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Abstract

Global warming has increased the frequency of extreme weather events, including heatwaves, over recent decades. Heat early 

warning systems are being set up in many regions as a tool to mitigate their effects. Such systems are not yet implemented 

in the West African Sahel, partly because of insufficient knowledge on the skill of models to predict them. The present study 

addresses this gap by examining the skill of the ECMWF ENS extended-range forecasting system (ENS-ext) to predict 

Sahelian heatwaves out to subseasonal lead-times. It also assesses the importance of tropical modes of variability, which 

were previously identified as important large-scale drivers of heatwave occurrence in the Sahel. The results show that ENS-

ext is able to predict Sahelian heatwaves with significant skill out to lead-week 2–3. With increasing lead-time, heatwaves 

are more predictable at nighttime than at daytime. Likewise, the pre-monsoon season heatwaves have a longer predictability 

than those occurring in late winter. The model is also able to relatively well simulate the observed relationship between 

heatwave occurrence and tropical mode activity. Furthermore, the prediction skill is better during the active phases of the 

modes, suggesting that they are good sources of heatwave predictability. Therefore, improving the representation of tropical 

modes in models will positively impact heatwave prediction at the subseasonal scale in the Sahel, and gain more time and 

precision for anticipatory actions.
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1 Introduction

The recent developments in climate change are marked by an 

increased occurrence of extreme weather and climate events, 

including heatwaves (Stott 2016). There has indeed been an 

upward trend of heatwaves both at the global and regional 

levels (Perkins-Kirkpatrick and Lewis 2020), with future 

projections warning of even more severe thermal discom-

fort (Xu et al. 2020; Raymond et al. 2020) for the human 

community.

The West African Sahel, a climatologically hot region 

(e.g. Nicholson 2013), suffers from extreme heat events 

all year round (with peaks in boreal spring). The literature 

indicates that Sahelian heatwaves are relatively short-lived 

as compared to other regions, but are extremely severe in 

magnitude (e.g. Oueslati et al. 2017; Guigma et al. 2020a). 

Moreover, over the recent decades and in agreement with 

the global trend, they have been more frequent, more intense 

(especially at night) and longer lasting (Fontaine et al. 2013; 

Ringard et al. 2016; Moron et al. 2016; Oueslati et al. 2017; 

Barbier et al. 2018). Climate projections also anticipate an 

increase of the magnitude, spatial extent and frequency of 

extreme heat events (Russo et al. 2016; Dosio 2017; Sylla 

et al. 2018) that could only aggravate the thermal risk in 

the region.

The impacts of extreme heat in the region, as elsewhere in 

Africa, are largely unreported or underreported (Harrington 

and Otto 2020). A few studies have however elaborated on 

the topic, giving an insight into the adverse effects of heat 

across a range of sectors. Diboulo et al. (2012) and Azongo 

et al. (2012) showed strong associations between higher tem-

perature and daily mortality in western Burkina Faso and 

northern Ghana respectively. The increase of death rates is 

especially important at the short-term (a few days after the 

heatwave events), with under-five children being the most 

hit. In the energy sector, Aissatou et al. (2017) evidenced 
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a relatively strong correlation between extreme heat events 

and peaks of electricity consumption in two major Sahelian 

cities (Dakar and Niamey). Furthermore, the International 

Labour Office stresses in a recent report (ILO 2019) that, in 

Africa, seven of the 10 countries most severely affected by 

labour productivity loss due to heat stress are located in the 

Sahel. In this report, the working hours lost to heat stress in 

1995 across West Africa, were estimated to be the equivalent 

of more than two million full-time jobs, which represents, 

in economic terms, 3.3% of the GDP of the region. With 

the projected increase of heat in the region, these losses are 

expected to reach more than eight million full-time jobs, or 

equivalently 4.77% of the GDP by just 2030. The agriculture 

and construction sectors, which employ an important portion 

of the work force, are the most severely affected.

Faced with this issue, it is urgent to undertake actions to 

alleviate the adverse effects of these extremes. In that regard, 

numerical weather prediction (NWP) models could provide 

information to help governments and humanitarian organisa-

tions in the region to trigger preventive actions. Such heat 

early warning systems (HEWSs), jointly recommended by 

the World Meteorological Organization and World Health 

Organization (2015) (WMO; WMO N°1142), are already 

implemented in several countries across North America (e.g. 

McElroy et al. 2020; Henderson et al. 2020), Europe (e.g. 

Morabito et al. 2019; Casanueva et al. 2019), Australia (e.g. 

