A U T O R E G R E S S I V E  M O D E L S  W I T H  O N E  L A G  

BY 

F. A. G. D E N  BUTTER* 

1 THE PROBLEM 

F o r  purposes  o f  p red ic t ion  endogenous  var iables  mus t  be expressed in terms 

o f  pas t  values and  p rede te rmined  variables ,  as e.g. in the reduced  fo rm of  

large economet r ic  models .  S imple  equat ions  o f  this type are  

and  

(1) 

Y, = ~ + /~Y, -1  + rx t  + u,  (2) 

where Y is endogenous ,  X p rede te rmined  (and perfect ly predic table)  and  Ut a 

r a n d o m  var iable  with 1 

eCu,) = 0, e ( v ~ )  = ~2; (3) 

E(UtUt ,) = 0 for  all  t # t'. 

P red ic t ion  usual ly  proceeds  by  analogy,  so tha t  in the case o f  the autoregres-  

sive mode l  (1) (AR(1)  mode l  in Box and  Jenkins  [1] no ta t ion)  the predictors 

of  Y one and  two per iods  ahead  o f  a s tar t ing value Y, are  

~+1 = a  + bY~ (4) 

= a + a .  b + b 2 Y~. (5) 

* I am indebted to Dr. M. M. G. Fase and professor A. H. Q. M. Merkies for useful sug- 

gestions and remarks and above all to professor J. S. Cramer for his critical comments and his 

great help in drafting this article. Currently I am research associate of the Econometric and 

Special Studies Section of the Domestic Research Department at De Nederlandsehe Bank 

N.V., P.O. Box 98, Amsterdam, but the main part of this study was completed at the Instituut 

voor Actuariaat en Econometric of the University of Amsterdam. 

1 Random variables are displayed in bold type. 
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Here a and b are any estimators of e and fl, derived from the observed time 

series I t ,  t = 0 . . .  T, and random because these refer to a variable that is 

random according to (1). 

The properties of various functions a and b as estimators of e and fl have 

often been investigated but less attention has so far been paid to their per- 

formance as predictors in (4) and (5). The two may easily conflict. In order to 

show this we define the predictor  error 

f t  = Y_t- Yt, (6) 

and consider its expectation for unbiased estimators 

E(a  - c~) = O, E (b  - / ~ )  = 0. (7) 

For prediction one period ahead we find 

E(f~+t) = coy(b, r~), (S) 

provided only E(Y~) is finite. This will hardly ever be zero, for Y~ has been 

generated by the same process (1) as the observations Yt, t = 0 . . .  T, so that 

Y~ and b cannot be strictly independent. But (8) is zero and the predictor un- 

biased if, by way of approximation, Y~ is replaced by its actual value Y~, which 

must anyhow be known for the prediction to be made. But when the same view 

is taken for prediction two periods ahead the expected predictor error is 

E ( f r + 2 )  = ](~ var(b) + cov(a, b) (9) 

which is only fortuitously zero. 

The result is that unbiased estimators of ~ and fl do not lead to unbiased 

predictors for both one and two periods ahead, whatever their other proper- 

ties, and conversely that unbiased predictors for both periods require biased 

estimators. 

We conclude (i) that the requirements of estimation and prediction may 

differ, (ii) that the requirements of prediction may moreover vary with the 

predictand and (iii) that unbiasedness is an awkward condition for the pre- 

dictors considered here. This leads us to compare the predictive performance of 

various methods rather than their merits as estimators in a simulation study 

where we prefer square error criteria to unbiasedness. 

2 THREE M E T H O D S  OF P R E D I C T I O N  

We consider three methods of predicting one and two periods onward from the 

end of a time-series Yt, t = 0, 1, 2 . . . .  , T. For the simple autoregressive model 
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(1) the predictions are 

Yr+ 1 = el + blYr, (I0) 

Yr+2 = a2 + azb2 + b~Yr, (11) 

and the prediction procedures differ only in the values assigned to (al, bl) and 

(a2, b2). 

