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Abstract

Background: Short linear motifs in host organisms proteins can be mimicked by viruses to create protein-protein

interactions that disable or control metabolic pathways. Given that viral linear motif instances of host motif regular

expressions can be found by chance, it is necessary to develop filtering methods of functional linear motifs. We

conduct a systematic comparison of linear motifs filtering methods to develop a computational approach for predictin

g motif-mediated protein-protein interactions between human and the human immunodeficiency virus 1 (HIV-1).

Results: We implemented three filtering methods to obtain linear motif sets: 1) conserved in viral proteins (C), 2)

located in disordered regions (D) and 3) rare or scarce in a set of randomized viral sequences (R). The sets C,D, R are

united and intersected. The resulting sets are compared by the number of protein-protein interactions correctly

inferred with them – with experimental validation. The comparison is done with HIV-1 sequences and interactions

from the National Institute of Allergy and Infectious Diseases (NIAID).

The number of correctly inferred interactions allows to rank the interactions by the sets used to deduce them: D ∪ R

and C. The ordering of the sets is descending on the probability of capturing functional interactions.

With respect to HIV-1, the sets C∪R, D∪R, C∪D∪R infer all known interactions between HIV1 and human proteinsmed

iated by linear motifs. We found that the majority of conserved linear motifs in the virus are located in disordered regions.

Conclusion: We have developed a method for predicting protein-protein interactions mediated by linear motifs

between HIV-1 and human proteins. The method only use protein sequences as inputs. We can extend the software

developed to any other eukaryotic virus and host in order to find and rank candidate interactions. In future works we

will use it to explore possible viral attack mechanisms based on linear motif mimicry.
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Background
Virus-host Protein-protein interactions (VHPPIs) are

essential to understand viral attack mechanisms. VHPPIs

are used by viruses to disrupt or modulate host pathways

in order to achieve goals like the evasion of the com-

plement system [1], modulation of the cytokine system

[2] and abrogation of apoptosis [3]. Some of these PPIs

are based on mimicry: a viral protein mimicking a host

protein might interact with the host protein binding part-

ners. The mimicry is achieved through protein sequence

or structural similarity [4]. We focus our study on predict-

ing a subset of PPIs, the ones mediated by mimicked short

linear motifs (SLiMs). SLiM-mediated PPI predictions,
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conveniently ranked, might help researchers to postulate

hypothesis to elucidate viral attack mechanisms, design

antivirals and vaccines [5–8].

A Short linear motif (SLiM) (also called linear motif,

minimotif, ELM, LM) is a short region of a protein, 3 to 12

residues long, with functions like controlling the assembly

of protein complexes, marking proteolytic cleavage, tag-

ging protein localization and enzyme recruiting [9, 10].

SLiMs are structurally compact and participate in transi-

tory low-affinity interactions [11, 12]. SLiMs in eukaryotic

proteins are curated in the ELM database [13, 14].

SLiMs might evolve rapidly in viral disordered regions

through insertions, deletions and mutations [15]. The

new SLiMs can change the PPI networks creating new

advantageous PPIs that can alter the cell cycle [16], form
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protein complexes and mediate conformational changes

[17]. A recent analysis of the experimentally inferred

human-virus PPIs concludes that human proteins inter-

acting with viruses are enriched in SLiMs and binding

interfaces [18].

Viruses use VHPPIs mediated by host-mimicked SLiMs

to hijack cell regulation [19] and execute their viral cycle

[20]. An example of this strategy is the set of SLiM-

mediated interactions of human papilloma virus (HPV)

protein E6 with members of the 14-3-3 protein family and

proteins containing PDZ domains [21].

Experimental determination of VHPPIs is expensive

since the number of proteins for some host organisms

is large, more than 30.000 in humans. There are many

viral protein sequences available but few corresponding

three-dimensional structures resolved to use structure-

based interaction prediction methods. These are reasons

for developing a general method for predicting mimetic

host-virus PPIs based solely in sequence data. A bioinfor-

matic approach to predict SLiM-mediated VHPPIs might

be an inexpensive alternative to experimentation or can

guide experimental design.

