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Abstract— This paper outlines a novel and feasible procedure
to predict vertical motions for safe landing of unmanned aerial
vehicles (UAVs) during maritime operations. In the presence of
stochastic sea state disturbances, dynamic relationship between
an observer and a moving deck is captured by the proposed
identification model, in which system order is specified by a
new order-determination principle based on Bayes Information
Criterion (BIC). In addition, the resulting system model is ex-
tended to develop accurate multi-step predictors for estimation
of vertical motion dynamics. Simulation results demonstrate
that the proposed prediction approach substantially reduces
the model complexity and exhibits excellent prediction perfor-
mance, making it suitable for integration into ship-helicopter
approaches and landing guidance systems.

I. INTRODUCTION

The present research is part of efforts devoted to develop a

feasible procedure for landing an UAV on moving platforms

in typical sea states. Our objective is firstly to predict dynam-

ics of pitch and heave motions, as efficiently as possible, to

trigger the optimal landing operation. In this way, minimizing

relative velocity can be achieved.

Various maritime operations require efficient prediction of

ship dynamics, such as cargo transfer between vessels in an

oscillating environment and emergent crew rescue in danger.

In our project, which aims at safe landing of an autonomous

helicopter, vertical motions, including pitch and heave mo-

tions, are particularly important. For control purposes, ac-

curate prior knowledge of pitch and heave motions will

improve efficiency of planning the optimal landing trajectory,

and facilitate the process of controller design to realise it.

However, the uncertainty and randomness of environmental

disturbances in rough seas greatly complicate attempts to

obtain satisfactory prediction results. The difficulty mainly

comes from complex coupling effects among six motions of

vessels caused by fluctuating waves.

The choice of prediction algorithm will depend on desired

specifications which the algorithm can achieve and to what

extent effect of random disturbances can be attenuated. There

are two mainstream approaches to prediction of vertical

motions: The first one is to develop a proper model able

to capture main system features, such as uncertain stochas-

tic processes (e.g. wind gust, sea wave), characteristics of

unknown ship motion behavior, and random unmodeled
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dynamics, which requires an in-depth and comprehensive

analysis of the above factors. Hence, system characteristics

can be contained distinctly, and available prediction methods

depend greatly on the fidelity of the model. In addition,

system dynamics can be treated as an unknown box, and

approached by an approximate model which captures system

dynamics implicitly. In this way, measured data can be input

into the model, which outputs the prediction results.

The main challenge of ship motion prediction is to develop

an appropriate prediction model, resulting from compli-

cated wave-excitation coupling dynamics caused by the local

stochastic sea states such as barometric pressure, wind speed

and wave heights [1]. Also, the accumulation of prediction

error of landing position due to variations of relative motion

between a helicopter and a ship deck exacerbates the diffi-

culty of designing an accurate predictor. Furthermore, in sit-

uations where an automated landing must be made urgently

and without warning (e.g. unexpected weather, mechanical

failure), a safe landing necessitates the incorporation of an

efficient and rapidly converging estimation algorithm into the

flight control system.

It has been pointed out that ship motion dynamics are

not so remarkably affected by local sea states as a result

of the narrowband feature of their power spectra around

the central frequency [2], and it is reasonable to represent

sea wave dynamics as a superposition of sinusoidal forms

covering a wide range of wave frequencies by abnegating

high-frequency components [2], [3]. However, in these cases,

such sinusoidal superpositions are obtained from experi-

mental results under particular conditions. Therefore, these

conclusions are subject to question as to whether they can

be valid for other maritime situations.

The approach to ship motion model identification using

time series theory has received limited attention in the

literature. The problems of establishing an appropriate model

arise when a time series model with unknown system pa-

rameters is adopted to complete a prediction task, which are

mainly concerned with determination of system order and

corresponding coefficients. Clearly, the prediction results can

be significantly improved when the real system parameters

are accurately approached. Recently, Ma et al. [4] suggested

an Auto-Regressive (AR) fitting model, in which the system

order was verified using the Akaike Information Criterion

(AIC). This method lacks long-term prediction capability and

also suffers from the inconsistency feature of the AIC. In

contrast, ship motion prediction using state-space approaches

has been subject to extensive investigation in a considerable

number of papers, and significant efforts, including theo-

retical analysis and experimental research, have been made
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to deal with different practical problems in ship motion

prediction. Triantafyllou et al. [5] addressed Kalman filtering

techniques for prediction of six motions of vessels using a

precise state-space model, which requires tremendous efforts

in that the transfer functions between ship dynamics and sea

elevation are irrational nonminimum-phase functions. Also,

how to develop a proper state-space model for prediction still

remains a question. Lainiotis et al. [6] focused on deriving a

state-space model based on a sufficient knowledge of ship

motion dynamics, which suffers from the dependency on

available information. Ra et al. [2] regarded the ship motion

as a particular sinusoidal form, and obtained a recursive

robust least squares frequency estimator by assuming that the

ship motion frequency changed slowly. Therefore, real-time

application of the suggested algorithm in prediction course

is difficult in cases where the frequency changes rapidly. An

initial prediction algorithm using Minor Component Analysis

developed by Zhao et al. [7] requires substantial computation

efforts for updating identifying coefficients, which compro-

mises its practicality in real-time prediction.