I One period least squares. This is the common case where both (al, bl) and 

(a2, b2) are the least squares estimates (ao, bo) obtained by minimizing 

T 

Sl(a, b) = Z (Yt - a - bYt_O 2. (12) 
t = l  

II Mixed prediction. In this case we retain (ao, bo) for (aa, bl); for (az, bz) 

however, other values are used, viz. the two-period least squares estimates 

(a,, b,)  that minimize 

T 

S2(a , b) = ~ ( Y t  - a - ab - b Z Y t _ z )  2. (13) 

t=2 

This distinct two-period prediction method, that has been suggested by analo- 

gy to the one-period procedure, occasionally implies complex values for 

(a,, b,). The D Y N  method, that was recently investigated by Fair [6] on its 

predictive performance in a more complicated model, is equivalent to this 

procedure. 

III Mixed estimation, We return to the use of a single set (a., b.) for both 

(as, bl) and (az, b2); it is obtained by minimizing 

S(a, b) = Sl(a, b) + S2(a, b). (14) 

In the formulation above the computation of the coefficients is straightforward 

for methods I and II; but to minimize (14), two quadratic equations in (a, b) 

must be solved by numerical methods. An iterative algorithm was used, based 

on the gradient method, i.e. the generalised Newton-Raphson process, but also 

incorporating some devices from the revised scoring method (see Vandaele and 

Chowdhurry [14]) in order to ensure a minimum solution. 

The prediction methods for equation (2), which includes an exogenous vari- 

able, are defined in the same way; there is no need to give the formulae. But 

here method II already requires the use of iterative methods since the minimum 

conditions for the analogue of (13) are nonlinear in the coefficients a,,  b ,  and c,. 

3 T H E O R E T I C A L  C O N S I D E R A T I O N S  

Although our main concern is with prediction, the three procedures just de- 

scribed do yield coefficients that can be regarded as estimates of (~, 8) and so 
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we shall present some of our results in this respect. Moreover an analysis of 

these estimators is at the basis of an investigation into the properties of the 

various predictors. 

First we recall that the standard assumptions of least squares do not apply 

in autoregressive equations like (1) or (2); for a clear demonstration see Malin- 

vaud [9]. As a result neither (ao, bo) nor its counterpart (ao, bo, Co) for model (2) 

are best unbiased, or even unbiased. 

Malinvaud [9] (pp. 540-548) proves that under rather weak conditions they 

are asymptotically unbiased. But in practice we have only a limited number of 

observations at our disposal, say at most 40. Thus we are especially interested 

in the small sample behaviour of the estimators. Some important results have 

been established, mainly for the stationary AR(1) model without a constant 

term 

Y, = flYt-1 + U, (15) 

where Ut is assumed to be normally distributed. In this model Hurwicz [7] 

found a downward bias for b o as is shown by 

E(bo) = f l(1- 2 )  + O(T-2). (16) 

Kendall and Stuart [8] (chapter 48) present results for various estimators of 

the serial correlation, which, for the appropriate lags, are almost identical to 

b0 and b.  2. The variance of bo and b 2 appears to be independent of the variance 

of the disturbances: 

1 - p2 
var(bo) ~- - -  + 0(T -2) (17) 

T + I  

and 

var(b,2) _~ (1 - fiE)(1 + 3fiE) 
T + 1 + 0 ( r -2 ) .  (18) 

Let DVARI,~I be the variance of the predictor error of method I in the two 

period prediction minus the corresponding variance for method II. If we as- 

sume that 

E(bo)  = fl + 0 ( T - l )  (19) 

e(b2,) = f12 + 0(T-1) (20) 

and again YT is regarded as non-random in the prediction, it can be calculated 

that for (15) 

- (1 - fl2)2 yT 2 
DVARI n -~ + 0(T-E). (21) 

' T + I  
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DVARI, ii is negative for all J/3J < 1 which suggests that method II will not 

perform very well as compared with method I, when a series is really generated 

by that simple AR(1) model. 

