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Abstract We introduce an ambidextrous view of stochastic dynamical systems, comparing
their forward-time and reverse-time representations and then integrating them into a single
time-symmetric representation. The perspective is useful theoretically, computationally, and
conceptually. Mathematically, we prove that the excess entropy—a familiar measure of or-
ganization in complex systems—is the mutual information not only between the past and
future, but also between the predictive and retrodictive causal states. Practically, we exploit
the connection between prediction and retrodiction to directly calculate the excess entropy.
Conceptually, these lead one to discover new system measures for stochastic dynamical
systems: crypticity (information accessibility) and causal irreversibility. Ultimately, we in-
troduce a time-symmetric representation that unifies all of these quantities, compressing the
two directional representations into one. The resulting compression offers a new conception
of the amount of information stored in the present.

Keywords Stored information · Entropy rate · Statistical complexity · Excess entropy ·
Causal irreversibility · Crypticity

1 Introduction

“Predicting time series” encapsulates two notions of directionality. Prediction—making a
claim about the future based on the past—is directional. Time evokes images of rivers,
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clocks, and actions in progress. Curiously, though, when one writes a time series as a
lattice of random variables, any necessary dependence on time’s inherent direction is re-
moved; at best it becomes convention. When we analyze a stochastic process to determine
its correlation function, block entropy, entropy rate, and the like, we already have shed our
commitment to the idea of forward by virtue of the fact that these quantities are defined
independently of any perceived direction of the process.

Here we explore this ambivalence. In making it explicit, we consider not only predictive
models, but also retrodictive models. We then demonstrate that it is possible to unify these
two viewpoints and, in doing so, we discover several new properties of stationary stochastic
dynamical systems. Along the way, we also rediscover, and recast, old ones.

We first review minimal causal representations of stochastic processes, as developed
by computational mechanics [1, 2]. We extend its (implied) forward-time representation
to reverse-time. Then, we prove that the mutual information between a process’s past and
future—the excess entropy—is the mutual information between its forward- and reverse-
time representations.

Excess entropy, and related mutual information quantities, are widely used diagnostics
for complex systems. They have been applied to detect the presence of organization in dy-
namical systems [3–6], in spin systems [7–9], in neurobiological systems [10, 11], and even
in language, to mention only a few applications. For example, in natural language the ex-
cess entropy (E) diverges with the number of characters L as E ∝ L1/2. The claim is that this
reflects the long-range and strongly non-ergodic organization necessary for human commu-
nication [12, 13].

The net result is a unified view of information processing in stochastic processes. For the
first time, we give an explicit relationship between the internal (causal) state information—
the statistical complexity [1]—and the observed information—the excess entropy. Another
consequence is that the forward and reverse representations are two projections of a unified
time-symmetric representation. From the latter it becomes clear there are important system
properties that control how accessible internal state information is and how irreversible a
process is. Moreover, the methods are sufficiently constructive that one can calculate the
excess entropy in closed-form for finite-memory processes.

Before embarking, we delineate the present contribution’s role within a collection of
recent results. An announcement appears in [14] and [15] will provide complementary re-
sults that address measure-theoretic relationships between the above information quantities.
A new classification scheme based on information accessibility of stochastic processes ap-
pears in [16]. Here, we lay out the theory behind [14] in detail, giving step-by-step proofs
of the main results and the calculational methods.

2 Optimal Causal Models

The approach starts with a simple analogy. Any process, P , is a joint probability distribution

over the past and future observation symbols, Pr(
←−
X ,

−→
X ). This distribution can be thought

of as a communication channel with a specified input distribution Pr(
←−
X )1: It transmits in-

formation from the past
←−
X = . . .X−3X−2X−1 to the future

−→
X = X0X1X2 . . . by storing it

in the present. Xt is the random variable for the measurement outcome at time t .

1Throughout, we follow the notation and definitions of [2, 23]. In addition, when we say
−→
X , for example, this

should be interpreted as a shorthand for using
−→
X L and then taking an appropriate limit, such as limL→∞ or

limL→∞ 1/L.



Prediction, Retrodiction, and the Amount of Information 1007

Our goal is also simply stated: We wish to predict the future using information from the

past. At root, a prediction is probabilistic, specified by a distribution of possible futures
−→
X

given a particular past ←−
x : Pr(

−→
X |←−x ). At a minimum, a good predictor needs to capture all of

the information I shared between the past and future: E = I [←−X ;−→X ]—the process’s excess
entropy. Note that there are several equivalent forms for E, such as E = limL→∞(H [XL

0 ] −
Lhμ) [17, and references therein].

Consider now the goal of modeling—building a representation that allows not only good
prediction but also expresses the mechanisms producing a system’s behavior. To build a
model of a structured process (a memoryful channel), computational mechanics [1] intro-
duced an equivalence relation ←−

x ∼ ←−
x

′
that groups all histories which give rise to the same

prediction2:

ε(
←−
x ) = {←−x ′ : Pr(

−→
X |←−x ) = Pr(

−→
X |←−x ′

)}. (1)

In other words, for the purpose of forecasting the future, two different pasts are equivalent if
they result in the same prediction. The result of applying this equivalence gives the process’s

causal states S = Pr(
←−
X ,

−→
X )/ ∼, which partition the space

←−
X of pasts into sets that are

predictively equivalent. The set of causal states3 can be discrete, fractal, or continuous; see,
e.g., Figs. 7, 8, 10, and 17 in [18].

State-to-state transitions are denoted by matrices T
(x)

S S′ whose elements give the probabil-
ity Pr(X = x, S ′|S) of transitioning from one state S to the next S ′ on seeing measurement
x. The resulting model, consisting of the causal states and transitions, is called the process’s
ε-machine. Given a process P , we denote its ε-machine by M(P).

Causal states have a Markovian property that they render the past and future statistically
independent; they shield the future from the past [2]:

Pr(
←−
X ,

−→
X |S) = Pr(

←−
X |S)Pr(

−→
X |S). (2)

Moreover, they are optimally predictive [1] in the sense that knowing which causal state

a process is in is just as good as having the entire past: Pr(
−→
X |S) = Pr(

−→
X |←−X ). In other

words, causal shielding is equivalent to the fact [2] that the causal states capture all of the

information shared between past and future: I [S;−→X ] = E.
ε-Machines have an important structural property called unifilarity [1, 19]: From the

start state, each symbol sequence corresponds to exactly one sequence of causal states.4

ε-Machine unifilarity underlies many of the results here. Its importance is reflected in the
fact that representations without unifilarity, such as general hidden Markov models, cannot
be used to directly calculate important system properties—including the most basic, such
as, how random a process is. As a practical result, unifilarity is easy to verify: For each state,
each measurement symbol appears on at most one outgoing transition.5 Thus, the signature
of unifilarity is that on knowing the current state and measurement, the uncertainty in the

2See [30] for a measure-theoretic discussion.
3A process’s causal states consist of both transient and recurrent states. To simplify the presentation, we
henceforth refer only to recurrent causal states that are discrete.
4Following terminology in computation theory this is referred to as determinism [31]. However, to reduce
confusion, here we adopt the practice in information theory to call it the unifilarity of a process’s representa-
tion [32].
5Specifically, each transition matrix T (x) has, at most, one nonzero component in each row.
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next state vanishes: H [St+1|St ,Xt ] = 0. In summary, a process’s ε-machine is its unique,
minimal unifilar model.

3 Information Processing Measures

Out of all optimally predictive models ̂R—for which I [̂R;−→X ] = E—the ε-machine cap-
tures the minimal amount of information that a process must store in order to communicate
all of the excess entropy from the past to the future. This is the Shannon information con-
tained in the causal states—the statistical complexity [2]: Cμ ≡ H [S] ≤ H [̂R]. In short, E
is the effective information transmission rate of the process, viewed as a channel, and Cμ is
the sophistication of that channel.

Combined, these properties mean that the ε-machine is the basis against which modeling
should be compared, since it captures all of a process’s information at maximum represen-
tational efficiency.

Lastly, a key (and historically prior) dynamical system invariant is the entropy rate:

hμ = lim
L→∞

H(L)

L
, (3)

where H(L) is Shannon entropy of length-L sequences XL. This is the per-measurement
rate at which the process generates information—its degree of intrinsic randomness [20, 21].