The present study is aimed at effective prediction of

pitch and heave motions. In the proposed ARX model, a

novel information criterion is proposed to obtain optimal

system order based on the Bayes Information Criterion. The

criterion considers prediction capability, model complexity,

and error accumulation, achieving a tradeoff among the

three important factors. Next, an ARX prediction model

is derived, with system order defined by a new criterion.

Finally, the model coefficients identified from the Recursive

Least-Square (RLS) method are employed to predict vertical

motions of the vessel. Simulation results demonstrate the

suggested algorithm can efficiently predict both motions with

acceptable accuracy.

II. IDENTIFICATION OF SYSTEM PARAMETERS

Vertical motions of the helideck are of vital significance

for landing tasks, since the helideck is normally built at prow

or buttock part of a vessel. The intense jounce of the helideck

mainly results from heave and pitch motions excited by sea

waves, and is especially significant for oversized ships.

Due to symmetric features of the vessel, vertical motions

are not coupled with the group of sway, roll and yaw motions

[5]. Also, the previous experiments [8] show that linear

models match well with heave and pitch motions. Therefore,

it is reasonable to employ linear theories for the prediction

problem.

The proposed methodology is inspired by phase-lead net-

works after investigation of the dynamic relationship between

the true and the predicted vertical motion data. Here, the

measured and the predicted data are considered as input

u(t) and output y(t), respectively. A phase-lead network

constructed properly, with a large phase lead, means a

reasonable prediction can be obtained as early as possible.

The predictor with phase lead feature, in discrete domain,

has the transfer function in the form of

Y (z)

U(z)
=

b(n,0) + b(n,1)z
−1 + · · · + b(n,n−1)z

−(n−1)

1 + ā(m,1)z−1 + · · · + ā(m,m)z−m
. (1)

Numerous wave spectra analysis methods [6], [9] suggest

that the sea wave excitation can be treated as a white noise.

Hence, we consider the vertical dynamics described by y(t)
as a stationary Gaussian process driven by a stochastic dis-

turbance e(t) with normal distribution N(0, σ2
e). According

to (1), we describe the relationship between current and

previous ship dynamics by the following model

y(t) = A(q−1)y(t) + B(q−1)u(t) + e(t), (2)

u(t) = q−m−1y(t), (3)

A(q−1) =

m∑

i=1

a(m,i)q
−i,m ∈ N, (4)

B(q−1) =

n−1∑

j=0

b(n,j)q
−i, n ∈ N,n < m. (5)

Here q−1 is the forward shift opera-

tor, a(m,i) = −ā(m,i), i = 1, . . . ,m, and b(n,j), j=0,. . . , n−
1 denote system coefficients to be determined, m is order

of A(q−1), and n indicates order of B(q−1).
Without loss of generality, it is assumed that ordered pairs

(m,n) lie within the following bounds:

m ∈ V1 = {m|1 ≤ m ≤ mmax,m ∈ N}, (6)

n ∈ V2 = {n|1 ≤ n ≤ nmax, n ∈ N}, (7)

where mmax and nmax are upper bounds on the output order

and input order, respectively. For the purpose of determining

an optimal output order m∗ and an input order n∗, reasonable

bounds on the system order (mmax, nmax) should be

assigned in advance. Smaller upper bounds on the system

order will lead to a simplistic identification model unable to

represent vertical dynamics accurately. Hence, upper bounds

on the system order should be large enough to guarantee an

acceptable accuracy of identification model. Meanwhile, the

selection of upper bounds (mmax, nmax) has a significant

influence on the complexity of the system model, i.e., exces-

sively large upper bounds would increase the complexity of

an identification model and aggravate computational burden.