There are also a great number of simulation studies on estimation and pre- 

diction with autoregressive models. We will briefly review two of them. 

Malinvaud [10] examined models of the forms (1), (2) and (15); bo was 

indeed downward biased and its distribution appeared to be skew with a long 

tail of small values. 

Orcutt and Winokur [12] found that for model (1) a correction of bo for its 

bias had a favourable effect on (bo -/3)2 only if 1/31 > 0.7. Presumably this 

kind of correction will be of little value in improving predictions, the more so 

as the variance of the predictor error is independent of the bias of bo. This is 

illustrated by the fact that only conditions like (19) and (20) and not like (16) 

are necessary to calculate the variance up to O(T-2). 

All studies show a considerable bias in least squares estimators of all para- 

meters of autoregressive models. Its size varies with the parameters of the model. 

4 DESIGN OF THE DATA 

The artificial time series of the present analysis have all been generated by 

particular specifications of the general formula 

Yt : o~ + fl~Yt-1 + fl2Yt-2 + f laYt-3 -b 7Xt q- U t, (22) 

where the Ut are independent N(0, tr 2) variates throughout. 

The exogenous variable X is introduced in the data for equation (2) only; 

two series from Malinvaud [10] are used. Series A shows a trend, and series B 

a cyclical movement (see appendix). 

Important changes in the data are obtained by varying ill, f12 and f13. The 

single lag equations (1) and (2) that we consider are appropriate only if f12 = 

= f13 = 0; in all other cases they represent misspecifications. Moreover the 

single lag models with autocorrelated disturbances discussed in other studies 

like Malinvaud [10] can easily be rewritten as autoregressive models with 

f12 ~;~ 0 and independent disturbances. 2 

Apart from/31,/32 and/33 we also vary the other parameters e, 7 and ~r. 

The starting values Ys of Y are always equated to the solution of 

Y~ = ~ +/3~Y~ +/32Ys +/3~Y~ + ~Xo (23) 

2 Generally a number  of different specifications of AR(m-n)  models with AR(n) disturbances 

will generate the same series that can uniquely be represented by one single specification of an 

AR(m) model with white noise. 
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T A B L E  1 - C H A R A C T E R I S T I C S  O F  S I M U L A T E D  T I M E  S E R I E S  
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code fll 1~2 /~3 c~ 7 type o f  G T 

series 

X 

10 t ime series generated for each 

1 0 . 8  0 0 0 - - 5 20 

2 0.8 0 0 0 - - 10 20 

3 0.8 0 0 100 - - 20 20 

4 0.8 0 0 100 - - 10 40 

5 0.8 0 0 100 - - 10 10 

6 0.4 0 0 0 - - 5 20 

7 0.4 0 0 100 - - 10 20 

8 0.2 0 0 100 - - 10 20 

9 0.6 0.2 0 0 - - 20 20 

10 0.4 0.4 0 100 - - 20 20 

11 0.2 0.2 0 100 - - 20 20 

12 0.2 0.2 0 0 - - 10 20 

13 0.4 0.2 0.2 100 - - 20 20 

14 0.6 - 0 . 2  0 100 - - 20 20 

15 0.8 0 0 100 0.5 A 40 20 

16 0.8 0 0 100 2.5 B 40 20 

17 0.4 0 0 100 0.5 A 20 20 

18 - 0 . 4  0 0 200 1 A 20 20 

19 0.6 0.2 0 100 2.5 A 40 20 

20 0.4 0.4 0 100 1 A 40 20 

21 0.4 0.4 0 100 1 B 40 20 

22 0.6 - 0.2 0 100 1 B 20 20 

40 t ime series generated for each 

23 0.8 0 0 100 - - 10 20 

24 0.4 0 0 0 - - 10 20 

25 0.6 0.2 0 100 - - 20 20 

so t h a t  Ys is t he  e q u i l i b r i u m  value  o f  the  m o d e l  t h a t  is o b t a i n e d  fo r  X t = X o  