SLiMs are represented computationally as regular

expressions. A SLiM instance is a protein subsequence

that matches the regular expression. For instance, a SLiM

represented by the regular expression R.[RK]R. have

several instances like RVRRE in Ebola virus [22] and

RKRRF in Human respiratory syncytial virus A2 [23].

An algorithm for predicting virus-host PPIs consist in

finding viral instances of SLiMs located in host pro-

teins. The viral instances found need to be filtered by

some criteria that increase the probability of inferring real

interactions.

If a SLiM is conserved in a small viral genome it proba-

bly could be used to interact with a host protein. Evans et

al. find that common SLiMs between HIV-1 and humans

are significantly conserved in HIV-1 proteins [24]. They

propose a criterion to filter SLiMs if they are conserved

above a 70% in the available viral sequences.

Viral genomes have high mutation rates and are not

too thermodynamically stable. This seems to favor protein

structures with a small number of inter-residue interac-

tions and a high number of polar residues that account

for the abundance of disordered protein regions [25].

SLiMs occur more frequently in viral protein disordered

regions [26], in different amounts between viral families

[27]. Viral hubs, proteins that have many interactions with

host proteins, tend to have more disordered regions [28].

With these antecedents Hagai et al. propose a criterion

to filter SLiMs based on location in protein disordered

regions [26].

Hagai et al. also propose another criterion to filter

SLiMs based on rarity in a big set of randomized pro-

teins [29]. A SLiM is judged as rare, or hard to form by

pure chance, if it is counted in less than a percentage

of the sequences in the set of randomized proteins, e.g.

1% of the sequences. Hagai et al. find that rare SLiMs

located in disordered regions have a significant enrich-

ment in functional SLiMs i.e. with experimental evidence

for interaction with host proteins [29].

To our knowledge, there is no comparison of SLiM fil-

teringmethods in the literature. For that reason, we imple-

ment and compare the three criteria introduced above for

SLiM filtering: conservation above a threshold of the avail-

able viral sequences, localization in a protein disordered

region and rarity, or difficulty to form by pure chance.

Each filtering method produces a set of SLiMs – con-

served (C), disordered (D) and rare (R). With sets C,D,R

we form derived union and intersection sets: C∪D, C∪R,

D∪R, C ∪D∪R and C ∩D, C ∩R, D∩R, C ∩R∩D. Each

of these sets allow us to predict interactions between the

viral protein containing the SLiM and the host proteins

that interact with the SLiM.

All the sets generated are compared by filtering

strength. They also are compared by the number of VHP-

PIs derived from the set that have supporting evidence in

a database –i.e. correctly predicted. The comparison by

number of VHPPIs correctly predicted by set allow us to

rank the VHPPIs partially.

To conduct the comparison of the sets we choose the

Human immunodeficiency virus (HIV-1). It is the virus

with more bioinformatic data available, with the NIAID

databases for sequences and alignments [30] and for inter-

actions with human proteins [31]. We also use the HIV-1-

human PPIs mediated by SLiMs as reported in the LMPID

database [32].

Methods

Disorder prediction

Protein preprocessing

We download alignments for HIV-1 proteins env, gag,

nef, pol, rev, vif, vpr, tat, vpu for the year 2014 and an

alignment of Gag-Pol DNA sequences with years previ-

ous to 2015 from the NIAID HIV-1 sequence database

[30]. Gag-Pol sequences were translated following refer-

ence [33]: of 3648 sequences, 3626 containing the slippery

subsequence TTTTTTA were used to perform a compu-

tational translation considering the frameshift at the given

subsequence.

We filter all protein sequences by HIV-1 subtypes B and

C for their worldwide dominance and computationally

cleave some of the alignments in the following manner:

env into gp120, gp41, pol into pr, rt, rtp51, in and gag into

ma, ca, p2, nc, p1, p6 [31]. After the cleavage we eliminate

the gaps and asterisks in the resulting alignments in order

to reinterpret the files as sets of sequences, Fig. 1, Disorder

panel. The number of sequences per HIV-1 protein is in

Additional file 1: Table S1.
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Fig. 1Methodology. The methods are divided in three parts: 1) Disorder: sequence preprocessing and prediction of disordered regions, 2) Counting:

counting of SLiM patterns and instances, and 3) Comparison: analysis of the overlap between predicted interactions against interactions in NIAID

and LMPID databases

Protein disorder prediction with IUPred

Among several disorder prediction algorithms for pro-

teins [34] we use IUPred [35]. This predictor implements a

physical model based on force fields between residues sta-

tistically calibrated with a set of globular proteins in PDB

[35]. Its performance is comparable to other predictors

[36] and can be installed locally.