Importantly, due to unifilarity one can calculate the entropy rate directly from a process’s
ε-machine:

hμ = H [X|S] = −
∑

{S}
Pr(S)

∑

{x}
T

(x)

S S′ log2 T
(x)

S S′ . (4)

Pr(S) is the asymptotic probability of the causal states, which is obtained as the normalized
principal eigenvector of the transition matrix T = ∑

{x} T
(x). We will use π to denote the

distribution over the causal states as a row vector. Note that a process’s statistical complexity
can also be directly calculated from its ε-machine:

Cμ = H [S] = −
∑

{S}
Pr(S) log2 Pr(S). (5)

Thus, the ε-machine directly gives two important properties: a process’s rate (hμ) of pro-
ducing information and the amount (Cμ) of historical information it stores in doing so.

4 Excess Entropy

Until recently, E could not be as directly calculated as the entropy rate and the statistical
complexity. This state of affairs was a major roadblock to analyzing the relationships be-
tween modeling and predicting and, more concretely, the relationships between (and even
the interpretation of) a process’s basic properties—hμ, Cμ, and E. [14] announced the so-
lution to this long-standing problem by deriving explicit expressions for E in terms of the
ε-machine, providing a unified information-theoretic analysis of general processes. Here we
provide a detailed account of the underlying methods and results.
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Table 1 Hidden Process Lattice: The X variables denote the observed process; the S variables, the hidden
states. If one scans the observed variables in the positive direction—seeing X−3, X−2, and X−1—then that
history takes one to causal state S +

0 . Analogously, if one scans in the reverse direction, then the succession

of variables X2, X1, and X0 leads to S −
0

Past Present Future

←−
X

−→
X

. . . X−3 X−2 X−1 X0 X1 X2 . . .

. . . S +
−3 S +

−2 S +
−1 S +

0 S +
1 S +

2 S +
3 . . .

. . . S −
−3 S −

−2 S −
−1 S −

0 S −
1 S −

2 S −
3 . . .

To get started, we should recall what is already known about the relationships between
these various quantities. First, some time ago, an explicit expression was developed from
the Hamiltonian for one-dimensional spin chains with range-R interactions [8]:

E = Cμ − Rhμ. (6)

It was demonstrated that E is a generalized order parameter: Compared to structure factors,
E is an assumption-free way to find structure and correlation in spin systems that does not
require tuning [9].

Second, it has also been known for some time that the statistical complexity is an upper
bound on the excess entropy [19]:

E ≤ Cμ. (7)

Nonetheless, other than the special, if useful, case of spin systems, until [14] there had been
no direct way to calculate E. Remedying this limitation required broadening the notion of
what a process is.

5 Retrodiction

The original results of computational mechanics concern using the past to predict the future.
But we can also retrodict: use the future to predict the past. That is, we scan the mea-
surement variables not in the forward time direction, but in the reverse. The computational
mechanics formalism is essentially unchanged, though its meaning and notation need to be
augmented [22].

With this in mind, the previous mapping from pasts to causal states is now denoted ε+
and it gave, what we will call, the predictive causal states S+. When scanning in the re-
verse direction, we have a new relation, −→

x ∼− −→
x ′, which groups futures that are equivalent

for the purpose of retrodicting the past: ε−(
−→
x ) = {−→x ′ : Pr(

←−
X |−→x ) = Pr(

←−
X |−→x ′)}. It gives

the retrodictive causal states S− = Pr(
←−
X ,

−→
X )/ ∼−. And, not surprisingly, we must also

distinguish the forward-scan ε-machine M+ from the reverse-scan ε-machine M−. They
assign corresponding entropy rates, h+

μ and h−
μ , and statistical complexities, C+

μ = H [S +]
and C−

μ = H [S −], respectively, to the process.
To orient ourselves, a graphical aid, the hidden process lattice, is helpful at this point;

see Table 1.
Now we are in a position to ask some questions. Perhaps the most obvious is, In which

time direction is a process most predictable? The answer is that a process is equally pre-
dictable in either:
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Proposition 1 ([2]) For a stationary process, optimally predicting the future and optimally
retrodicting the past are equally effective: h−

μ = h+
μ .

Proof A stationary stochastic process satisfies:

H [X−L+2, . . . ,X0] = H [X−L+1, . . . ,X−1]. (8)

Keeping this in mind, we directly calculate:

h+
μ = H [X0|←−X ]

= lim
L→∞

H [X0|X−L+1, . . . ,X−1]
= lim

L→∞ (H [X−L+1, . . . ,X0] − H [X−L+1, . . . ,X−1])
= lim

L→∞ (H [X−L+1, . . . ,X0] − H [X−L+2, . . . ,X0])
= lim

L→∞ (H [X−1, . . . ,XL−2] − H [X0, . . . ,XL−2])
= lim

L→∞
H [X−1|X0, . . . ,XL−2]

= H [X−1|−→X ]
= h−

μ . �

Somewhat surprisingly, the effort involved in optimally predicting and retrodicting is not
necessarily the same:

Proposition 2 ([22]) There exist stationary processes for which C−
μ 
= C+

μ .

Proof The Random Insertion Process, analyzed in a later section, establishes this by exam-
ple. �

Note that E is mute on this score. Since the mutual information I is symmetric in its
variables [23], E is time symmetric. Proposition 2 puts us on notice that E necessarily misses
many of a process’s structural properties.

6 Excess Entropy from Causal States

Understanding the relationship between predicting and retrodicting a process, and ultimately
E’s role, requires teasing out how the states of the forward and reverse ε-machines capture
information about the past and the future. To do this we analyzed [15] a four-variable mutual

information: I [←−X ;−→X ; S +; S −]. A large number of expansions of this quantity are possible.
A systematic development follows from [24] which showed that Shannon entropy H [·] and
mutual information I [·; ·] form a signed measure over the space of events. Practically, there
is a direct correspondence between set theory and these information measures. Using this,
[15] developed an ε-machine information diagram over four variables, which gives a min-
imal set of entropies, conditional entropies, mutual informations, and conditional mutual
informations necessary to analyze the relationships among hμ, Cμ, and E for general sto-
chastic processes.
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In a generic four-variable information diagram, there are 15 independent variables. For-
tunately, this greatly simplifies in the case of using an ε-machine to represent a process;
there are only 5 independent variables in the ε-machine information diagram [15]. (These
results are announced in [14]; see Fig. 1 there.)

Simplified in this way, we are left with our main results which, due to the preceding
effort, are particularly transparent.

Theorem 1 Excess entropy is the mutual information between the predictive and retrodic-
tive causal states:

E = I [S +; S −]. (9)

Proof This follows due to the redundancy of pasts and predictive causal states, on the one
hand, and of futures and retrodictive causal states, on the other. These redundancies, in turn,
are expressed via S + = ε+(

←−
X ) and S − = ε−(

−→
X ), respectively. That is, we have

I [←−X ;−→X ; S +; S −] = I [←−X ;−→X ] = E, (10)

on the one hand, and

I [←−X ;−→X ; S +; S −] = I [S +; S −], (11)

on the other. �

That is, the process’s channel utilization E = I [←−X ;−→X ] is the same as that of a “channel”
between the forward and reverse ε-machine states.

Proposition 3 The predictive and retrodictive statistical complexities are:

C+
μ = E + H [S +|S −] (12)

and

C−
μ = E + H [S −|S +]. (13)

Proof E = I [S +; S −] = H [S +] − H [S +|S −]. Since the first term is C+
μ , we have the pre-

dictive statistical complexity. Similarly for the retrodictive complexity. �

Corollary 1 C+
μ ≥ H [S +|S −] and C−

μ ≥ H [S −|S +].

Proof E ≥ 0. �

The Theorem and its companion Proposition give an explicit connection between a
process’s excess entropy and its causal structure—its ε-machines. More generally, the re-
lationships directly tie mutual information measures of observed sequences to a process’s
internal structure. This is our main result. It allows us to probe the properties that control
how closely observed statistics reflect a process’s hidden organization. However, this re-
quires that we understand how M+ and M− are related. We express this relationship with a
unifying model—the bidirectional machine.
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7 The Bidirectional Machine

At this point, we have two separate ε-machines—one for predicting (M+) and one for retro-
dicting (M−). We will now show that one can do better, by simultaneously utilizing causal
information from the past and future.