f o r  all t. a 

A l t o g e t h e r  t hese  va r i a t i ons  lead to  25 d i f fe ren t  spec i f ica t ions  aS s h o w n  in 

t ab l e  1. This ,  o f  course ,  is on ly  a m o d e s t  a n d  r a t h e r  a r b i t r a r y  s a m p l e  f r o m  all 

pos s ib l e  c o m b i n a t i o n s .  F o r  m o s t  o f  these  spec i f i ca t ions  10 t ime  series were  

g e n e r a t e d ,  b u t  in t h ree  cases  we  p r e p a r e d  40 t ime  series.  A l m o s t  all series c o n -  

sist o f  20 o b s e r v a t i o n s ,  w h i c h  m e a n s  t h a t  up  to  25 va lues  o f  Yt m u s t  be  gener -  

3 Only stationary series are generated. 
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ated, viz. three (equal) starting values at most, 20 values used in estimation and 

fitting and two subsequent values for testing the predictions. 

Unfortunately the data are not as numerous as in some other studies but 

there are limits to the amount  of  computat ion that is acceptable. Since each 

time series is subject to three alternative methods of estimation and prediction 

which involve at least one iterative procedure, the computations are already 

very extensive. As can be seen from table 1 they bear on 340 time series, dis- 

tributed according to their major characteristics in table 2. 

T A B L E  2 - D I S T R I B U T I O N  OF A R T I F I C I A L  T I M E  S E R I E S  A C C O R D I N G  

T O  T H E I R  M A J O R  C H A R A C T E R I S T I C S  

NP :  ~ = 0, no pre- P X :  predeter- Total 

determined variable X mined variable X number 

10 obs. 40 obs. 10 obs. of series 

N M :  t~2 = 0 

no misspecifications 80 80 40 200 

M: ,62 ¢ 0 
misspecifications 60 40 40 140 

Total number of series 140 120 80 340 

5 D I S C U S S I O N  O F  T H E  E S T I M A T E S  

To begin with the various estimates of/~1 will be compared. The results for b ,  

permitted no clear conclusion, but those for b 0 and b do, and they are shown 

in table 3. The estimated coefficients have been expressed as a percentage of 

the true B, and the average of these values over all the simulations concerned is 

shown in each entry of  the table. 

T A B L E  3 - E S T I M A T E S  AS A P E R C E N T A G E  OF T R U E  /~1 

bo (method I) b. (method III) 

N P  P X  Total N P  P X  Total 
10 40 10 10 40 10 

N M  62 74 83 71 N M  60 71 80 68 
M 69 78 106 82 M 79 77 113 88 

Total 65 75 94 75 Total 68 73 96 76 

These values confirm the results of  both analysis and of earlier studies to the 

effect that the least squares estimator bo underestimates ill, excepted the case 

of 7 ~ 0 along with misspecifications. 
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The corresponding average values of the estimates of  e are given in table 4 

for those series where e ¢ 0. 

T A B L E  4 - E S T I M A T E S  A S  A P E R C E N T A G E  O F  T R U E  ct 

ao (method I) a. (method III) 

NP P X  Total NP P X  Total 
10 40 10 192 10 40 10 

N M  184 220 175 192 N M  190 225 172 195 

M 227 268 268 254 M 218 271 240 243 

Total 203 244 221 222 Total 203 248 206 218 

Underestimation of fl appears to go together with overestimation of c~. This is 

no surprise in the case of the common least squares method: 

= ao + b0Y (24) 

with 
T T 

Y =  Z Yt /T  and Y =  Y~ Y t _ I / T  
t = l  t = l  

while for the generated series 

= ~ + f l ~ +  U (25) 

T 

(U = Y'. Ut /T  ) 
t = l  

so that 

ao = ~ + (fl - bo)Y + U. (26) 

In those series where a # 0, U is relatively small. As a result a0 and bo tend 

to be inversely related. This effect is also apparent in the joint frequency dis- 

tributions of (ao - ~) and (bo - fl). 

It is noticeable that overestimation of ~ is even greater in the case of  higher 

order lags: positive values of f12 (and f13) increase ~ and this seems to be partly 

reflected in the value of the constant term. 