Nicholls et al. 2008; Nitschke et al. 2016) and South Asia 

(e.g. Knowlton et al. 2014). A non-exhaustive global map 

of heat-action plans has been prepared by the Global Heat 

Health Information Network (GHHIN) and is accessible 

from http:// ghhin. org/ map/.

One prerequisite for HEWSs is skilful prediction from the 

NWP models at a reasonable lead-time for action. However, 

the skill of Sahelian heatwave forecasting has received only 

minor attention. The main work on this topic so far is an 

evaluation of two CNRM-CM forecasting systems in use 

at Météo-France by Batté et al. (2018). They found that, 

at the subseasonal scale, the skill of their forecasting sys-

tems is essentially restricted to the deterministic horizons 

(first 10 days). Coughlan de Perez et al. (2018) investigated 

the short-term (out to 10 days) predictability of tempera-

ture extremes at the global level, and found that while the 

NOAA model has limited skill, the ECMWF model instead 

presents a potential for the implementation of rapid preven-

tive actions for heatwave impact mitigation. They also made 

the recommendation that further research be conducted to 

identify the drivers of heatwave predictability in regions 

including Africa. Likewise, Batté et al. (2018) mentioned 

that extended predictability may be provided by planetary 

waves and teleconnections.

These recommendations are in tune with previous work 

by Guigma et al. (2020b), who identified tropical modes 

of variability as important large-scale drivers of Sahelian 

heatwaves. Precisely, the activity of the Madden Julian 

Oscillation (MJO), the equatorial Rossby (ER) and Kelvin 

(EK) waves in the Equatorial West Africa sector (0–10°N), 

where convection peaks in spring, significantly modulates 

the frequency and spatial distribution of heatwaves in the 

Sahel. Given the spatio-temporal properties of these modes, 

Guigma et al. (2020b) suggested that they could provide 

heatwave predictability at subseasonal timescales. Subsea-

sonal predictability has received increasing attention over 

recent years, given the range of new opportunities for risk 

management in several sectors (health, disaster prepared-

ness, water management, energy and agriculture) that it 

brings (White et al. 2017).

This research seeks to address the gap in understanding of 

heatwave predictability in the Sahel and has two objectives: 

(1) to evaluate the skill of Sahelian heatwave prediction at 

the synoptic and subseasonal scales (i.e. up to ~ 45 days) and 

(2) to assess the importance of tropical modes as a source of 

predictability. This is achieved through a statistical evalua-

tion of a long record of hindcast (or re-forecast) data and a 

detailed examination of a case study heatwave event.

By building understanding of climate and predictabil-

ity, this research seeks to pave the way for the development 

of HEWSs and the scaling of anticipatory forecast-based 

Actions/Financing (FbA/FbF) for such events (e.g. Coughlan 

de Perez et al. 2015). This is an especially relevant approach 

in developing countries, including the Sahel, where climate 

investments are currently principally directed to post-disas-

ter recovery (Mirza 2003).

The remainder of this manuscript is structured as follows. 

Section 2 introduces the forecast and reference datasets used 

in this study as well as the different methods for tropical 

mode detection and skill evaluation. In Sect. 3, the results 

of both the statistical and the case studies are presented and 

discussed. Finally Sect. 4 summarises the findings, and elab-

orates on the next steps for future research on heatwaves in 

the Sahel.

2  Data and method

The present research analyses heatwave prediction skill 

for forecasts initialised in two seasons, as in Guigma et al. 

(2020a): the February to March season (FM hereafter) and 

the pre-monsoon April to June season (AMJ hereafter), 

which marks the peak of heat in the region.

2.1  Description of the ECMWF ENS extended-range 
forecasting system

In this study, the ECMWF ENS extended-range forecast-

ing system (ENS-ext hereafter) has been chosen to evaluate 

the prediction skill of Sahelian heatwaves at the synoptic to 

http://ghhin.org/map/
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subseasonal lead-times. The main reason for this preference 

is that in most inter-model comparative studies, ECMWF 

has proved to be the most skilful (e.g. Janiga et al. 2018; 

de Andrade et al. 2019; Bengtsson et al. 2019). In addi-

tion, national meteorological services in the Sahel can freely 

access some of the ECMWF high-resolution real-time fore-

cast data (including 2 m temperature), thanks to a partner-

ship between the African Centre for Meteorological Applica-

tions for Development (ACMAD) and the European Centre.

ENS-ext generates a hindcast twice a week (Monday and 

Thursday) in running an 11 member-ensemble (one control 

and 10 perturbed members) for the last 20 years, starting 

on the same weekday and month as the real time forecast. 