Definition 1 Let M± denote the bidirectional machine given by the equivalence relation
∼± 6:

ε±(
←→
x ) = ε±(

←−
x ,

−→
x ) = {(←−x ′

,
−→
x

′
) : ←−x ′ ∈ ε+(

←−
x ) and −→

x
′ ∈ ε−(

−→
x )}

with causal states S± = Pr(
←→
X )/∼±.

That is, the bidirectional causal states are a partition of
←→
X : S± ⊆ S+ ×S−. This follows

from a straightforward adaptation of the analogous result for forward ε-machines [2].
To illustrate, imagine being given a particular realization ←→

x . In effect, the bidirectional
machine M± describes how one can move around on the hidden process lattice of Table 1:

1. When scanning in the forward direction, states and transitions associated with M+ are
followed.

2. When scanning in the reverse direction, states and transitions associated with M− are
followed.

3. At any time, one can change to the opposite scan direction, moving to the state of the
opposite scan’s ε-machine. For example, if one moves forward following M+ and ends
in state σ+, having seen ←−

x and about to see −→
x , then one moves to σ− = ε−(

−→
x ).

At time t , the bidirectional causal state is S ±
t = (ε+(

←−
x t ), ε

−(
−→
x t )). When scanning in the

forward direction, the first symbol of −→
x t is removed and appended to ←−

x t . When scanning
in the reverse direction, the last symbol in ←−

x t is removed and prefixed to −→
x t . In either

situation, the new bidirectional causal state is determined by ε± and the updated past and
future.

This illustrates the relationship between S + and S −, as specified by M±, when given a

particular realization. Generally, though, one considers an ensemble
←→
X of realizations. In

this case, the bidirectional state transitions are probabilistic and possibly nonunifilar. This
relationship can be made more explicit through the use of maps between the forward and
reverse causal states. These are the switching maps.

The forward map is a linear function from the simplex over S− to the simplex over
S+, and analogously for the reverse map. The maps are defined in terms of conditional
probability distributions:

1. The forward map f : �n → �m, where f (σ−) = Pr(S +|σ−); and
2. The reverse map r : �m → �n, where r(σ+) = Pr(S −|σ+),

where n = |S−| and m = |S+|.
We will sometimes refer to these maps in the Boolean rather than probabilistic sense.

The case will be clear from context.

Proposition 4 The maps r and f are onto.

6Interpret the symbol ± as “plus and minus”.
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Proof Consider the reverse map r that takes a forward causal state to a distribution over
reverse causal states. Assume r is not onto. Then there must be a reverse state σ− that is
not in the range of r(S +). This means that no forward causal state is paired with σ− and so
there is no past ←−

x with a possible future −→
x ∈ σ−. That is, ε±(

←−
x ,

−→
x ) = ∅ and, specifically,

ε−(
−→
x ) = ∅. Thus, σ− does not exist.

A similar argument shows that f is onto. �

Definition 2 The amount of stored information needed to optimally predict and retrodict a
process is M±’s statistical complexity:

C±
μ ≡ H [S ±] = H [S +, S −]. (14)

From the immediately preceding results we obtain the following simple, explicit, and
useful relationship:

Corollary 2 E = C+
μ + C−

μ − C±
μ .

Thus, we are led to a wholly new interpretation of the excess entropy—in addition to
the original three discussed in [17]: E is exactly the difference between these structural
complexities. Moreover, only when E = 0 does C±

μ = C+
μ + C−

μ .
More to the point, thinking of the Cμs as proportional to the size of the corresponding

machine, we establish the representational efficiency of the bidirectional machine:

Proposition 5 C±
μ ≤ C+

μ + C−
μ .

Proof This follows directly from the preceding corollary and the non-negativity of mutual
information. �

We can say a bit more, with the following bounds.

Corollary 3 C+
μ ≤ C±

μ and C−
μ ≤ C±

μ .

These results say that taking into account causal information from the past and the future
is more efficient (i) than ignoring one or the other and (ii) than ignoring their relationship.

7.1 Upper Bounds

Here we give new, tighter bounds for E than (7) and greatly simplified proofs than those
provided in [2] and [19].

Proposition 6 For a stationary process, E ≤ C+
μ and E ≤ C−

μ .

Proof These bounds follow directly from applying basic information inequalities: I [X,Y ] ≤
H [X] and I [X,Y ] ≤ H [Y ]. Thus, E = I [S −; S +] ≤ H [S −], which is C−

μ . Similarly, since
I [S −; S +] ≤ H [S +], we have E ≤ C+

μ . �
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7.2 Causal Irreversibility

We have shown that predicting and retrodicting may require different amounts of informa-
tion storage (C+

μ 
= C−
μ ). We now examine this asymmetry.

Given a word w = x0x2 . . . xL−1, the word we see when scanning in the reverse direction
is w̃ = xL−1 . . . x1x0, where xL−1 is encountered first and x0 is encountered last.

Definition 3 A microscopically reversible process is one for which Pr(w) = Pr(w̃), for all
words w = xL and all L.

Microscopic reversibility simply means that flipping t → −t leads to the same process. A
microscopically reversible process yields the same word distribution when scanned in either
direction; we will denote this P + = P −.

Proposition 7 A microscopically reversible process has M+ = M−.

Proof If P + = P −, then M(P +) = M(P −) since M is a function. These are M+ and M−,
respectively. �

Now consider a slightly looser, and more helpful, notion of reversibility, expressed quan-
titatively as a measure of irreversibility.

Definition 4 A process’s causal irreversibility [22] is:

�(P) = C+
μ − C−

μ . (15)

Corollary 4 �(P) = H [S +|S −] − H [S −|S +].

Definition 5 A causally reversible process is one with vanishing causal irreversibility,
�(P) = 0.

Proposition 8 If a process is microscopically reversible, then the process is causally re-
versible.

Proof By Proposition 7, a microscopically reversible process has M+ = M− and in particu-
lar, S+ = S− and their transition matrices are the same. This means that Pr(S +) = Pr(S −).
Thus, C+

μ = C−
μ and � = 0. �

Thus, the class of causally reversible processes is potentially larger than the class of mi-
croscopically reversible processes. That is, there can exist processes with vanishing causal
irreversibility (� = 0) that are not microscopically reversible. For example, the periodic
process . . .123123123 . . . is not microscopically reversible, since Pr(123) 
= Pr(321). How-
ever, as C−

μ = C+
μ = log2 3, this process is causally reversible.

In fact, the class of causally reversible processes includes any process whose left- and
right-scan processes are isomorphic under a simultaneous alphabet and state isomorphism.
Given that the spirit of symbolic dynamics is to consider processes only up to isomorphism,
this measure seems to capture a very natural notion of reversibility. Interestingly, it appears,
based on several case studies, that causal reversibility captures exactly that notion. That is,
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it would seem there are no causally reversible processes for which P +
� P −. We leave this

as a conjecture.
Finally, note that causal irreversibility is not controlled by E, since, as noted above, the

latter is scan-symmetric.

7.3 Process Crypticity

Lurking in the preceding development and results is an alternative view of how forecasting
and model building are related.

We can extend our use of Shannon’s communication theory (processes are memoryful
channels) to view the activity of an observer building a model of a process as the attempt
to decrypt from a measurement sequence the hidden state information [25]. The parallel
we draw is that the design goal of cryptography is to not reveal internal correlations and
structure within an encrypted data stream, even though in fact there is a message—hidden
organization and structure—that will be revealed to a recipient with the correct codebook.
This is essentially the circumstance a scientist faces when building a model, for the first time,
from measurements: What are the states and dynamic (hidden message) in the observed
data?

Here, we address the case of self-decoding in which the information used to build a model
is only that available in the observed process Pr(

←→
X ). That is, no “side-band” communica-

tion, prior knowledge, or disciplinary assumptions are allowed. Note, though, that modeling
with such additional knowledge requires solving the self-decoding case, addressed here,
first. The self-decoding approach to building nonlinear models from time series was intro-
duced in [26].

The relationship between excess entropy and statistical complexity established by The-
orem 1 indicates that there are fundamental limitations on the amount of a process’s stored
information directly present in observations, as reflected in the mutual information measure
E. We now introduce a measure of this accessibility.