Table 5 shows the estimates of 7 (provided ? # 0). Sometimes a substantial 

difference from the true value can be observed but there is no systematic 

pattern. 

As was found in other studies, the least squares method somewhat under- 

estimates the value of the standard deviation o- in model (1), but not in model 

(2). The percentual standard deviation of the coefficient b 0 appeared indeed to 
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TABLE 5 -- AVERAGE VALUES OF THE ESTIMATES OF ~' (NOT P E R C E N T A G E S ! )  

N ° of Several Type of 7 Co c ,  c. 
simulation lags series X method I method II method III 

15 no A 0.5 0.83 0.97 0.80 
16 no B 2.5 2.40 2.39 2.39 

17 no A 0.5 0.64 0.78 0.69 
18 no A 1 0.99 0.93 0.98 
19 yes A 2.5 2.81 2.66 2.70 
20 yes A 1 1.55 1.22 1.40 
21 yes B 1 0.62 0.58 0.60 
22 yes B 1 1.31 1.39 1.35 

be almost independent of ~. Three times 10 series were made with ~ = 100, 

J~l = 0 .8 ,  J~2 = J~3 = • = 0,  and o- respectively 2, 10 and 30. The mean values 

of  the estimates are resp. 36.6, 47.7 and 35.9 ~o of the bo (and 49.9, 50.1 and 

69.3 ~ of the ao). 

Finally the Durbin-Watson statistic [5] is computed. Though this test is 

strictly not applicable in the case of lagged variables, in practice it is nearly 

always employed (see Cramer [4], page 199 and table 19), and models regis- 

tering significant autocorrelation of the disturbances are rejected. The perfor- 

mance of the test was rather poor: altogether there were only 3 5 ~ significant 

values among the 340 simulations, and even none of them occurred when there 

were true misspecifications. 

In conclusion the differences between the alternative estimates are disap- 

pointingly small, much smaller than  between the estimates and the real values. 

6 PREDICTION 

For any single simulated time series each of the three procedures yields pre- 

dictions one and two periods ahead of the last observation included in their 

estimation. Since they have all been fitted by minimizing some sum of squares, 

it would seem proper to assess their predictive performance also by squared 

prediction errors, for example by 

f~+l +f2+2. (27) 

In practice, however, this criterion does not bring out the relative merits of 

various prediction methods, since the prediction errors largely reflect the con- 

temporaneous disturbances of the prediction period. Take, for instance, the 

simple case of a time series generated by 

Y, = ~ + / ~ Y , - 1  + ut (28) 
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combined with a prediction scheme of the form 

Y~+I = a + bYe. (29) 

The predictor errors are 

f r + t  = (a -- ~) + (b - ]~)Yr + Ur+i  (30) 

f7"+2 = (a - ~) + (ab - aft) + (b 2 - fl2)Y T + ~UT+ i -4- UT+2. (31) 

In both cases, the terms Ur+i,  and Ur+i  and/_Jr+ 2 respectively tend to pre- 

dominate quite heavily in the square of the predictor errors, as can be verified 

from their expected values 

E ( f2+ l )  = E{(a - ~) + (b - fl)Yr} 2 + var(U) (32) 

E(f2+2)  = E{(a - ~) + ( a b -  aft) + (b 2 - f l2)YT}2 + (1 + f12) var(U). 

(33) 

Clearly, the systematic part of these expressions is as a rule much smaller than 

the terms representing residual variance. 

By itself this would not affect the comparison between predictions for a 

given time series since the same residual component is present with all pre- 

dictions. However, if the comparison bears on a number of simulations, as is 

bound to be the case, the residual component adds greatly to the variation be- 

tween series and thus seriously reduces the possibility of detecting significant 

differences. This fact has been noticed by Malinvaud [10]. 