Based on empirical results, a feasible selection scheme

proposed from our experience is to select (mmax, nmax)
such that:

mmax = O(
√

T ), nmax = O(
√

T/2), (8)

here, T denotes the number of measured data. The selection

principle (8) constrains the searching scope for the optimal

system order selection by avoiding too simplistic models and

excessive computational burden. By introducing the vector of

lagged input-output data

ϕT (t) = [y(t − 1), . . . , y(t − m), u(t), . . . , u(t − n + 1)]
(9)
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and the following notation

θT (m,n, t) = [am,1(t), . . . , am,m(t),

bn,0(t), . . . , bn,n−1(t)], (10)

we can write from (2)

y(t) = θT (m,n, t)ϕ(t) + e(t). (11)

Vector θT (m,n, t) can be effectively estimated via the RLS

algorithm. Using the quadratic criteria function [10]

J(θ) =

t∑

j=1

[y(j) − θT (m,n, j)ϕ(j)]2 (12)

leads to the following estimates for the identification coeffi-

cients:

θ̂(m,n, t) = [

t∑

j=1

ϕ(m,n, j)ϕT (m,n, j)]−1

·[
t∑

j=1

ϕ(m,n, j)y(j)]. (13)

The latter can be computed recursively by

θ̂(m,n, t + 1) = θ̂(m,n, t) + M(m,n, t + 1)

·[y(t + 1) − ϕT (t + 1)θ̂(m,n, t)], (14)

M(m,n, t + 1) = P (m,n, t)ϕ(t + 1)

·[1 + ϕT (t + 1)P (m,n, t)ϕ(t + 1)]−1, (15)

P (m,n, t + 1) = P (m,n, t)

−M(m,n, t + 1)ϕT (t + 1)P (m,n, t), (16)

θ̂(m,n, 0) = 0, P (m,n, 0) = αI, α = 10000. (17)

Define the prediction error as

ξ(m,n, t + 1) = y(t + 1) − ϕT (m,n, t + 1)θ̂(m,n, t)
(18)

and compute the maximum likelihood estimate of the error

covariance until time T

σ̂2(m,n, T ) =
1

T − m − n

T∑

m+n+1

ξ2(m,n, t). (19)

The error covariance σ̂2(m,n, T ) will be used subsequently

for optimal order determination. Some available methods to

specify system order are the AIC [11], the BIC [12], and the

Feedback Control System Information Criterion (CIC) [13]:

AIC(m,n, T ) = log σ̂2(m,n, T ) +
2(m + n)

T
, (20)

BIC(m,n, T ) = log σ̂2(m,n, T ) +
(m + n) log T

T
, (21)

CIC(m,n, T ) =
T∑

m+n+1

ξ2(m,n, t) + (m + n)(log T )2.

(22)

For an ARX model, the AIC is not recommended since

the consistency feature of the AIC cannot be guaranteed [14].

For the CIC, if the magnitude of the error accumulation is

much smaller compared with the second term, the variation

tendency of the CIC would be obliterated as the second term

plays a decisive role, which leads to failure to determine opti-

mal system order. Such phenomena arise when identification

coefficients are determined very accurately by the RLS at

the initial computation stage, thus preventing finding optimal

system order. Additionally, the CIC also requires sufficient

available information to assign the initial system order, which

is almost inaccessible in ship motion prediction.

It follows from the strong consistency of the BIC that

the unique system order can be obtained when the BIC

value reaches a minimum. In our case, an ARX requires

the joint determination of m and n. For every given input

order n ≤ nmax, the BIC value changes convexly. Thus,

the minimum BIC value corresponds to optimal output order

for a given input order, which results in the difficulty of

selecting the desired system order in the global sense. In our

case, selection of the optimal pairs (m∗, n∗) should include

a tradeoff among prediction ability, accumulated prediction

error, and model complexity.

In the ship motion estimation problem, our main concern

is the prediction capability. Meanwhile, the accumulated

prediction error and identification model complexity should

be considered.

The following three important aspects should be analyzed:

1) How can ordered pairs (m,n),m ∈ V1, n ∈ V2 be

determined to maximize the prediction horizon?

2) How to reduce the model complexity to reduce the

computational burden?

3) How can the accumulated prediction error be contained

within the acceptable range?

Regarding the first question, a tradeoff should be achieved

between the seemingly incompatible aspects. When re-

cursive prediction models are considered, prediction ca-

pability should come first. Our main purpose is to in-

crease prediction horizon with acceptable prediction er-

ror as large as possible. The proposed selection principle

begins with computing the candidate output order series

m∗

i = arg{min(BIC(j, i, T ))}, j = 1, . . . ,mmax for every

i = 1, . . . , nmax, (23)

then it selects the largest output order m∗ in the candidate

output order series

m∗ = max{m∗

i }. (24)

For the m∗, there usually exist several input order

n1, n2, . . . , nr, nr ≤ nmax. One possible method is to select

optimal input order n∗ such that

n∗ = arg{min(
m∗ + nk

m∗
)}, k = 1, 2, . . . , r. (25)

Equation (25) seeks to reduce the model complexity in

consideration of long-term prediction requirement, i.e., the

identification model with the smallest system order while
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achieving satisfactory prediction ability is obtained. After

optimal system order in the sense of Eq. (23)-(25) is deter-

mined, we would like to check the accumulated prediction

error in the following sections.