Definition 6 A process’s crypticity is:

χ±(M+,M−) = H [S +|S −] + H [S −|S +]. (16)

Proposition 9 χ±(M+,M−) is a distance between a process’s forward and reverse
ε-machines.

Proof χ±(·, ·) is non-negative, symmetric, and satisfies a triangle inequality. This follows
from the solution of exercise 2.9 of [23]. See also, [27]. �

Theorem 2 M±’s statistical complexity is:

C±
μ = E + χ±. (17)

Proof This follows directly from the corollary and the predictive and retrodictive statistical
complexity relations, (12) and (13). �

Referring to χ± as crypticity comes directly from this result: It is the amount of internal
state information (C±

μ ) not locally present in the observed sequence (E). That is, a process
hides χ± bits of information.
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Note that if crypticity is low χ± ≈ 0, then much of the stored information is present
in observed behavior: E ≈ C±

μ . However, when a process’s crypticity is high, χ± ≈ C±
μ ,

then little of its structural information is directly present in observations. The measurements
appear very close to being independent, identically distributed (E ≈ 0) despite the fact that
the process can be highly structured (C±

μ � 0).

Corollary 5 M±’s statistical complexity bounds the process’s crypticity:

C±
μ ≥ χ±. (18)

Proof E ≥ 0. �

Thus, a truly cryptic process has C±
μ = χ± or, equivalently, E = 0. In this circumstance,

little or nothing can be learned about the process’s hidden organization from measurements.
This would be perfect encryption.

We will find it useful to discuss the two contributions to χ± separately. Denote these

χ+ = H [S +|S −] and χ− = H [S −|S +]. Recall that these are, respectively, H [S +|−→X ] and

H [S −|←−X ].
The preceding results can be compactly summarized in an information diagram that uses

the ε-machine representation of a process; see [14] and [15]. They also suggest a classifica-
tion scheme based on crypticity, that complements Markov-order classification; see [16]. In
the following, we phrase the calculations in terms of E, and then χ+, χ−, χ±, C±

μ , and �

follow straightforwardly.

8 Alternative Presentations

The ε-machine is a process’s unique, minimal unifilar presentation. Now we introduce two
alternative presentations, which need not be ε-machines, that will be used in the calculation
of E. Since the states of these alternative presentations are not causal states, we will use Rt ,
rather than St , to denote the random variable for their state at time t .

8.1 Time-Reversed Presentation

Any machine M transitions from the current state R to the next state R′ on the current
symbol x:

T
(x)

RR′ ≡ Pr(X = x, R′|R). (19)

Note that T = ∑

{x} T
(x) is a stochastic matrix with principal eigenvalue 1 and left eigenvec-

tor π , which gives Pr(R). Recall that the Perron-Frobenius theorem applied to stochastic
matrices guarantees the uniqueness of π .

Using standard probability rules to interchange R and R′, we can construct a new set of
transition matrices which defines a presentation of the process that generates the symbols in
reverse order. It is useful to consider a time-reversing operator acting on a machine. Denoting
it T , ˜M = T (M) is the time-reversed presentation of M . It has symbol-labeled transition
matrices:

˜T
(x)

R′ R ≡ Pr(X = x, R|R′) = T
(x)

RR′
Pr(R)

Pr(R′)
(20)

and stochastic matrix ˜T = ∑

{x} ˜T (x).
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Proposition 10 The stationary distribution π̃ over the time-reversed presentation states is
the same as the stationary distribution π of M .

Proof We assume π̃ = π , the left eigenvector of T , and verify the assumption, recalling the
uniqueness of π . We have:

π̃ρ =
∑

ρ′
π̃ρ′ ˜Tρ′ρ =

∑

ρ′
π̃ρ′Tρρ′

πρ

πρ′
=

∑

ρ′
Tρρ′πρ = πρ.

In the second to last step, we recall the assumption π̃ρ′ = πρ′ . And in the final equality, we
note that T is stochastic. �

Finally, when we consider the product of transition matrices over a given sequence w, it
is useful to simplify notation as follows:

T (w) ≡ T (x0)T (x1) · · ·T (xL−1).

8.2 Mixed-State Presentation

The states of machine M can be treated as a standard basis in a vector space. Then, any
distribution over these states is a linear combination of those basis vectors. Following [28],
these distributions are called mixed states.

Now we focus on a special subset of mixed states and define μ(w) as the distribution
over the states of M that is induced after observing w:

μ(w) ≡ Pr(RL|XL
0 = w) (21)

= Pr(XL
0 = w, RL)

Pr(XL
0 = w)

(22)

= πT (w)

πT (w)1
, (23)

where XL
0 is shorthand for an undetermined sequence of L measurements beginning at time

t = 0 and 1 is a column vector of 1s. In the last line, we write the probabilities in terms of
the stationary distribution and the transition matrices of M . This expansion is valid for any
machine that generates the process in the forward-scan (left-to-right) direction.

If we consider the entire set of such mixed states, then we can construct a presentation of
the process by specifying the transition matrices:

Pr(x,μ(wx)|μ(w)) ≡ Pr(wx)

Pr(w)
(24)

= μ(w)T (x)1. (25)

Note that many words can induce the same mixed state. As with the time-reversed presen-
tation, it will be useful to define a corresponding operator U that acts on a machine M ,
returning its mixed-state presentation U (M).
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9 Calculating Excess Entropy

We are now ready to describe how to calculate the excess entropy using the time-symmetric
perspective. Generally, our goal is to obtain a conditional distribution Pr(S +|S −) which,
when combined with the ε-machines, yields a direct calculation of E via Theorem 1. This is
a two-step procedure which begins with M+, calculates ˜M+, and ends with M−. One could
also start with M− to obtain M+. These possibilities are captured in the diagram:

M+ U←−−−− ˜M−

T
⏐

⏐

�

�

⏐

⏐T

˜M+ −−−−→
U

M−

(26)

In detail, we begin with M+ and reverse the direction of time by constructing the time-
reversed presentation ˜M+ = T (M+). Then, we construct the mixed-state presentation
U ( ˜M+) of the time-reversed presentation to obtain M−.

Note that T acting on M+ does not generically yield another ε-machine. (This was not
the purpose of T .) However, the states will still be useful when we construct the mixed-state
presentation of ˜M+. This is because the states, which serve as basis states in the mixed-state
presentation, are in a one-to-one correspondence with the forward causal states of M+. This
correspondence was established by Proposition 10.

Also, note that U is not guaranteed to construct a minimal presentation of the process.
However, this does not appear to be a concern when working with time-reversed presenta-
tions of an ε-machine. We leave it as a conjecture that U (T (M)) is always minimal. Even
so, the Appendix demonstrates that an appropriate sum can be carried out which always
yields the desired conditional distribution.

Returning to the two-step procedure, one must construct the mixed-state presentation of
˜M+. It is helpful to keep the hidden process lattice of Table 1 in mind. Since ˜M+ generates
the process from right-to-left, it encounters symbols of w in reverse order. The consequence
of this is that the form of the mixed state changes slightly. However, it still represents the
distribution over the current state induced by seeing w. We denote this new form by ν(w):

ν(w) ≡ Pr(R0|XL
0 = w) (27)

= Pr(R0,X
L
0 = w)

Pr(XL
0 = w)

(28)

= πT (w̃)

πT (w̃)1
, (29)

where π and T are the stationary distribution and transition matrices of a machine that
generates the process from right-to-left, respectively. In this procedure, we are making use
of ˜M+ and thus, π̃ and ˜T .

Similarly, if we consider the entire set of such mixed states, we can construct a presenta-
tion of the process by specifying the transition matrices:

Pr(x, ν(xw)|ν(w)) ≡ Pr(xw)

Pr(w)
(30)

= ν(w)T (x)1. (31)
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Focusing again on M+, we construct ˜M+ = T (M+). Since π̃ = π , we can equate Rt =
S +

t and the mixed states ν(w) are actually informing us about the causal states in M+:

ν(w) = Pr(R0|XL
0 = w) = Pr(S +

0 |XL
0 = w).

Whenever the mixed-state presentation is an ε-machine, each distribution corresponds to
exactly one reverse causal state. Thus, if w induces ν(w), then ν(w) is the reverse causal
state induced by w. This allows us to reduce the form of ν(w) even further so that the
conditioned variable is a reverse causal state. Continuing,

ν(w) = Pr(S +
0 |XL

0 = w) = Pr
(

S +
0 |S −

0 = ε−(w)
)

.