IUPred is enhanced with a sliding window addition

proposed by Hagai et al. that allows to define disor-

dered regions [37]. Residues with IUPred computed values

higher that 0.4 are considered disordered. For each residue

an average disorder value is computed considering the

IUPred values for surrounding residues in a window of

size 10. This averaging is justified because the disor-

der tendency of the neighbors of a residue influence its

disorder tendency. Residue windows with average disor-

der value higher than 0.4 are considered as disordered.

As IUPred receives as input a Fasta file with only one

sequence, we split Fasta files with multiple sequences, call

IUPred on every split sequence-file, compute the sliding

window based average values and give as output a list of

disordered regions per protein sequence id. We set the par

ameter long when calling IUPred, see Fig. 1, Disorder panel.

Protein randomization

We randomize the HIV-1 proteins to create a big data set.

For each sequence in a protein file we create 1000 shuffled

versions randomizing the residues located in disordered

regions of the sequence, as computed with IUPred. All

disordered residues in a protein are joined together in

a temporary list, shuffled with the modern Fisher–Yates

algorithm, and put back in the disordered regions, leaving

the ordered residues intact.

SLiM counting

We download all the SLiMs, instances and interactions

from the ELM database [14] and create an in-memory

ELM data structure with each SLiM identifier, its regular

expression, its instances and its interactions with pro-

tein domains. We wrote scripts to compute: the number



Becerra et al. BMC Bioinformatics  (2017) 18:163 Page 4 of 11

of sequences with a given SLiM, the number of SLiM

instances per protein, the number of SLiMs conserved

above a percentage of sequences (set C) and the number

of SLiMs in disordered regions (set D).

After randomizing as described above, we count the rare

(scarce) SLiMs in these shuffled data set, i.e. the SLiMs that

are found in 1% of the randomized sequences or less (set R).

Based on C, D, R we create the union sets C ∪ D, C ∪ R,

D∪R, C ∪D∪R and intersection sets C ∩D, C ∩R, D∩R,

C ∩ R ∩ D. See Fig. 1, panels Counting and Comparison.

Prediction of protein-protein interactions

We download the NIAID human–HIV-1 PPI database

[31]. As the proteins in the database are identified by

RefSeq records and the SLiM-domain interactions given

by the ELM database are given by UniProt records, we

map RefSeq to UniProt identifiers for human proteins

using UniProt id mappings.We also download the LMPID

database that curates virus-host ELM-mediated interac-

tions [32].

For each SLiM set (C,D,R, . . .) obtained per HIV-1

protein we create VHPPIs based on the ELM database

interactions and interacting domains. For each inter-

action reported in ELM we add the human protein

interacting with the SLiM located in the viral protein.

We also add the proteins that contain the domains

listed as interacting with the SLiM. To map domains to

human proteins we used the domain-protein mapping f

or the human proteome in the PFAM ftp server [38].

Figure 1, Comparison panel.

Comparison of filtering methods

To validate a prediction we use two sets: the NIAID

HIV-1-human interactions and the set of ELM mediated

HIV-1-human interactions, as identified in LMPID [32].

We count the number of correctly predicted interactions,

when an interaction deduced with one of the SLiM sets is

in the NIAID database.

For all the SLiM sets obtained, and all the HIV-1 pro-

teins, we analyze the overlap between the set of predicted

human proteins interacting with HIV-1 and the set human

proteins in NIAID interactions. We compute p-values

for this overlap using the hyper-geometric distribution

from the scipy python library, Table 1. The total num-

ber of human proteins was estimated as 30,057 from

reference [39].

Results and discussion

A general method to identify SLiM-mediated PPIs in

eukaryotes

As SLiMs are computationally represented by regu-

lar expressions there is always a possibility of finding

instances in viral sequences by pure chance. For this

reason, it is important to develop SLiM filtering methods.