III. PREDICTION ALGORITHM FOR VERTICAL

SHIP MOTIONS

After the optimal output order m∗, input order n∗ and

corresponding coefficients of the model are calculated from

the RLS, the efforts will be focused on the prediction of ship

motion dynamics. Suppose the prediction step is L. Rewrite

the ARX model as follows

[1 − Â(q−1)]y(t) = B̂(q−1)u(t) + C(q−1)e(t), (26)

and note the identity [15]

F (q−1)[1 − Â(q−1)] + q−LG(q−1) = C(q−1). (27)

In our case, C(t) = 1 and

F (q−1) =
L−1∑

i=0

fiq
−i, fi =

i−1∑

j=0

fja(m∗,i−j),

f0 = 1, i = 1, . . . , L − 1, (28)

G(q−1) =

m∗

−1∑

i=0

giq
−i, gi =

L−1∑

j=0

fja(m∗,i+L−j),

i = 0, . . . ,m∗ − 1. (29)

Substituting Eq. (27)-(29) into Eq. (26) yields

y(t) =
B̂(q−1)

1 − Â(q−1)
u(t)

+
F (q−1)[1 − Â(q−1)] + q−LG(q−1)

1 − Â(q−1)
e(t), (30)

since F (q−1) = 1, Eq. (30) is converted to

y(t + L) =
B̂(q−1)

1 − Â(q−1)
u(t + L)

+
G(q−1)

1 − Â(q−1)
e(t) + e(t + L). (31)

Replacing e(t) in Eq. (31) with Eq. (26) gives

y(t + L) = e(t + L) + G(q−1)[ξ(t) + ŷ(t|t − L)]

+B̂(q−1)u(t + L). (32)

Here, ŷ(t|t−L) is the estimated value of y(t) based on the

measured data up to time t−L, and ξ(t) the estimation error.

Meanwhile,

y(t + L) = ξ(t + L) + ŷ(t + L|t)

= ξ(t + L) + {[1 − Â(q−1)] + q−LG(q−1)}ŷ(t + L|t).
(33)

It follows from Eq. (32) and Eq. (33) that

ξ(t + L) = G(q−1)ξ(t) + B̂(q−1)u(t + L)

−[1 − Â(q−1)]ŷ(t + L|t) + e(t + L). (34)
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Fig. 1. Architecture of the proposed prediction method

The prediction error covariance

V = E{ξ(t)2} (35)

is minimized if the following equation holds

G(q−1)ξ(t) + B̂(q−1)u(t + L)

−[1 − Â(q−1)]ŷ(t + L|t) = 0, (36)

which indicates the predictor is in the form of

ŷ(t + L|t) = Â(q−1)ŷ(t + L|t) + G(q−1)ξ(t)

+B̂(q−1)u(t + L). (37)

In our case, the inputs are assumed to be the measured

data, then u(t + L) can be replaced by y(t). If we wish

to predict further, the compensation term G(q−1) can be

removed. Thus, the applicable predictor is

ŷ(t + L|t) = Â(q−1)ŷ(t + L|t) + B̂(q−1)y(t). (38)

To explain explicitly, the prediction procedure involves the

determination of Â(q−1) and B̂(q−1), which are obtained

using the identification procedure based on the process

model depicted on the left in the diagram shown in Fig.

1. Afterwards, Â(q−1) and B̂(q−1) are employed to derive

the predictor ŷ(t + L|t).

IV. SIMULATION RESULTS

The performance of the proposed predictor is demon-

strated in this section. The vertical motion data were gener-

ated from the FREYDYN 8.0 software package for an 8,500-

ton LPA class amphibious platform. The vertical motion data

were sampled at every 0.25s at sea state 3 which had a typical

wave height of 0.5m.

The data were divided into two segments: the first group

of NT points were used for training and another of NP

points as a test. We chose NT and NP large enough in

the sense that NT points could capture vertical motion

feature and NP could be utilized for testing. We chose

NT = 500, 1000, 1500, 2000 for training, and every time

NP = NT − L points with combination of white noise

to check the prediction results. Numerous simulations were

carried out for NT = 1000. For pitch motion, the predicted

and the true pitch motion data versus time are plotted in Fig.