Hence, we can calculate H [S +|S −] and obtain E via (9).

10 Calculational Example

To clarify the procedure, we apply it to the Random, Noisy Copy (RnC) Process. The em-
phasis is on the various process presentations and mixed states that are used to calculate the
excess entropy. In the next section, additional examples are provided which skip over these
calculational details and, instead, focus on the analysis and interpretation.

The RnC generates a random bit with bias p. If that bit is a 0, it is copied so that the
next output is also 0. However, if the bit is a 1, then with probability q , the 1 is not copied
and 0 is output instead. The RnC Process is related to the binary asymmetric channel of
communication theory [23].

The forward ε-machine has three recurrent causal states S+ = {A,B,C} and is shown
in Fig. 1(a). The transition matrices T (x) specify Pr(X0 = x, S +

1 |S +
0 ) and are given by:

T (0) =
⎛

⎝

A B C

A 0 p 0
B 1 0 0
C q 0 0

⎞

⎠

and

T (1) =
⎛

⎝

A B C

A 0 0 1 − p

B 0 0 0
C 1 − q 0 0

⎞

⎠.

(One must explicitly calculate the equivalence classes of histories {←−x } specified in (1) and

their associated future conditional distributions Pr(
−→
X |←−x ) to obtain the ε-machine causal

states and transitions.)
These matrices are used calculate the stationary distribution π over the causal states,

which is given by the left eigenvector of the stochastic matrix T ≡ T (0) + T (1):

Pr(S +) = 1

2

(

A B C

1 p 1 − p

)

.
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Fig. 1 The presentations used to
calculate the excess entropy for
the RnC Process: (a) M+,
(b) ˜M+ = T (M+), and
(c) M− = U ( ˜M+). Edge labels
t |x give the probability

t = T
(x)

RR′ of making a transition
and seeing symbol x

Using the T (x) and π , we create the time-reversed presentation ˜M+ = T (M+). This is shown
in Fig. 1(b). Notice that the machine is not unifilar, and so it is clearly not an ε-machine.
The transition matrices for the time-reversed presentation are given by:

˜T (0) =

⎛

⎜

⎜

⎜

⎝

A B C

A 0 p q(1 − p)

B 1 0 0

C 0 0 0

⎞

⎟

⎟

⎟

⎠

and

˜T (1) =

⎛

⎜

⎜

⎜

⎝

A B C

A 0 0 (1 − q)(1 − p)

B 0 0 0

C 1 0 0

⎞

⎟

⎟

⎟

⎠

.

As with M+, we calculate the stationary distribution of ˜M+, denoted π̃ . However, we
showed that the stationary distributions for M and T (M) are identical.

Now we are in a position to calculate the mixed-state presentation, M− = U ( ˜M+), shown
in Fig. 1(c). Generally, causal states can be categorized into types [28]. Of these, the calcu-
lation of E depends only on the reachable recurrent causal states. The construction of the
mixed-state presentation will generate other types of causal states, such as transient causal
states, but we eventually remove them.

To begin, we start with the empty word, w = λ, and append 0 and 1 to consider ν(0) and
ν(1), respectively, and calculate:

ν(0) = Pr(S +
0 |X0 = 0) = π̃˜T (0)

π̃˜T (0)1
= (p,p, q(1 − p))

2p + q(1 − p)
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and

ν(1) = Pr(S +
0 |X0 = 1) = π̃˜T (1)

π̃˜T (1)1
= (1,0,1 − q)

2 − q
.

For each mixed state, we append 0s and 1s and calculate again:

ν(00) = Pr(S +
0 |X2

0 = 00) = π̃˜T (0)
˜T (0)

π̃˜T (0)˜T (0)1
,

ν(01) = Pr(S +
0 |X2

0 = 01) = π̃˜T (1)
˜T (0)

π̃˜T (1)˜T (0)1
,

ν(10) = Pr(S +
0 |X2

0 = 10) = π̃˜T (0)
˜T (1)

π̃˜T (0)˜T (1)1
, and

ν(11) = Pr(S +
0 |X2

0 = 11) = π̃˜T (1)
˜T (1)

π̃˜T (1)˜T (1)1
.

Note that

ν(10) = ν(0)˜T (1)

ν(0)˜T (1)1
. (32)

This latter form is important in that it allows us to build mixed states from prior mixed states
by prepending a symbol.

One continues constructing mixed states of longer and longer words until no more
new mixed states appear. As an example, ν(1001) = ν(111001) for the right-scanned RnC
Process.

To illustrate calculating the transition probabilities, consider the transition from ν(00) to
ν(100).7 By (31), we have

Pr
(

1, ν(100)|ν(00)
) = Pr(1|00) = ν(00)˜T (1)1 = 1 − p

1 + p + q − pq
.

After constructing the mixed-state presentation, one calculates the stationary state dis-
tribution. The causal states with Pr(S −) > 0 are the recurrent causal states. These are
S− = {D,E,F }:

D = ν(1001) =
(

A B C

0 0 1

)

E = ν(100) =
(

A B C

1 0 0

)

F = ν(10) =
(

A B C

0 p

p+q(1−p)

q(1−p)

p+q(1−p)

)

.

7This calculation gives the probability of transitioning from a transient causal state to a recurrent causal state
on seeing 1.
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These mixed states give Pr(S +|S −) which, when combined with Pr(S +), allows us to cal-
culate:

E = I [S +; S −] = H [S +] − H [S +|S −] = C+
μ − χ+,

with

C+
μ = 1 + H(p)

2

and

χ+ = p + q(1 − p)

2
H

(

p

p + q(1 − p)

)

,

where H(·) is the binary entropy function.

11 Examples

With the calculational procedure laid out, we now analyze the information processing prop-
erties of several examples—two of which are familiar from symbolic dynamics.

11.1 Even Process

The Even Process is a stochastic generalization of the Even System: the canonical example
of a strictly sofic subshift—a symbolic dynamical system that cannot be expressed as a sub-
shift of finite type [17, 29]. In terms of measure, this means that the Even Process cannot
be represented as a finite Markov chain; however, it has a two-state ε-machine representa-
tion. See Fig. 2(a). Its behavior is characterized by consecutive 1s always appearing in even
blocks. With probability p, each block of 1s can be followed by a 0, which can repeat until
the next even block of 1s.

Somewhat surprisingly, the Even Process turns out to be quite simple in terms of the
properties we are addressing. As we will now show, the mapping between forward and
reverse causal states is one-to-one and so χ± = 0. All of its internal state information is
present in measurements; we call it an explicit, or non-cryptic, process.

Its forward ε-machine has two recurrent causal states S+ = {A,B} and transition matri-
ces [17]:

T (0) =
(

A B

A p 0

B 0 0

)

and

T (1) =
(

A B

A 0 1 − p

B 1 0

)

.

Figure 2(a) gives M+, while 2(b) gives M−. We see that the ε-machines are the same and
so the Even Process is causally reversible (� = 0). Note that ˜M+ is unifilar.
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Fig. 2 Forward and reverse
ε-machines for the Even Process:
(a) M+ and (b) M−. (c) The
bidirectional machine M± . Edge
labels are prefixed by the scan
direction {−,+}

We can give general expressions for the information processing properties as a function
of the probability p = Pr(0|A) of the self-loop. A simple calculation shows that

Pr(S +) =
(

A B

1

2 − p

1 − p

2 − p

)

and

Pr(S −) =
(

C D

1

2 − p

1 − p

2 − p

)

.

And so, C+
μ = H(1/(2 −p)) and hμ = H(p)/(2 −p). Also, since χ± = 0 for all p, we will

have E = C±
μ .

Now, let’s analyze its bidirectional machine, which is shown in Fig. 2(c). The reverse and
forward maps are given by:

Pr(S +|S −) =
(

A B

C 1 0

D 0 1

)

and

Pr(S −|S +) =
(

C D

A 1 0

B 0 1

)

.

From which one calculates that Pr(S ±) = Pr(AC,BD) = (2/3,1/3) for p = 1/2. This and
the switching maps above give C±

μ = H [S ±] = H(2/3) ≈ 0.9183 bits and E = I [S +; S −] ≈
0.9183 bits.