Three filtering methods are implemented and system-

atically compared: conservation, location in disordered

regions and rarity. The combination of filters produces a

method to predict virus-host PPIs and rank them. The

comparison of filtering methods performance is con-

ducted with the virus with more abundant data, HIV-1. In

Fig. 1 there is an overview of the methods used.

The developed method only use protein sequences as

input and do not depend on protein 3D structures, for this

reason it can be used with any sequenced eukaryotic virus

to infer candidate VHPPIs. The restriction to eukaryotic

viruses is based on the higher number of SLiMs in eukary-

otes and the use of the ELM database, because the ELM

SLiM classes MOD (post-translational modification) and

TRG (targeting sites) are less used in prokaryotes [29].

Candidate interactions

The lists of predicted human-HIV-1 interactions that are

not in the NIAID database are in the [Additional file 1].

Disordered regions and SLiMs in HIV-1 proteins

The disordered regions for HIV-1 proteins are in the

[Additional file 2: Table S2]. They are depicted in Fig. 2.

Subfigures A to U show the predicted disordered con-

tent in HIV-1 proteins and polyproteins. Each protein

sequence is represented as a yellow line and disordered

regions are depicted as red segments.

We find that predicted disordered regions for HIV-1

proteins are relatively conserved. Perhaps the virus must

keep flexibility in their proteins in order to interact with

several partners.

In Fig. 3, we show the percentage of SLiMs conserved

above a 70% of the input sequences that are also located

inside a disordered region. Most of the conserved SLiMs

in HIV-1 are located in protein disordered regions.

The proteins that deviate the most from this tendency

are vpr, vpu, gp41, in, and pr, with a percentage of con-

served motifs that are located in disordered regions of

53.3, 52.9, 48.5, 32.5 and 0% respectively. The reason for

this discrepancy lies in the few disordered regions pre-

dicted in the five proteins. Indeed, pr, in and gp41 are con-

sidered mostly ordered, while vpr and vpu are considered

moderately disordered [40].

A similar correlation between evolutionary conserva-

tion and location in disordered regions was found for

the SLiMs that bind to SH2, SH3 and Ser/Thr Kinase

domains [41].

We use IUPred as disorder predictor only because its

performance finding the disordered regions of the VIF

protein is outstanding compared to other 18 disorder pre-

dictors [36]. One procedure that could be used to avoid

structured regions entirely is a BLAST query against HIV-

1 proteins in the Protein Data Bank excluding hit regions.

However, it seems that disorder is a viral strategy to buffer
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Table 1 P-values for the overlap between predicted interactions and NIAID PPIs

C D R C ∪ D C ∪ R D ∪ R C ∪ D ∪ R C ∩ D D ∩ R

ca 0.00507796 0.00000002 0.00000000 0.00000002 0.00000000 0.00000000 0.00000000 0.00507796 0.01714953

env 0.00004832 0.00000061 0.00000000 0.00000061 0.00000000 0.00000000 0.00000000 0.00004832 0.00255723

gag-pol 0.00000000 0.00000005 0.00001209 0.00000002 0.00000001 0.00000000 0.00000000 0.00000000 0.45495319

gag 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.06194785

gp41 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

gp120 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

in 0.01407766 0.00149210 0.00037910 0.01273233 0.00006794 0.00019741 0.00006794 0.00180869 0.75138323

ma 0.03339655 0.10909512 0.00486733 0.10360963 0.00358860 0.00242853 0.00242853 0.07022484 0.27587317

nc 0.64494534 0.00133985 0.00117412 0.00133985 0.00111249 0.00091772 0.00091772 0.64494534 0.01188417

nef 0.00000001 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000001 0.00000002

p1 0.00000000 0.72014940 0.45345098 0.72014940 0.45345098 0.43570901 0.43570901 0.00000000 0.83020275

p6 0.34157458 0.07552893 0.01970226 0.07552893 0.01653915 0.00998080 0.00998080 0.34157458 0.38820910

pol 0.01830077 0.01095662 0.00697424 0.00720988 0.00164925 0.00091331 0.00080792 0.02737953 0.83859008

pr 0.00000598 0.00000000 0.00009718 0.00000598 0.00000360 0.00009718 0.00000360 0.00000000 0.00000000