The present study uses all the hindcast data generated in 

2018 (thus covering the 1998–2017 period), consisting of 

105 different calendar days (initialisation dates). Note that 

2018 covers two different versions of the model (CY43R3 

and CY45R1) as an upgrade was implemented in June 2018. 

The hindcast, like the real-time forecast, has a time horizon 

of 46 days (output data are generated every six hours), with 

a native horizontal resolution of O640 (about 18 km) up to 

day 15, degrading to O320 (about 36 km) between day 16 

and day 46.

Two main sets of variables are extracted. (1) Thermal 

variables consisting of temperature (T), maximum and mini-

mum temperatures  (Tmax and  Tmin) and dewpoint tempera-

ture  (Td), all at the screen level (2 m height), from which 

are derived thermal indices (see Sect. 2.2). (2) Outgoing 

longwave radiation (OLR) data which are used to assess 

the activity of tropical modes (see Sect. 2.4). The thermal 

variables are extracted as 06-hourly forecasts at a resolu-

tion of 0.5° × 0.5° over the Sahel domain (20°W–30°E; 

10°N–20°N), while the OLR data are downloaded as fore-

cast 24-h totals at a resolution of 2.5° × 2.5° over the global 

tropics (20°S–20°N). Both sets of variables extend up to the 

full 46-day forecast horizon.

The hindcasts are verified against the fifth generation of 

the European Reanalyses (ERA5, Hersbach et al. 2020), also 

produced by ECMWF. ERA5 has a native horizontal reso-

lution of approximately 31 km. The variables retrieved are 

those extracted from the hindcast, and the resolution cho-

sen accordingly. In terms of the quality of near-surface tem-

peratures in ERA5, Oueslati et al. (2017) and Barbier et al. 

(2018) assessed ERA-Interim, which ERA5 is an improve-

ment of, against the Global Summary Of the Day (GSOD) 

observational dataset, and concluded that it was suitable for 

heatwave study in the Sahel. Furthermore, Gleixner et al. 

(2020) showed that in ERA5, near-surface temperatures are 

less climatologically biased, and their interannual variabil-

ity better represented than in ERA-Interim across Africa, 

including in the Sahel band. Similarly, Wang et al. (2017), 

Tall et al. (2019), Wright et al. (2020) and Hersbach et al. 

(2020) proved that ERA5 represents relatively well the 

observed OLR over the tropical domain, confirming its suit-

ability as reference dataset for the analysis of tropical modes. 

The Berkeley Earth Surface Temperatures (BEST; Muller 

et al. 2014; Rohde et al. 2016) dataset is used as a second 

reference dataset to provide an independent evaluation of 

thermal indices (given that ERA5 is created using the same 

model as ENS-ext). BEST data consist of daily Tmax and 

Tmin (no moisture data is available) at a native resolution of 

1° × 1°, regridded to 0.5° × 0.5° to match the hindcast grid.

2.2  Thermal index derivation

Guigma et al. (2020a) showed that in the Sahel, heatwaves 

defined using different thermal indices over the same diurnal 

period, or the daytime versus nighttime heatwaves of a same 

index are not synchronous, and often result from different 

underlying thermodynamic processes. Their predictability 

could therefore also differ, and to account for this eventu-

ality, two distinct measures of heat are used in this paper: 

Temperature (T) and the heat index (HI). Considering their 

daytime and nighttime components separately gives a total 

of four thermal indices.

For temperature the nighttime (daytime) component 

is taken as the daily minimum (maximum) value of the 

06-hourly forecasts of minimum (maximum) temperature 

and is hereafter referred to as T-night (T-day).

The formula for HI derivation (Steadman 1979) is as 

follows:

where T is temperature, and RH relative humidity computed 

from temperature and dewpoint temperature.

The nighttime (daytime) component of HI, hereafter 

referred to as HI-night (HI-day), is computed by replacing 

T from (1) by T-night (T-day) and RH by the averages of the 

06-hourly forecasts of relative humidity valid at 00 and 06 

UTC (12 and 18 UTC).

Similarly, T-night, T-day, HI-night and HI-day are derived 

from the ERA5 dataset using the corresponding timesteps. 

T-night and T-day are directly available in BEST.