Without going into details to be reported elsewhere, the Even Process is also notable since
it is difficult to empirically estimate its E. (The convergence as a function of the number of
measurements is extremely slow.) Viewed in terms of the quantities C+

μ , C−
μ , χ+, χ−, and �,

though, it is quite simple. This illustrates one strength of the time-symmetric analysis. The
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Fig. 3 (Color online) The Even
Process’s information processing
properties—C±

μ , C+
μ , and

χ+—as its self-loop probability
p varies. The colored area
bounded by the curves shows the
magnitude of E

latter’s new and independent set of information measures lead one to explore new regions
of process space (see Fig. 3) and to ask structural questions not previously capable of being
asked (or answered, for that matter). To see exactly why the Even Process is so simple, let’s
look at its causal states.

Its histories can be divided into two classes: those that end with an even number of 1s
and those that end with an odd number of 1s. Similarly, its futures divide into two classes:
those that begin with an even number of 1s and those that begin with an odd number of 1s.
The analysis here shows that these classes are causal states A, B , C, and D, respectively;
see Fig. 2.

Beginning with a bi-infinite string, wherever we choose to split it into (
←−
X ,

−→
X ), we can

be in one of only two situations: either (A,C) or (B,D), where A (C) ends (begins) with
an even number of 1s, and B (D) ends (begins) with an odd number of 1s. This one-to-
one correspondence simultaneously implies causal reversibility (� = 0) and explicitness
(χ± = 0). Thinking in terms of the bidirectional machine, we can predict and retrodict,
changing direction as often as we like and forever maintain optimal predictability and retro-
dictability. Since we can switch directions with no loss of information, there is no asymmetry
in the loss; this reflects the process’s causal reversibility.

Plotting C+
μ , C±

μ , and χ+, Fig. 3 rather directly illustrates these properties and shows that
they are maintained across the entire process family as the self-loop probability p is varied.

11.2 Golden Mean Process

The Golden Mean Process generates all binary sequences except for those with two con-
tiguous 0s. Its name derives from the Golden Mean subshift whose topological entropy is
log2(ϕ), where ϕ is the Golden Mean. Like the Even Process, it has two recurrent causal
states, but unlike the Even Process, its support is a subshift of finite type. It is describable
by a chain over three Markov states that correspond to the length-2 words 01, 10, and 11.

Nominally, it is considered to be a very simple process. However, it reveals several sur-
prising subtleties. M+ and M− are the same ε-machine—it is causally reversible (� = 0).
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Fig. 4 Forward and reverse
ε-machines for the Golden Mean
Process: (a) M+ and (b) M− .
(c) The bidirectional machine
M±

However, M± has three states and the forward and reverse state maps are no longer the
identity. Thus, χ± > 0 and the Golden Mean Process is cryptic, hiding much of its state
information from an observer.

Its forward ε-machine has two recurrent causal states S+ = {A,B} and transition matri-
ces [17]:

T (0) =
(

A B

A 0 1 − p

B 0 0

)

and

T (1) =
(

A B

A p 0

B 1 0

)

.

Figure 4(a) gives M+, while (b) gives M−. We see that the ε-machines are the same and so
the Golden Mean Process is causally reversible (� = 0).

Again, we can give general expressions for the information processing measures as a
function of the probability p = Pr(1|A) of the self-loop. The state-to-state transition matrix
is the same as that for the Even Process and we also have the same causal state probabilities.
Thus, we have Cμ = H(1/(2 − p)) and hμ = H(p)/(2 − p) again, just as for the Even
Process above. Indeed, a quick comparison of the state-transition diagrams does not reveal
any major structural difference with the Even Process’s ε-machines.

However, since χ± 
= 0 for p ∈ (0,1) and since the process is also a one-dimensional
spin chain, we have E = Cμ − Rhμ with R = 1. (Recall (6).) Thus,

E = H

(

1

2 − p

)

− H(p)

2 − p
. (33)
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Fig. 5 (Color online) The
Golden Mean Process’s
information processing
measures—C±

μ , C+
μ , and

χ+—as its self-loop probability
p varies. Colored areas bounded
by the curves give the magnitude
at each p of χ− , E, and χ+

Putting these closed-form expressions together gives us a graphical view of how the various
information measures change as the process’s parameter is varied. This is shown in Fig. 5.

In contrast to the Even Process, the excess entropy is substantially less than the statistical
complexities, the signature of a cryptic process: χ± = H(p)/(2 − p).

The origin of its crypticity is found by analyzing the bidirectional machine, which is
shown in Fig. 4(c). The reverse and forward maps are given by:

Pr(S +|S −) =
(

A B

C p 1 − p

D 1 0

)

and

Pr(S −|S +) =
(

C D

A p 1 − p

B 1 0

)

.

From M±, one can calculate the stationary distribution over the bidirectional causal states:
Pr(S ±) = Pr(AC,AD,BC) = (p,1 − p,1 − p)/(2 − p). For p = 1/2, we obtain C±

μ =
H [S ±] = log2 3 ≈ 1.5850 bits, but an E = I [S +; S −] ≈ 0.2516 bits. Thus, E is substantially
less than the Cμs—a cryptic process: χ± ≈ 1.3334 bits.

The Golden Mean Process is a perfect complement to the Even Process. Previously, it was
viewed as a simple process for many reasons: It is based on a subshift of finite type and order-
1 Markov, the causal-state process is itself a Golden Mean Process, it is microscopically
reversible, and E was exactly calculable (even before the introduction of the methods here).
However, the preceding analysis shows that the Golden Mean Process displays a new feature
that the Even Process does not—crypticity.

We can gain an intuitive understanding of this by thinking about classes of histories and

futures. In this case, a bi-infinite string can be split in three ways (
←−
X ,

−→
X ): (A,C), (A,D),

or (B,C), where A (C) is any past (future) that ends (begins) with a 0 and B (D) is any
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past (future) that ends (begins) with a 1. In terms of the bidirectional machine, there is
a cost associated with changing direction. It is the mixing among the causal states above
that is responsible for this cost. Further, this cost is symmetric because of the microscopic
reversibility. Switching from prediction to retrodiction causes a loss of χ+ bits of memory
and a generation of χ− bits of uncertainty.

Each complete round-trip state switch (e.g., forward-backward-forward) leads to a geo-
metric reduction in state knowledge of E2/(C+

μ C−
μ ). One can characterize this information

loss with a half-life—the number of complete switches required to reduce state knowledge
to half of its initial value.

Figure 5 shows that these properties are maintained across the entire Golden Mean
Process family, except at extremes. When p = 0, it degenerates to a simple period-2 process,
with E = C+

μ = C−
μ = C±

μ = 1 bit of memory. When p = 1, it is even simpler, the period-
1 process, with no memory. As it approaches this extreme, E vanishes rapidly, leaving
processes with internal state memory dominated by crypticity: C±

μ ≈ χ+ + χ−.

11.3 Random Insertion Process

Our final example is chosen to illustrate what appears to be the typical case—a cryptic,
causally irreversible process. This is the Random Insertion Process (RIP) which generates a
random bit with bias p. If that bit is a 1, then it outputs another 1. If the random bit is a 0,
however, it inserts another random bit with bias q , followed by a 1.

Its forward ε-machine has three recurrent causal states S+ = {A,B,C} and transition
matrices:

T (0) =

⎛

⎜

⎜

⎝

A B C

A 0 p 0

B 0 0 q

C 0 0 0

⎞

⎟

⎟

⎠

and

T (1) =

⎛

⎜

⎜

⎝

A B C

A 0 0 1 − p

B 0 0 1 − q

C 1 0 0

⎞

⎟

⎟

⎠

.

Figure 6(b) shows M− which has four recurrent causal states S− = {D,E,F,G}. We read-
ily observe that the ε-machines are not the same, suggesting that the RIP is causally re-
versible. A direct calculation confirms this:

Pr(S +) =
(

A B C

1

p + 2

p

p + 2

1

p + 2

)

and

Pr(S −) =
(

D E F G

1

p + 2

1 − pq

p + 2

pq

p + 2

p

p + 2

)

.