2 (20-step-ahead and 30-step-ahead), and for heave motion in

Fig. 3 (20-step-ahead and 30-step-ahead). It is seen that the

prediction results produced by the proposed algorithm match

pretty well with the true data of pitch and heave motions.
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For pitch motion, the lead phase margin is 107.85 degree for

20-step-prediction, and 81.34 degree for 30-step-prediction.

For heave motion, the lead phase margin is 136.86 degree for

20-step-prediction, and 65.57 degree for 30-step-prediction.

With the increase in prediction points, it can be seen that the

prediction error for posterior points is not necessarily worse

than previous ones.

V. COMPARATIVE STUDIES

To test the validity of the new method, we compared

our algorithm with other conventional predictors. A brief

description of those predictors is listed below.

A. Order-predefined ARX predictor

This comparison aimed to check performance of the

proposed order determination method. From the classical

control viewpoint, it is usually preferred to choose a phase-

lead network with small system orders, and here a second-

order predictor was adopted

Y (z)

U(z)
=

b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
. (39)

B. AutoRegressive model predictor (AR)

Based on the previous measured data, the forecasts of an

AR process with system order p can be obtained by iterating

on

ŷ(t + j|t) = a1ŷ(t + j − 1|t) + · · · + apŷ(t + j − p|t)
(40)

for j = 1, . . . , L. The key to prediction is to define the

system order p . To avoid the inconsistency of the AIC, the

BIC is used. Several AR predictors are required with the first

one producing a one-step-ahead prediction, the second one

producing a two-step-ahead, so on and so forth.

C. Performance comparison among three predictors

In this investigation, we used NT points to obtain system

order, and another group of NP points to check prediction

results. Besides, a zero-mean Gaussian random noise was

added to vertical motion data in order to represent the sea

wave dynamics. The peak amplitude percentage rate of the

white noise to the measured data is 10%. The mean squared

prediction error Φ was employed as the measurement of

overall performance:

Φ =
1

NP

T+NP∑

i=T+1

[y(i) − ŷ(i)]2. (41)

The maximum prediction error for NP points was evaluated

by

Ψ = max
i

|y(i) − ŷ(i)|, (42)

where y(i) and ŷ(i) were the true and the predicted data. To

find the variations of Φ, we employed the index

I = 20 log10

√
Φ

|ymax|
(43)
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Fig. 2. Pitch motion prediction (20-step-ahead and 30-step-ahead)

to investigate the average trend of prediction results. There-

fore, proper prediction horizon would be accessible in con-

sideration of Ψ and I . As is shown is Fig. 4, the index I
remains less than -20dB until 25 steps for pitch motion, i.e.,

the prediction error of pitch motion is within 10% of the true

data can be obtained up to 25-step-ahead with acceptable

maximum prediction error 0.0723. This is assumed to be

acceptable in the considered application. Meanwhile, Fig. 4

indicates that precise 40-step-ahead prediction can be ob-

tained with acceptable prediction error. Table 1 summarizes

the experimental results on the Φ and Ψ of three predictors

for pitch motion, each taking four groups of NP points and

predicting 20 and 40 steps ahead, respectively. For 20-step-

ahead prediction, the proposed algorithm gives consistently

acceptable performance even when NP is much larger,

whereas the order-predefined and AR predictors produce

greater Φ. The order-predefined and AR predictors suffer

from much inaccuracy when we predict 40 steps. For 40-step-

prediction, our algorithm predicts with acceptable Φ while

producing larger Ψ, which indicates the new method sacri-

fices Ψ to compensate for overall performance. Fortunately,

there is just a few number of such points, and general trends

of vertical motions can be captured. Since our algorithm

focuses on prediction capability, it cannot always achieve

the smallest accumulated prediction error. However, mean

squared prediction error Φ is within a relatively acceptable

range. For heave motion, as is shown in table 2, satisfactory

prediction results are available up to 40 steps, which is

acceptable for our landing task.

VI. CONCLUSION

In this paper we concentrate on building prediction models

for vertical motion dynamics. A feasible principle is uti-

lized to solve the problem of system order selection. Based

on determination of optimal system order and associated

identification coefficients, a multi-step self-tuning predictor

is employed for prediction. Simulation results demonstrate

that the proposed prediction approach exhibits satisfactory
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Fig. 3. Heave motion prediction (20-step-ahead and 30-step-ahead)
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Fig. 4. Accumulated prediction error for different prediction steps for pitch
and heave motions

prediction performance. Furthermore, the proposed proce-

dure facilitates the accurate prediction of vertical motion

dynamics in long distance circumstances for use in ship-

helicopter flight operations. Future work will be aimed at

increasing prediction precision when more prediction steps

are expected in high sea states.
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