2.3  Heatwave definition and forecast probability

Using the method of Guigma et al. (2020a), heatwaves in the 

ERA5 dataset are defined for each thermal index and at each 

grid-cell, as spells of at least three consecutive days where 

the daily index value exceeds both the 75th percentile of its 

total distribution over all days, and the 90th percentile of its 

(1)

HI = −42.37 + 2.04T + 10.14RH − 0.22T .RH

− 6.83×10
−3

T
2
− 5.48 × 10

−2
RH

2

+ 1.22 × 10
−3

T
2
.RH + 8.52 × 10

−4
T .RH

2
− 1.99

× 10
−6

T
2
.RH
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calendar day distribution computed over a 31-day centred 

window. Binary data of heatwave occurrence (coded 1) or 

non-occurrence (coded 0) are thus obtained.

Heatwaves are also defined in the hindcast dataset at each 

grid-cell and for each thermal index using several steps. As 

a reminder, for each thermal index, a given grid-cell has a 

total of 1,062,600 data records, broken down into 105 ini-

tialisation dates each year, 46-day integrations (or forecast 

horizons), 20 years of forecasts (covering 1998–2017) and 

11 ensemble members. Pooling all the 11 members together, 

the 75th percentile of the total distribution and the 90th per-

centile of each calendar day are calculated. Both thresholds 

are derived as a function of lead-time, giving a total of 46 

values for the 75th percentile and 4830 values for the 90th 

percentile (46 lead-times × 105 calendar days). The latter is 

smoothed through averaging over a window of 10 initialisa-

tion dates (including the date of interest, the four initialisa-

tion dates before, and the five initialisation dates after). For 

example, to calculate the 90th percentile of forecasts initial-

ised on 15 January 2018, the forecasts initialised on 01, 04, 

08, 11, 15, 18, 22, 25, 29 January and 01 February are used.

Once the magnitude thresholds are defined, heatwaves 

are detected in each member as spells of three or more con-

secutive days where the thermal index exceeds both the two 

thresholds defined above. In order to account for events 

which start before the first day of the forecast but run into the 

forecast time, each 46 day-long forecast integration is pad-

ded at its beginning with the 2 days of reference heatwave 

occurrence binary data immediately before the forecast. 

These extra two days are removed after the detection step. 

The forecast data thus turn binary to indicate the occurrence 

or non-occurrence of heatwaves.

Then, on a given day and at a given grid-cell, the forecast 

probability of heatwave occurrence is given by the ratio of 

the sum of the ensemble members’ binary heatwave val-

ues to the ensemble size of 11 (ranging from 0 to 1 in 1/11 

increments).

2.4  Predicted tropical mode activity and link 
with heatwaves

In order to assess whether tropical modes can be a source 

of skill for heatwave prediction, their activity in each of the 

ENS-ext individual members, as well as in the ensemble 

mean (EM) (mainly for the case study purposes) is filtered, 

using the same method as in Janiga et al. (2018), which con-

sists of several steps.

1. First, besides the 11 individual members, daily values of 

the EM forecast OLR for each grid-cell across the global 

tropics are derived. For each of the 11 individual mem-

bers and the EM, there is a total of 96,600 data points 

(105 initialisation dates × 20 years, each with a forecast 

horizon of 46 days).

2. The ends of each 46-day long forecast integration are 

padded: the heads with the 730 days (two years) of ref-

erence (ERA5) OLR immediately prior to the forecast 

first day, and the tails with zeros (zero-padding) to a 

length of 730 days also. This results in new data seg-

ments of length 1506 days each (46 days of forecast plus 

2 × 730 days of padded data) for each individual member 

and the EM, from which the mean and first four harmon-

ics of the reference OLR are subtracted.

3. Then, each segment undergoes a wavenumber frequency 

filtering similarly to (Wheeler and Kiladis 1999), to 

retain the harmonics of the MJO, ER and EK waves. 

The exact characteristic wavenumbers, periodicities 

and equivalent depths used to detect each of these three 

modes of tropical variability are the same as those used 

in Guigma et al. (2020b), and are shown in Table 1. The 

outcome of the filtering for each mode and for each seg-

ment is a 1506-day long timeseries of filtered OLR data 

at each of the global tropics grid-cell. For verification 

purposes, the 46 days of forecast in each segment are 

replaced by the corresponding analysed ERA5 data, and 

the same filtering is applied. This gives to each fore-

cast mode-filtered data segment an equivalent observed 

mode-filtered data segment, which it can be verified 

against.

Table 1  Characteristics of the 

tropical modes analysed in this 

study

MJO Madden Julian oscillation, ER equatorial Rossby wave, EK equatorial Kelvin wave

Mode Equivalent depth (m) Wavenumber Period band (days) References

MJO Not specified 0 to 9 20–100 Kiladis et al. (2005)

ER 1–90 − 10 to − 1 9.7–72 Kiladis et al. (2009)

EK 8–90 1 to 14 2.5–20 Straub and Kiladis 

(2002) Mekonnen 

et al. (2008)
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Then, another set of methods is used to assess the activity 

of tropical modes locally over the Equatorial West Africa 

sector (this set of methods is not applied to the EM data). 