If p = q = 1/2, for example, these give us C+
μ ≈ 1.5219 bits, C−

μ ≈ 1.8464 bits, and hμ =
3/5 bits per measurement. The causal irreversibility is � ≈ 0.3245 bits.
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Fig. 6 Forward and reverse
ε-machines for the RIP with
p = q = 1/2: (a) M+ and
(b) M− . (c) The bidirectional
machine M± also for
p = q = 1/2. (Reprinted with
permission from [14])

Let’s analyze the RIP bidirectional machine, which is shown in Fig. 6(c) for p = q = 1/2.

The reverse and forward maps are given by:

Pr(S +|S −) =

⎛

⎜

⎜

⎜

⎜

⎝

A B C

D 0 0 1

E 2/3 1/3 0

F 0 1 0

G 1 0 0

⎞

⎟

⎟

⎟

⎟

⎠

and

Pr(S −|S +) =

⎛

⎜

⎜

⎝

D E F G

A 0 1/2 0 1/2

B 0 1/2 1/2 0

C 1 0 0 0

⎞

⎟

⎟

⎠

.
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Fig. 7 (Color online) The Random Insertion Process’s information processing measures as its two proba-
bility parameters p and q vary. The central square shows the (p, q) parameter space, with solid and dashed
lines indicating the paths in parameter space for each of the other information versus parameter plots. The
latter’s vertical axes are scaled so that two tick marks measure 1 bit of information. The inset legend indicates
the class of process illustrated by the paths. Colored areas give the magnitude of χ− , E, and χ+ . The bottom
center panel illustrates how to read the magnitudes of χ− , E, and χ+ for a particular p and q as heights of
the three colored (shaded) regions

Or, for general p and q , we have

Pr(S +, S −) = 1

(p + 2)

⎛

⎝

D E F G

A 0 1 − p 0 p

B 0 p(1 − q) pq 0
C 1 0 0 0

⎞

⎠.

By way of demonstrating the exact analysis now possible, E’s closed-form expression for
the RIP family is

E = log2(p + 2) − p log2 p

p + 2
− 1 − pq

p + 2
H

(

1 − p

1 − pq

)

.

The first two terms on the right-hand side are C+
μ and the last is χ+.
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Setting p = q = 1/2, one calculates that Pr(S ±) = Pr(AE,AG,BE,BF,CD) =
(1/5,1/5,1/10,1/10,2/5). This and the joint distribution give C±

μ = H [S ±] ≈ 2.1219 bits,
but E = I [S +; S −] ≈ 1.2464 bits. That is, the excess entropy (the apparent information) is
substantially less than the statistical complexities (stored information)—a moderately cryp-
tic process: χ± ≈ 0.8755 bits.

Figure 7 shows how the RIP’s informational character varies along one-dimensional
paths in its parameter space: (p, q) ∈ [0,1]2. The four extreme-p and -q paths illustrate
that the RIP borders on (i) non-cryptic, reversible processes (solid line), (ii) semi-cryptic,
irreversible processes (long dash), (iii) cryptic, reversible processes (short dash), and (iv)
cryptic, irreversible processes (very short dash). The horizontal path (q = 0.5) and two di-
agonal paths (p = q and p = 1 − q) show the typical cases within the parameter space of
cryptic, irreversible processes.

12 Conclusions

Casting stochastic dynamical systems in a time-agnostic framework revealed a landscape
that quickly led one away from familiar entrances, along new and unfamiliar pathways.
Old informational quantities were put in a new light, new relationships among them ap-
peared, and explicit calculation methods became available. The most unexpected appear-
ances, though, were the new information measures that captured novel properties of general
processes.

Excess entropy, a familiar quantity in a long-applied family of mutual informations, is
often estimated [3–13] and is broadly considered an important information measure for or-
ganization in complex systems. The exact analysis afforded by our time-agnostic framework
gave an important calibration in our studies. Specifically, it showed how difficult accurate
estimates of the excess entropy can be. While we intend to report on this in some detail else-
where, suffice it to say that the convergence of empirical estimates of E, in even very benign
(and low statistical complexity) cases, can be so slow as to make estimation computationally
intractable. This problem would never have been clear without the closed-form expressions.
It, with nothing else said, calls into doubt many of the reported uses and estimations of
excess entropy and related mutual information measures.

Fortunately, we now have access to the analytic calculation of the excess entropy from the
ε-machine. Note that the latter is no more difficult to estimate than, say, estimating the en-
tropy rate of an information source. (Both are dominated by obtaining accurate estimates of
a process’s sequence distribution.) Notably, the calculation relied on connecting prediction
and retrodiction, which we accomplished via the composition of the time-reversal operation
on ε-machines and the mixed-state-presentation algorithm. As the analyses of the various
example processes illustrated, the technique yields closed-form expressions for E. More
generally, though, the explicit relationship between a process’s ε-machine and its excess en-
tropy clearly demonstrates why the statistical complexity, and not the excess entropy, is the
information stored in the present.

In addition to the analytical advantage of having E in hand, we learned a pointed lesson
about the difference between prediction (reflected in E) and modeling (reflected in Cμ). In
particular, a system’s causal representation yields more direct access to fundamental prop-
erties than others—such as, histograms of word counts or general hidden Markov models.
The differences between prediction and modeling unearthed new information measures—
crypticity and causal irreversibility.
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Crypticity describes the amount of stored state information that is not shared in the mea-
surement sequence. One might think of this as “wasted” information, although the minimal-
ity of the ε-machine suggests that this waste is necessary—that is, an intrinsic property of
the process. Possibly, we could better think of this as modeling overhead.

When analyzing time symmetry, one can use notions such as microscopic reversibility
or, more broadly, reversible support. We introduced the yet-broader notion of causal irre-
versibility �. It has the advantage of being scalar rather than Boolean and so has something
quantitative to say about all processes. Also, it derives naturally from its simple relationship
to E and χ±. In this light, microscopic reversibility appears to be too strong a criterion,
missing important structural properties.

First, we described parallel predictive and retrodictive causal models joined by the
switching maps. Then, the time-agnostic perspective required expanding the space of repre-
sentations. This expansion allowed us to define a bidirectional machine that compressed C+

μ

and C−
μ into C±

μ , an object that can be somewhat non-intuitive.
For example, the three-state bidirectional machine for the Golden Mean Process might

seem overcomplicated given that the forward and reverse ε-machines each require just two
states. Surprisingly, three states are indeed required if one wishes to predict and retrodict;
whereas just two states are required if one wants only to predict or only to retrodict. Alterna-
tively, one might also wonder why the bidirectional machine does not have four states, if it
truly can predict and retrodict. This is because the bidirectional machine compresses the two
processes, providing a new conception of the amount of information stored in the present.

The operational meaning of the bidirectional machine certainly warrants further atten-
tion. In particular, it seems likely that its nonunifilarity has not yet been fully appreciated.
One might wish to consider, for example, a unifilar representation of it. Somewhat hope-
fully, we end by noting that the bidirectional machine suggests an extension of ε-machine
analysis beyond one-dimensional processes.
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Appendix: The Mixed-State Presentation is Sufficient to Calculate the Switching
Maps

While we conjecture that the mixed-state operation U ( ˜M+) yields an ε-machine, this re-
mains an open problem. Our conjecture, however, is based on a rather large number of test
cases in which it is an ε-machine. Fortunately for our present needs, we can show that
U ( ˜M+) is sufficient for calculating the conditional probability distribution Pr(S +|S −).

For a moment, ignore the details of forward and reverse machines and simply consider
machines A and B such that U (A) = B where neither A nor B is necessarily an ε-machine.
We would like to learn the conditional probability distribution Pr(RA|RB), where RA and
RB are A’s and B’s states, respectively.

Proposition 11 B’s states are mixed states of A.
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Proof We use the mixed-state presentation algorithm to form states based on the transition
matrices of A. If a state RB is induced by a word w, then:

RB = πAT ω
A

πAT w
A 1

. �

We now show that B is deterministic.

Proposition 12 H [R′|R,X] = 0 for machine B .

Proof Although any given state in B will generally be a distribution over states in A, each of
these distributions defines a state of B . The particular state of B (or distribution over states
in A), R′, that follows R and X can be written:

R′
B = πAT ω

A T X

πAT ω
A T Xη

.

So, by construction, B is deterministic. �

Moreover, RB is a refinement of SB .

Proposition 13 Two pasts that induce the same state in B must be pasts in the same causal
state of B’s ε-machine.