While this difficulty could be overcome by increasing the number of simu- 

lations we have preferred to avoid it altogether by omitting the contempora- 

neous disturbances from the simulated values for periods T + 1 and T + 2, 

and thus from the prediction errors. As all the further tests are based on pair- 

wise comparisons of different predictions for the same series this does not 

affect the relative position of each method while it greatly improves the chances 

of detecting significant differences from a small number of trials. More pre- 

cisely, the predictive performance of any method on each trial is gauged by 

E P S  *2 .2 =fr+i +fT+2 (34) 

with 

f r + i  = f r + i  -- Ur+l  (35) 

f~+2 = f r . 2  - f lUr+l - UT+2. (36) 
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7 D I S C U S S I O N  ON THE P R E D I C T I O N  R E S U L T S  

Since the distribution of E P S  is unknown, the predictive performance of the 

three methods will be compared by distribution-free tests of the EPS (one for 

each method), obtained for each simulation. It should be noted that we do 

not compare the squared prediction errors separately but only their sum be- 

cause method I and method II merely differ in the two period predictions and 

method III has especially been designed for predicting one and two periods 

together. 

First the null hypothesis of equal predictive performance of the three methods 

is simultaneously tested by Friedman's test (see Conover [3], pp. 265-270). 

Table 6 shows the results. 

TABLE 6 - RESULTS OF F R I E D M A N ' S  TEST 

NP PX Total 
10 40 10 

N M  686 (480) 1466 (480) 38 (240) 3426 (1200) 
M 134 (360) 518 (240) 18 (240) 806 (840) 
Total 529 (840) 3512 (720) 98 (480) 6686 (2040) 

critical value (a = 0.05) in parentheses. 

The null hypothesis is rejected if the test statistic is greater than the critical 

value. 

It is also checked how often each of the methods yielded the lowest EPS. 

The score is for method I: 171, for method II: 100 and for method III: 69. 

The poor performance of the latter is not surprising: method III lies in be- 

tween the two others and it often does so in performance as well. 

Since method II and III are put foreward as alternatives to the standard 

least squares method I, the null hypothesis of equal predictive ability is tested 

for the two pairs (method II, method I) and (method III, method I). The re- 

sults of the sign-test (see Conover [3], pp. 121-126), a qualitative test, are given 

in table 7. 

The EPS  vary substantially. Yet a quantitative pairwise comparison between 

the prediction methods can be made by the following indices 

EPS  II 
I (method II, method I) = • 100 (37) 

0.5.(EPS I + EPS  II) 

This index is symmetric to the effect that 

I (method II, method I) + I (method I, method II) 
= 100.  (38)  

2 
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TABLE 7 -- SIGN-TEST ON (EPS I I -  EPS I)* 

69 

NP P X  Total 

10 40 10 

N M  (30) 31 (50) (30) 29 (50) (13) 23 (27) (85) 83 (115) 

M (21) 26 (39) (13) 10 (27) (13) 22 (27) (57) 58 (83) 

Total (57) 57 (83) (48) 39 (72) (30) 45 (50) (161) 141 (189) 

SIGN-TEST ON (EPS III  - EPS I) 4 

NP P X  Total 

10 40 10 

N M  (30) 35 (50) (30) 31 (50) (13) 19 (27) (85) 85 (115) 

M (21) 25 (39) (13) 13 (27) (13) 21 (27) (57) 59 (83) 

Total (57) 60 (83) (48) 44 (72) (30) 40 (50) (161) 144 (189) 

two sided test: critical values (c~ = 0.05) in parentheses. 

I (method III, method I) is calculated in the same way as (37). 

The mean values of these indices are given in table 8. 

TABLE 8 -- I (METHOD II ,  METHOD I)." MEAN VALUES 

NP P X  Total 

10 40 10 

N M  108.7 114.2 102.8 109.7 

M 103.8 108.7 102.5 104.8 

Total 106.6 112.4 102.7 107.7 

I (METHOD III, METHOD I)" MEAN VALUES 

NP P X  Total 

10 40 10 

N M  100.6 107.1 99.3 102.9 

M 107.2 101.5 102.3 104.2 

Total 103.4 105.2 100.8 103.4 

4 The test statistic indicates how often method II (resp. method III) is better than method I. 

If it lies in between the critical values the null hypothesis is not rejected, 
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All values but one are greater than 100. This indicates a good performance of 

the standard least squares method. These mean values do not differ very much 

from 100, the alternative predictions for the individual simulations, however, 

often show considerable differences. 