The forecast and observed 1506-day long mode-filtered data 

segments are each averaged at the characteristic 5°E longi-

tude between the equator and 10°N (this band of latitudes 

corresponds to the region of maximum convection over 

West Africa in spring; Guigma et al. 2020b). For each seg-

ment, the resulting unidimensional timeseries and its first 

order time derivative are standardised (using the standard 

deviation from ERA5 for both the forecast and observed 

segments), and, through trigonometric operations, they are 

combined to identify wave angle and amplitudes for each 

day. The angles are further binned into eight 45° wide phases 

labelled 1–8. A mode is considered active on a given day 

only if its amplitude reaches or exceeds one. If not, the cor-

responding phase takes the value 0. The composite anoma-

lies of observed OLR against these phases are shown in Fig. 

SM1 for each mode of variability. The reader is referred 

to Guigma et al. (2020b) for a thorough description of the 

method. At the end of this process, the days corresponding 

to padded data (a total of 1460 days for each segment) are 

removed from the data segments, such that only the mode 

phases of the effective 46 days of the forecast and the cor-

responding observation are retained. The final outcome for 

each mode of variability is then 12 arrays (11 forecast and 

one observation) of filtered OLR data, each of dimension-

ality 46 (forecast horizons) × 105 (initialisation dates) × 20 

(years).

2.5  Forecast evaluation metrics

2.5.1  General evaluation

To evaluate the skill of ENS-ext, a set of evaluation metrics 

has been used. The complete description of each metric is 

presented in Joliffe and Stephenson (2012).

1. Anomaly correlation coefficients

  The strength of the association between the observed 

versus predicted values of thermal indices is evaluated 

using the anomaly correlation coefficients (ACCs), 

i.e. correlation coefficients between the anomalies of 

observed versus the anomalies of predicted values of 

the indices. The ACCs for the four thermal indices are 

discussed in Sect. 3.1.

2. Symmetric Extremal Dependency Index

Heatwaves are relatively rare events. Many common 

measures of forecast quality struggle to give real indica-

tions of model skill for extreme events, as they degenerate 

to trivial values with increasingly rare events (Ferro and 

Stephenson 2011). For this reason, non-degenerate met-

rics have been specifically designated to assess the skill 

associated with rare events. This study uses the Symmetric 

Extremal Dependence Index (SEDI), suggested by Hogan 

and Mason (2012) to be the best choice, and successfully 

used in similar heatwave studies (e.g. Marshall et al. 2014; 

Mandal et al. 2019). SEDI itself is based on two simple 

scores: the hit rate (H) and false alarm rate (F) which are 

derived from a two-by-two contingency table (Table 2) 

between a deterministic forecast and observation of heat-

wave occurrence:

In (2) and (3), hits are instances where heatwaves were 

forecast and did occur indeed, misses instances where 

heatwaves were not forecast but occurred, false alarm 

instances where heatwaves were forecast but did not occur, 

and correct negatives instances where heatwaves were not 

forecast and did not occur (see Table 2).

From H and F, SEDI is obtained by applying this loga-

rithmic formula:

The possible values for SEDI range from − 1 to 1, with 

1 being the perfect score and positive values indicating 

that the model is better than random.

In the present research, the SEDI calculation proceeds 

similarly to Marshall et al. (2014) as follows: contingency 

tables are first built separately for each of the 11 indi-

vidual members before pooling them as a single table to 

calculate H and F, and SEDI subsequently. To assess the 

(2)H =
hits

hits + misses

(3)F =
false alarms

false alarms + correct negatives

(4)SEDI =
lnF − lnH − ln(1 − F) + ln(1 − H)

lnF + lnH + ln(1 − F) + ln(1 − H)

Table 2  Contingency table of heatwave occurrence between a deter-

ministic forecast and the observation

Observed

Yes No

Forecast Yes Hits False alarms

No Misses Correct negatives



542 K. H. Guigma et al.

1 3

significance of the SEDI scores, their standard errors are 

derived using the following formula (Ferro and Stephen-

son 2011):

where H is the hit rate, F the false alarm rate, n the sam-

ple size and p the base rate (relative frequency of heatwave 

occurrence).

At a given grid-cell, the SEDI score is con-

sidered significant if the confidence interval (i.e. 
[

SEDI − 2SE
SEDI

;SEDI + 2SE
SEDI

]

 ) does not include zero.