rev 0.00000484 0.00000005 0.00000000 0.00000005 0.00000000 0.00000000 0.00000000 0.00000484 0.02941335

rt 0.06943981 0.00454698 0.00258551 0.01358586 0.00033604 0.00034422 0.00020241 0.03287650 0.00000000

rtp51 0.75895972 0.77358631 0.61184897 0.70277019 0.56852841 0.56784368 0.55594980 0.83653902 0.99740709

tat 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.35524421

vif 0.00015410 0.00002619 0.00000000 0.00002381 0.00000000 0.00000000 0.00000000 0.00016868 0.00000000

vpr 0.00000015 0.00000029 0.00000000 0.00000002 0.00000000 0.00000000 0.00000000 0.00000346 0.83217081

vpu 0.00464687 0.00277567 0.00000171 0.00092824 0.00000097 0.00000252 0.00000169 0.02055543 0.03182700

The p-value indicates the probability that the overlap between our sets of predicted PPIs and the PPIs with literature support in the NIAID database takes place under the null

hypothesis, that our sets were formed by random sampling. Red values are not significant at a level of 0.05

mutations and increase interactions with host proteins

[42]. In this perspective, small disordered regions could

be located inside structured protein regions to allow some

interactions with the host, and not excluding the struc-

tured regions opens the possibility of finding these regions.

Analysis of SLiM sets obtained

A ranking of SLiM sets by filtering strength

The SLiM set sizes are in Additional file 3: Table S3 and

the SLiM sets for HIV-1 proteins are in the [Additional

file 3]. In Fig. 4 we plot the the number of SLiM regular

expressions that were found in the HIV-1 proteins identi-

fied by set. The intersection SLiM sets C ∩ R (conserved

and rare) and C ∩D∩R (conserved, rare, located in disor-

dered regions) were discarded for being almost empty for

all proteins.

Considering the sizes of SLiM sets we can rank them

by the filtering strength; from low to high filtering. The

obtained ranking is R,D,C,C ∩ D,D ∩ R. The criterion

that filters the most is location in a disordered region and

rarity. It is followed by location in a disordered region and

conservation.

The sets D ∩ R (SLiMs hard to form by pure chance and

located in protein disordered regions) studied by Hagai

et al. [29], tend to have a smaller size than sets C ∩ D,

of SLiMs conserved and located in protein disordered

regions, Fig. 4. The intersection SLiM sets C ∩ R (con-

served and rare) and C∩D∩R (conserved, rare, located in

disordered regions) are almost empty so they can be dis-

carded as useful filtering criteria –data in Additional file 3:

Table S3.

Protein-protein interactions predicted with the SLiM sets

are enriched in experimentally validated HIV-1-human

protein-protein interactions

We validate against two virus-host PPIs databases: NIAID

[31] and LMPID [32]. The NIAID contains 15074 PPIs at

the moment of writing while LMPID contains 2203 PPIs

between several viruses and hosts, with 6 PPIs between

HIV-1 and human proteins.

The validation of the predicted PPIs with the NIAID

database is not the best way to gauge the proportion of

SLiM-based interactions. This database contains PPIs of

all kinds, not only SLiM-mediated ones. However, it is the

most complete virus-host PPI dataset.

A better validation set, conceptually, is constructed with

pairs deemed to interact through a SLiM with the LMPID

database. Nevertheless, this dataset is too small. We do
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Fig. 2 Disordered regions for HIV-1 proteins. Each subfigure from A to U contains an HIV-1 protein or protein precursor. For all subfigures, each

yellow line represents a protein sequence. The red segments represent disordered regions as deduced with IUPred with the sliding window addition

explained in the “Methods” section

the comparison with both databases, selecting the NIAID

database to compare the sets prediction performance and

check the statistical significance of the results.

Although we are suggesting a partial ranking of SLiM-

based predicted PPIs, another addition would be to rank

totally the interactions with a score representing the

probability that the interaction takes place based on

experimental data [43] or other techniques [44]. For the

moment, a total ranking is difficult to achieve given the

scarcity of data about SLiM-mediated PPIs [32, 45].