Now the null hypothesis of  equal predictive ability can be tested for the 

two pairs by the signed-rank-test (see Conover [3], pp. 206-215), which is more 

powerful than the sign-test. The index 

Ir (method i, method I) = I (method i, method I) - 100 (39) 

is used. These I t ' s  are ordered in absolute value and the rank numbers are 

added with the appropriate sign. In large samples the test statistic can be ap- 

proximated by a standard normal distribution and these values are given in 

table 9. 

T A B L E  9 - S I G N E D - R A N K - T E S T  S T A T I S T I C S ,  N O R M A L  A P P R O X I M A T I O N ~  

T W O  S I D E D  T E S T  

( C R I T I C A L  V A L U E S  F O R  c~ ~ 0 . 0 5 :  - - 1 . 9 6  A N D  - t - 1 . 9 6 )  

(method II, method I) (method III, method I) 

NP P X  Total NP P X  Total 
10 40 10 3.31 10 40 10 

N M  2.14 3.10 -0.30 3.31 N M  0.75 2.44 -0.01 2.03 

M 0.83 2.03 -0.32 1.46 M 1.86 1.08 - 0.35 1.57 

Total 2.22 3 .71  -0.44 3.50 Total 1 .76  2.63 -0.21 2.62 

From these values we can conclude that method I is significantly better than 

method I I  if no exogenous variable is introduced in the model: so that the 

theoretical result (21) is confirmed. Method II1 is also worse, but to a smaller 

extent. 

On the other hand no large differences were found in case of  model (2) and 

here the three alternative methods appear to perform equally well. 

8 H I S T O R I C A L  T I M E  S E R I E S  

The predictive performance of the three methods for model (1) is also as- 

sessed on the basis of  a number of  historical (as opposed to artificial) time 

series. These are selected f rom larger collections of  U.S. and Dutch time 

series so as to discard all items for which model (1) would be normally re- 

jected, or, more precisely, by retaining only those series that upon the appli- 

cation of least squares 
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- show no 'significant' autocorrelation of the disturbances by the Durbin- 

Watson statistic 

- yield estimates (ao, bo) larger in absolute value than their standard error. 

No attention is paid to the question whether a plausible (economic) motivation 

could be found for using model (1). 

The above criteria are applied to 59 series of the United States from Tin- 

bergen [13] and to 73 postwar series for the Netherlands [2]. The first are 

chosen because Orcutt [11] already investigated their autoregressive nature. 

The latter are selected on the requirements that they show some cyclical move- 

ment and not too much trend. From the American series 30 meet the two con- 

ditions given above, and from the Dutch 49. The Durbin-Watson statistic re- 

markably often appeared to be (too) low; much more frequently than in the 

simulation study it suggested the presence of misspecifications. The reference 

period of the U.S. series is 1919-1930 (T = 11) and predictions are made for 

1931 and 1932. In the case of the Dutch series: reference period 1946-1965 or 

1947-1966 (T = 19); predictions 1966, 1967 or 1967, 1968. 

Table 10 shows the distribution of the values of b o. 

T A B L E  1 0  - E S T I M A T E S  OF bo I N  H I S T O R I C A L  T I M E  SERIES 

bo <0  0-0.33 0.33-0.66 0.66-1 > 1 Total 

U.S. 1 1 12 14 2 30 

Netherlands 2 5 28 14 0 49 

The prediction errors are submitted to the same statistical tests as in the simu- 

lation study. The results are shown in table 11. 

T A B L E  11 -- C H A R A C T E R I S T I C S  OF P R E D I C T I O N  E R R O R S  

OF H I S T O R I C A L  SERIES 

Friedman's test (~= 0.05) 

U . S .  