2.5.2  Evaluation of heatwave prediction skill taking 

into account the modulation by tropical modes

To assess the skill of the ENS-ext in simulating the activ-

ity of tropical modes, the forecast local phases are veri-

fied against those detected from ERA5 (local phases are 

defined in Sect. 2.4), using hit rates. As with the SEDI 

scores, the contingency tables are first built separately 

before pooling them to calculate the hit rates. They are 

discussed in Sect. 3.3.1.

To assess how well the model represents the relation-

ship between tropical modes and heatwaves, the frequency 

of heatwave occurrence conditioned on the phase of tropi-

cal modes (also termed as modulation of heatwave occur-

rence by the modes) is evaluated in both the model and the 

reference datasets, using the same formula as in Guigma 

et al. (2020b):

where  Px is the conditional frequency of heatwaves over an 

active phase x of a given mode, and  Pa the frequency derived 

from all days, irrespectively of the activity of the mode.

The results for this modulation are presented in 

Sect. 3.3.2.

Finally, a given tropical mode is considered to be a 

source of heatwave predictability if the SEDI scores are 

higher under its forecast active phases than its inactive 

phase. This assessment considers (1) all the eight active 

phases altogether (i.e. the comparison is made between 

instances where the mode amplitude is greater than one 

versus instances where it is equal to or less than one) as in 

Hudson et al. (2011) and (2) each phase separately in order 

to determine precisely which phases contribute the most to 

the skill. At each grid-cell, statistical significance at a 95% 

(5)SESEDI =

2
|||
(1−H)(1−F)+HF

(1−H)(1−F)
log[F(1 − H)] +

2H

1−H
log[H(1 − F)]

|
|
|

H{log[F(1 − H)] + log[H(1 − F)]}2

√
H(1 − H)

pn

(6)M =

P
x
− P

a

P
a

level is tested using a nonparametric bootstrap resampling, 

with 1000 repetitions as in Guigma et al. (2020b).

2.6  Additional methods for the case study

To understand the causes of the heatwave case-study 

event analysed in Sect. 3.4, the patterns of net radiation 

(shortwave and longwave) and turbulent fluxes (sensible 

heat flux SHF and latent heat flux LHF) at the surface are 

analysed from the ERA5 data. For each of these terms, 

the anomalies are derived by subtracting the calendar day 

mean and are subsequently averaged over the heatwave 

period. The fluxes are, by convention, counted positively 

when directed from the atmosphere towards the surface.

The activity of the tropical modes during this period is 

visualised through a time-longitude diagram of the mode-

filtered OLR averaged between the Equator and 20°N, a 

commonly used technique in tropical meteorology (e.g. 

Schreck et al. 2011; Guigma et al. 2020b).

Fig. 1  Anomaly correlation coefficients (ACCs) between the ENS-ext 

forecasts and the ERA5 reference averaged over the Sahel for the four 

thermal indices over the a February–March and b April to June sea-

sons. The black dotted lines represent the average ACCs of the persis-

tence forecast across the four indices
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3  Results and discussion

3.1  Skill of thermal index prediction by ENS-ext

ENS-ext has a relatively good skill in predicting the four 

thermal indices under investigation. Figure 1 shows the 

ACCs averaged over the Sahel across the 46 lead days 

for the FM and AMJ seasons (see Sect. 2.5.1 for method 

description). For the first week of the forecast for example, 

the ACCs of all the four thermal indices exceed 0.6. There 

is then a fast decrease of the forecast skill out to week 3–4 of 

the forecast bringing the ACC values down to about 0.2. The 

fast decrease of ACCs beyond the first week is also noticed 

by Batté et al. (2018) using the Météo-France S2S system, 

but the drop is much sharper there. A diurnal dependence in 

thermal index prediction skill is noticeable for both seasons. 

For the shortest lead-times (out to about day 7), daytime 

indices slightly outperform their nighttime counterparts and 

conversely for longer lead-times (exception for HI-day in 

AMJ). The prediction skill also presents a relatively marked 

seasonality. Thus in the FM season (Fig. 1a) the ACCs are 

generally better than during AMJ (Fig. 1b) but only for the 

shortest lead-times. There is indeed a reversal at longer 

lead-times such that the more humid season of AMJ pre-

sents higher skill than FM (even though ACC values are 

low). Figure 1 also shows that ENS-ext clearly outperforms 

persistence forecast (black dashed lines in Fig. 1), even at 

the shortest lead-times.