Fig. 3 Percentage of conserved SLiMs that are located in disordered

regions in HIV-1. We plot the percentage of conserved SLiMs, present

in 70% or more of the input sequences, that are localized in a

predicted disordered region

In the NIAID database

In Fig. 5 we plot the percentage of correctly predicted int-

eractions, i.e. stored in the NIAID database and predicted

with base on our SLiM sets. In Fig. 6 we plot the num-

ber of interactions predicted against the total number

of interactions in the NIAID database per HIV-1 pro-

tein. The number of correctly predicted interactions is in

Additional file 4: Table S4 and the number of novel inter-

actions found with our method is in Additional file 4:

Table S5.

Fig. 4 Number of SLiMs by set. We plot the number of SLiMs (regular

expressions) that were found in HIV-1 proteins. The intersection SLiM

sets C∩R (conserved and rare) and C∩D∩R (conserved, rare, located in

disordered regions) were discarded for being almost null in all entries
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Fig. 5 Percentage of validated interactions per SLiM set. Each subfigure plots the percentage of validated interactions with a SLiM set. Interactions

were validated with the NIAID HIV-1 Human Interaction Database. The percentage of predicted interactions is represented with amagenta bar. The

HIV-1 proteins are sorted by percentage in each subfigure

We use the hyper-geometric distribution to measure the

statistical significance of the sets of interactions we found.

The p-values for the overlap between the PPIs predicted

with base on each SLiM set and the PPIs in the NIAID

database are in Table 1. The sensitivity and specificity for

the SLiM sets as PPI predictors is in Additional file 4:

Table S7 and Additional file 4: Table S8.

In the LMPID database

Using the literature curated LMPID database [32], we find

that the motif sets C,C∩D,C∩R,C∩D∩R capture half of

the interactions in LMPID, while the sets C∪D,C∪R,D∪

R,C∪D∪R,D∪R allow to infer all of them. All the interac-

tions between HIV-1 and human extracted from LMPID

are in Additional file 4: Table S6.

The small number of human-HIV-1 interactions in this

database (six), leaves open two possibilities: the number is

really small, or the number is larger but few experiments

have been performed to detect them. To estimate the

number of human-HIV-1 SLiM-mediated PPIs more work

is needed, perhaps an approach based on combining

expert opinions [46].

PPIs correctly predicted serveas a rankingof filteringmethods

In Fig. 7 we plot the number of predicted interactions

correctly validated against the NIAID database identified

by the SLiM set used to infer them. We find that the

SLiM sets have an almost general tendency with respect

to the number of PPIs correctly predicted across all HIV-1

proteins. For this reason we propose to rank the PPIs

predicted according to the set used to deduce them.

The ranking of the sets we found by its capacity to infer

real interactions is: D∪R,C ∪R,C ∪D,C ∩D,D∩R. This

ranking allow to present the PPIs predicted to researchers

in a partial order: first the set of interactions deduced

with D ∪ R –SLiMs located in disordered regions or hard
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Fig. 6 Number of predicted interactions per SLiM set. The number of predicted interactions by SLiM set, contrasted with the number of interactions

in the NIAID HIV-1 Human Interaction Database. The number of predicted interactions is represented with a red bar. The green bar represents the

total number of interactions in the NIAID database

to form by pure chance, then the set deduced with C

–conserved SLiMs.

Most used SLiMs in HIV-1 proteins suggest HIV-1 extensive

use of human protein signaling and other processes

We consider the set C∩D of SLiMs conserved and located

in disordered regions for their biological relevance to ana-

lyze their human counter domains. In Table 2 we include

the most used SLiMs from this set, i.e the SLiMs that are

present in 10 or more HIV-1 proteins, are conserved, and

localize in a disordered region. In general, most of these

SLiMs would interfere with host signaling. The most used

counter domains are the Protein kinase domain (PF00069

in Pfam) that interact with 5 of the most used SLiMs

and the Peptidase_S8 Subtilase family (PF00082 in Pfam)

that interacts with 2 of the most used cleavage SLiMs.

However, the list of counter domains in Table 2 suggest

that HIV-1 SLiMs interfere with transcription regula-

tion, autophagy, cell cycle control, apoptosis and cellular

transport.