Proof The future probability distribution given a word is exactly the future probability dis-
tribution given the mixed state induced by that word:

Pr(
−→
X |ω) = πT ωT

−→
X

πT ωT
−→
X η

,

Pr(
−→
X |μ(ω)) =

πT ω

πT ωη
T

−→
X

πT ωT
−→
X η

πT ωη

= πT ωT
−→
X

πT ωT
−→
X η

.

Therefore, if two words induce the same mixed state, the future probability distribution con-
ditioned on those words are the same. This means that those words are causally equivalent
and thus in the same causal state. �

Now we show how, even in this very generic case, we can calculate the relevant condi-
tional probability distribution.

The mixed-state construction of B implicitly has given us Pr(RA|RB), which we can use
to find Pr(RA|SB), our goal:

Pr(RA|SB) =
∑

RB

Pr(RA|SB, RB)Pr(RB |SB)

=
∑

RB

Pr(RA|RB)Pr(RB |SB)

=
∑

RB

Pr(RA|RB)Pr(SB |RB)
Pr(RB)

Pr(SB)
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=
∑

RB

Pr(RA|RB)δRB∈SB

Pr(RB)

Pr(SB)

=
∑

RB

Pr(RA|RB)
Pr(RB)

Pr(SRB
)
.

The second line follows since RB is a refinement of SB . The third line is an application of
Bayes rule. The fourth line follows again from the refinement. The final form reminds us
that SB is not a free variable.

To sum up, we calculate the conditional distribution using this final form as follows. The
first factor is found by applying U to A. Granting ourselves the ability to ascertain predictive
equality among a finite set of states RB , we determine if RB ∈ SB for each RB . Lastly,
we compute the stationary distribution over the states of B and divide by the stationary
probability of the corresponding causal state.

In effect, this establishes a general method for computing the conditional probability of
states from the “input” machine given a state of the “resultant” machine. We can now recall
the specific context of forward and reverse ε-machines and apply this technique to calculate
E in the case where the resultant machine T (M+) is not an ε-machine.

The input machine is the reversed ε-machine T (M+), whose states ˜S+ are in one-to-one
correspondence with S+. Thus, the previous result:

Pr(RA|SB) =
∑

RB

Pr(RA|RB)
Pr(RB)

Pr(SRB
)

now becomes:

Pr(SA|SB) =
∑

RB

Pr(SA|RB)
Pr(RB)

Pr(SRB
)

or, more specifically,

Pr(S +|S −) =
∑

RB

Pr(S +|RB)
Pr(RB)

Pr(S −
RB

)
.

From which we readily calculate E using:

E = I [S +; S −] = H [S +] − H [S +|S −].

References

1. Crutchfield, J.P., Young, K.: Inferring statistical complexity. Phys. Rev. Lett. 63, 105–108 (1989)
2. Crutchfield, J.P., Shalizi, C.R.: Thermodynamic depth of causal states: Objective complexity via minimal

representations. Phys. Rev. E 59(1), 275–283 (1999)
3. Fraser, A.: Chaotic data and model building. In: Atmanspacher, H., Scheingraber, H. (eds.) Information

Dynamics Volume Series B: Physics. NATO ASI Series, vol. 256, p. 125. Plenum, New York (1991)
4. Casdagli, M., Eubank, S. (eds.): Nonlinear Modeling, SFI Studies in the Sciences of Complexity.

Addison-Wesley, Reading (1992)
5. Sprott, J.C.: Chaos and Time-Series Analysis, 2nd edn. Oxford University Press, Oxford (2003)



1034 C.J. Ellison et al.

6. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, 2nd edn. Cambridge University Press, Cam-
bridge (2006)

7. Arnold, D.: Information-theoretic analysis of phase transitions. Complex Syst. 10, 143–155 (1996)
8. Crutchfield, J.P., Feldman, D.P.: Statistical complexity of simple one-dimensional spin systems. Phys.

Rev. E 55(2), 1239R–1243R (1997)
9. Feldman, D.P., Crutchfield, J.P.: Discovering non-critical organization: Statistical mechanical, informa-

tion theoretic, and computational views of patterns in simple one-dimensional spin systems. Santa Fe
Institute Working Paper 98-04-026 (1998)

10. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation
and integration in the nervous system. Proc. Natl. Acad. Sci. USA 91, 5033–5037 (1994)

11. Bialek, W., Nemenman, I., Tishby, N.: Predictability, complexity, and learning. Neural Comput. 13,
2409–2463 (2001)

12. Ebeling, W., Poschel, T.: Entropy and long-range correlations in literary English. Europhys. Lett. 26,
241–246 (1994)

13. Debowski, L.: On the vocabulary of grammar-based codes and the logical consistency of texts. IEEE
Trans. Inf. Theory (2008, submitted). arXiv:0810.3125 [cs.JT]

14. Crutchfield, J.P., Ellison, C.J., Mahoney, J.R.: Time’s barbed arrow: Irreversibility, crypticity, and stored
information. Phys. Rev. Lett. 103(9), 094101 (2009)

15. Crutchfield, J.P., Ellison, C.J., Mahoney, J.R.: ε-Machine information measures (2009, in preparation)
16. Mahoney, J.R., Ellison, C.J., Crutchfield, J.P.: Information accessibility and cryptic processes. J. Phys.

A, Math. Theor. 42, 362002 (2009)
17. Crutchfield, J.P., Feldman, D.P.: Regularities unseen, randomness observed: Levels of entropy conver-

gence. CHAOS 13(1), 25–54 (2003)
18. Crutchfield, J.P.: The calculi of emergence: Computation, dynamics, and induction. Physica D 75, 11–54

(1994)
19. Shalizi, C.R., Crutchfield, J.P.: Computational mechanics: Pattern and prediction, structure and simplic-

ity. J. Stat. Phys. 104, 817–879 (2001)
20. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press,

Champaign-Urbana (1962)
21. Kolmogorov, A.N.: A new metric invariant of transient dynamical systems and automorphisms in

Lebesgue spaces. Dokl. Akad. Nauk. SSSR 119, 861 (1958) (Russian). Math. Rev. 21(2035a)
22. Crutchfield, J.P.: Semantics and thermodynamics. In: Casdagli, M., Eubank, S. (eds.) Nonlinear Mod-

eling and Forecasting. Santa Fe Institute Studies in the Sciences of Complexity, vol. XII, pp. 317–359.
Addison-Wesley, Reading (1992)

23. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, New York
(2006)

24. Yeung, R.W.: A new outlook on Shannon’s information measures. IEEE Trans. Inf. Theory 37(3), 466–
474 (1991)

25. Shannon, C.E.: Communication theory of secrecy systems. Bell Sys. Tech. J. 28, 656–715 (1949)
26. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett.

45, 712 (1980)
27. Crutchfield, J.P.: Information and its metric. In: Lam, L., Morris, H.C. (eds.) Nonlinear Structures in

Physical Systems—Pattern Formation, Chaos and Waves, p. 119. Springer, New York (1990)
28. Upper, D.R.: Theory and algorithms for hidden Markov models and generalized hidden Markov models.

PhD thesis, University of California, Berkeley. Published by University Microfilms Intl, Ann Arbor,
Michigan (1997)

29. Weiss, B.: Subshifts of finite type and sofic systems. Monastsh. Math. 77, 462 (1973)
30. Ay, N., Crutchfield, J.P.: Reductions of hidden information sources. J. Stat. Phys. 210(3–4), 659–684

(2005)
31. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-

Wesley, Reading (1979)
32. Ephraim, Y., Merhav, N.: Hidden Markov processes. IEEE Trans. Inf. Theory 48, 1518–1569 (2002)

http://arxiv.org/abs/arXiv:0810.3125

	Prediction, Retrodiction, and the Amount of Information Stored in the Present
	Abstract
	Introduction
	Optimal Causal Models
	Information Processing Measures
	Excess Entropy
	Retrodiction
	Excess Entropy from Causal States
	The Bidirectional Machine
	Upper Bounds
	Causal Irreversibility
	Process Crypticity

	Alternative Presentations
	Time-Reversed Presentation
	Mixed-State Presentation

	Calculating Excess Entropy
	Calculational Example
	Examples
	Even Process
	Golden Mean Process
	Random Insertion Process

	Conclusions
	Acknowledgements
	Open Access
	Appendix: The Mixed-State Presentation is Sufficient to Calculate the Switching Maps
	References