The examination of the spatial distribution of the ACCs 

reveals differences across the Sahel (Fig. SM2 using T-day 

for illustration). For the shortest horizons, the skill is higher 

in the north than in the south of the Sahel (irrespectively of 

the season), whereas at longer forecast lead-times, there is 

increasingly higher skill in the south than in the north (where 

the correlation becomes insignificant).

3.2  Heatwave prediction skill and potential 
for early action

The skill of ENS-ext in predicting Sahelian heatwaves is 

assessed using the SEDI score (described in Sect. 2.5.1). 

Similarly to the ACCs of the indices, the FM season offers 

larger SEDI scores of heatwave prediction than the AMJ 

season at short lead-times. Thus, with ERA5 as refer-

ence, for the first and second weeks of forecast, the scores 

are respectively above 0.8 and 0.5 (0.6 and 0.3) in the 

FM (AMJ) seasons across much of the region as shown 

in Fig. 2 (Fig. 3). The skill vanishes quicker in the sub-

sequent lead-weeks in FM than in AMJ such that, after 

week 3, there is almost no skill (SEDI scores below zero 

means random forecast better than the model) in fore-

casts initialised in FM, whereas some scarce areas still 

have positive (though very weak) SEDI scores in AMJ 

at lead-week 6. As is also observed with the ACCs, the 

Fig. 2  SEDI scores in the FM seasons for each of the four heatwave indices using ERA5 as reference dataset. Each panel represents a specific 

week of the forecast with the first week at the top. White areas are not significant at the 95% probability level
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SEDI scores are initially higher in the northern half of the 

domain, but a reversal is observed at longer lead-times 

(this is less evident in FM as heatwaves are not detected 

in northern Sahel at that season). The seasonality and the 

evolution with lead-time of the skill are similar across all 

four heatwave indices. It should be noted however, that in 

AMJ, the decrease of skill of nighttime heatwave indices 

(T-night and HI-night) is slower than that of their daytime 

counterparts, especially in the southern Sahel, consistently 

with previous findings by Batté et al. (2018). HI-day has 

the fastest rate of skill decrease, with only limited areas 

showing positive SEDI scores after week 2. This marks a 

contrast to HI-night which is the best forecast heatwave 

index at the longest lead-times. The lower skill observed 

in HI-day may be related to the differential diurnal cycle 

between Tmax and the relative humidity (the two variables 

from which it is derived) in the Sahel. Whilst Tmax peaks 

in the early hours of the afternoon and increases with clear 

skies, moisture reaches its minimum at the same time, with 

cloudier skies tending to increase it (Guichard et al. 2009; 

Bourgeois et al. 2018).

The verification using BEST as reference is shown in Fig. 

SM3 and it shows mainly similar patterns as using ERA5 

with however slightly lower SEDI scores.

Compared with other regions across the globe, it can be 

said that the Sahel enjoys at least the same degree of heat-

wave predictability at the subseasonal scale. Thus, European 

heatwaves are found by (Lavaysse et al. 2019) to be predict-

able mostly up to two weeks in advance using ENS-ext. In 

Australia, the Bureau of Meteorology’s POAMA-2 ensemble 

model is able to well predict heatwaves two to three weeks 

ahead with SEDI scores reaching 0.5 at these lead-times 

under some weather regimes (Hudson et al. 2011; Marshall 

et al. 2014). In India, a region with a closer climate system 

to that of the Sahel, the skill of heatwave prediction by the 

Indian Institute of Tropical Meteorology’s ensemble pre-

diction system is found to still be significant at lead-week 

3, with comparable SEDI scores as those of the Sahel dur-

ing the pre-monsoon season (Mandal et al. 2019). As such, 

the Sahel can also benefit from HEWSs as currently imple-

mented in these regions (e.g. Lowe et al. 2011; Nitschke 

et al. 2016; Hess et al. 2018; Casanueva et al. 2019).

One potential explanation for the spatiality/seasonality of 

the ACC and heatwave prediction skill can be found in the 

large-scale circulation controlling the Sahelian atmosphere. 

The FM season experiences a large influence from extrat-

ropical weather systems coming from the northern edge of 

the domain (Knippertz and Martin 2005), which are known 

for their large synoptic-scale predictability (e.g. Knippertz 

and Fink 2009; Wheeler et al. 2017). On the other hand, 

AMJ is characterised by an increasing activity of the MJO 

and equatorial waves, which are by then more active in the 

equatorial sector of Africa (e.g. Berhane et al. 2015; Guigma 

et al. 2020b). These modes of variability, since they are less 

inclined to forecast error growth with lead-time than extrat-

ropical disturbances, confer higher subseasonal predictabil-

ity to the tropics (Judt 2020).