Conclusion
We develop a method to predict virus-host SLiM-

mediated PPIs and rank them. It is applicable to

any eukaryotic virus and host with available protein

sequences. Using data for the most studied virus, HIV-

1, we find a partial ordering of the PPIs obtained based

on the set used to infer the interactions. This order is

descending in the expected probability of inferring real

interactions. We expect that the method gives interest-

ing candidate interactions with other eukaryotic viruses

and hosts. The call for using high-throughput methods
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Fig. 7 Number of validated interactions per set. The number of

interactions as validated with the NIAID HIV-1 Human Interaction

Database. Each set is represented by a dashed linewith a different color

to detect SLiM-mediated PPIs illustrates the benefits of a

bioinformatic method that predicts SLiM-mediated PPIs

and might guide experimental design [45].Although the

number of SLiM-mediated PPIs might be small, there

is evidence that these PPIs are used by several viruses,

in contrast to virus-host domain-domain PPIs, that are

virus-specific [18]. This kind of interactions can help to

analyze common viral strategies for infection.

Indeed, in a previous work we used the method with

the viruses in the NCBI virus variation resource to predict

interactions with the proteins from the human protein

synthesis machinery [47]. We found evidence that viruses

interact with Eukaryotic initiation factors 3 and 4, and the

Poly(A)-binding proteins using SLiMs. Even though the

method developed is not a strong predictor, by using sev-

eral viruses, interesting interactions with host subsystems

can be uncovered. In a future work we want to scale the

Table 2 Most used SLiMs conserved and located in HIV-1 disordered regions

SLiM #HIV-proteins Pfam domain Domain name

LIG_WD40_WDR5_VDV_2 17 IPR017986 WD40-repeat-containing domain

DOC_USP7_1 17 PF00917 MATH domain

CLV_NRD_NRD_1 16 PF00675 Insulinase (Peptidase family M16)

CLV_PCSK_KEX2_1 15 PF00082 Peptidase_S8 Subtilase family

MOD_GSK3_1 15 PF00069 Protein kinase domain

MOD_PIKK_1 15 PF00454 Phosphatidylinositol 3- and 4-kinase

CLV_PCSK_SKI1_1 14 PF00082 Peptidase_S8 Subtilase family

LIG_SH3_3 14 PF00018 SH3 domain

MOD_NEK2_1 13 PF00069 Protein kinase domain

LIG_FHA_2 13 PF00498 FHA domain

MOD_CK1_1 13 PF00069 Protein kinase domain

LIG_FHA_1 12 PF00498 FHA domain

DOC_CYCLIN_1 12 PF00134 Dynein light chain type 1

LIG_LIR_Nem_3 12 PF02991 Autophagy protein Atg8 ubiquitin like

DOC_WW_Pin1_4 12 PF00397 WW domain

MOD_ProDKin_1 12 PF00069 Protein kinase domain

MOD_PKA_2 12 PF00069 Protein kinase domain

MOD_CK2_1 12 PF00069 Protein kinase domain

TRG_ER_diArg_1 12 PF00400 WD domain, G-beta repeat

LIG_SH2_STAT5 11 PF00017 SH2 domain

LIG_LIR_Gen_1 11 PF02991 Autophagy protein Atg8 ubiquitin like

CLV_PCSK_PC1ET2_1 11 PF00082 Peptidase_S8 Subtilase family

MOD_GlcNHglycan 11 PF01048 Phosphorylase superfamily

MOD_N-GLC_1 10 PF02516 Oligosaccharyl transferase STT3 subunit

TRG_ENDOCYTIC_2 10 PF00928 Adaptor complexes medium subunit family

From the SLiMs that are conserved in more than 70% of the HIV-1 protein sequences, and are located in disordered regions too we counted how many HIV-1 proteins

include them. In this table we report the SLiMs more commonly used in HIV-1 proteins, the ones that are included in 10 or more of the HIV-1 proteins. The table includes the

counter domain for every SLiM
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approach considering all the human proteome and more

human viruses.

In future work we could also incorporate structural

information in the prediction and analysis of SLiM-

mediated VHPPIs in order to create otter SLiM filtering

methods and compare them with the filters obtained

in this work. One possibility is the study of fuzziness

and SLiM flanking regions [48], another one is the use

of disordered binding region prediction methods, like

ANCHOR [49].
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