Neth. 

U . S .  

Neth. 

Sign-test (~ = 0.05) 

U , S .  

Neth. 

628 (180) 

86 (252) 

method I best 

24 
16 

II better than I 

(12) 6 (18) 
(17) 27 (32) 

method II best method III best 

4 2 
16 17 (~) 

III  better than I 

(12) 6 (18) 
(17) 28 (32) 
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I (method II, method I) I (method III, method I) 

U.S. 102.6 104.1 
Neth. 99.7 101.6 

Signed-rank-test, standard normal approximation (critical values c, = 0.05: 
- 1.96 and + 1.96) 

(method II, method I) (method III, method I) 

U.S. 2.99 3.73 
Neth. - 1.26 - 0.52 

For  the American series the hypothesis of the three methods being equal is 

rejected by all tests. The standard least squares method is significantly the best. 

However the choice of the years to predict is very unfortunate: 1931 and 1932, 

just after the great crisis. The prediction errors are so enormous that we should 

be wary of drawing conclusions from these series. 

In the Dutch series the performance of method II and III is certainly not 

inferior to that of method I. A different conclusion than from the simulation 

study! 

9 F I N A L  R E M A R K S  

One of the Dutch series, the number of divorces yearly per 10000 married 

couples, shows such a magnificent least squares fit that it would mean a cheer- 

ful day to anyone engaged in econometric research: 

Yt = 6.03 + 0.726Yt_1 D.W.S. (40) 

(11.2) (3.5) 2.06 

(percentage standard errors in parentheses) 

Yet we have to draw the paradoxical conclusion that this model strictly cannot 

be right, because the standard errors are too low! They do not agree with (17) 

or with corresponding values found in the simulation study. Hence we must 

either conclude that the model must be rejected, since the results are signifi- 

cantly at variance with it, or that we have met a rare chance event. The latter 

interpretation is in order in so far as the example given is itself selected as the 

'best' least squares fit of  some 100 historical series. 

Yet this case illustrates a serious difficulty of empirical econometrics. After 

much trial and error nearly always a model can be found that fits the obser- 

vations well, or (as in the present case) 'suitable' observations can be found 

for a certain model. This leaves the question unanswered whether such a model 

really describes well the relation and yields good predictions. 
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The question, what method to use if two periods ahead must be predicted by 

an autoregressive model with one lag is solved to some degree. The usual least 

squares method performs relatively well, and is definitely superior to method II 

(identical to DYN) in the simple AR(1) model. For the model with a pre- 

determined variable in the simulation study and for the historical Dutch time 

series no significant differences between the three methods could be found. 

In contrast with these remarks Fair [6] concluded the DYN procedure to 

be rather successful. Though he looked at within sample-, and not at ex ante 

predictions, it may be true that in more complicated autoregressive models, 

with a number of predetermined variables, gain can be achieved by this pre- 

diction procedure. But our results are reassuring in that there is no immediate 

need for reestimating all existing autoregressive models to get better predic- 

tions. 

A P P E N D I X  

The value of the exogenous variable X, copied from Malinvaud [10]. 

t A B t A B 

0 80 l l0  12 100 88 

1 86 105 13 116 92 

2 78 82 14 125 115 

3 72 80 15 130 139 

4 62 78 16 145 90 

5 62 82 17 153 80 

6 68 88 18 138 74 

7 74 102 19 139 78 

8 84 107 20 144 86 

9 88 95 21 156 105 

10 84 101 22 167 138 

11 91 92 
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Summary 

P R E D I C T I O N  OF T W O  P E R I O D S  BY S I M P L E  A U T O R E G R E S S I V E  M O D E L S  

W I T H  O N E  L A G  

Three different methods are compared by their ability to predict two periods ahead in 

simple autoregressive models with one lag. In this study both artificial and historical 

time series are used. In spite of  intuitive objections the usual least squares method 

performs relatively well. Moreover attention is paid to the estimation results, as they 

provide some links with other studies of  the autoregressive model. 