Fig. 3  Same as Fig. 2 but for the AMJ season
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While the verification is so far based on strict comparison 

of forecast and observed heatwaves at the exact grid-cell 

and day, it may also be relevant, for operational purposes, 

to include a window of flexibility in which the forecast still 

has some potential for action (e.g. Coughlan de Perez et al. 

2016). Such a “tolerant” evaluation is assessed here from the 

temporal point of view through considering that a positive 

forecast of heatwave (i.e. heatwave forecast to occur) is con-

sidered to be a hit if it occurs within a time window of three 

days centred on the forecast validity date, i.e. between a day 

earlier and a day after. Given the three-day minimum dura-

tion constraint used in this paper, the tolerance only affects 

the onset and cessation of heatwave events. The comparison 

between the Sahel-wide average SEDI scores of strict and 

tolerant evaluation is shown in Fig. 4. It is apparent that the 

gain in skill obtained through the tolerant evaluation is more 

important in AMJ than in FM (Fig. 4a–d). Moreover, the 

gain is the largest at the longest lead-times, with difference 

of SEDI scores from the strict evaluation reaching a value 

close to 0.2 in AMJ (Fig.4c, d). As a matter of comparison, 

the tolerant evaluation shows a heatwave prediction skill at 

lead-week 6 similar or better than that of the strict evalua-

tion at lead-week 3 (or at lead-week 2 if a 5-day window of 

tolerance is used instead, not shown). Providing forecasts 

with such a tolerance for the longest lead-times could prove 

relevant for heat-health early actions in the region. With long 

lead-times, the preparedness actions likely do not need daily 

accuracy in the forecast. An operational scheme could adopt 

the ’Ready-Set-Go!’ approach of the Red Cross in which 

various inexpensive actions are implemented at long lead-

times, and different more specific or costly actions are then 

invoked based on more accurate shorter-lead forecasts (Bazo 

et al. 2019). In this sense, the tolerant verification statistics 

show that the skill at long lead-times is meaningful to risk 

managers.

3.3  Tropical modes as a source of predictability 
for Sahelian heatwaves

Guigma et al. (2020b) showed that at the subseasonal scale, 

heatwaves in the Sahel are modulated by tropical modes of 

variability, namely the MJO, the ER and EK waves. Further-

more, in Sect. 3.1, the higher skill at subseasonal scale in 

the AMJ season than in the FM season could be related to 

the greater activity of tropical modes in the former season. 

The present section aims at assessing whether, in addition 

to being important drivers of heatwave occurrence, tropical 

modes also constitute a significant source of predictability. 

Marshall et al. (2014) mentioned two conditions that any 

model should a priori meet to be able to predict a hazard in 

association with its climatic driver: (1) well predict the cli-

matic driver, and (2) well simulate the relationship between 

Fig. 4  SEDI scores spatially averaged over the Sahel domain for a, b the FM and c, d the AMJ seasons. Daytime (nighttime) heatwaves are 

shown in red (blue) with the strict (tolerant) verification in solid (dotted) lines. Strict and tolerant verifications are defined in Sect. 3.2
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the climatic driver and the hazard. These two conditions 

will first be assessed, before considering whether tropical 

modes indeed provide skill for heatwave prediction in the 

Sahel. The analysis is restricted to the first three weeks of the 

forecast, beyond which the SEDI scores become relatively 

low (Fig. 3), and covers only the AMJ season.

3.3.1  How well does ENS‑ext predict tropical modes?

At the global level, Janiga et al. (2018) discussed the predict-

ability of the mode-filtered OLR across the tropics and found 

ECMWF to be the model with the lowest bias for forecasts of 

the mean state and activity of tropical modes. Furthermore, 

investigations by Dias et al. (2018) revealed that ECMWF 

is relatively skilful at propagating tropical modes for longer 

lead-times. Here the focus is on the Equatorial West Africa 

Sector (the region just south of the Sahel, i.e. 20°W–30°E; 

0°–10°N) where convection is shown to modulate heatwave 

occurrence in the Sahel (Guigma et al. 2020b). To assess the 

skill of the model in capturing the local activity of tropical 

modes, the forecast phases are compared against observation 

using hit rates (defined in Sect. 2.5.2).

Among the three investigated modes, the MJO (blue 

histograms in Fig. 5) stands clearly as the most skilfully 

predicted. At week 1 for example, the hit rate is above 0.4 

in most active phases. This value decreases to 0.3 at week 

2 and slightly above 0.2 at week 3. As for the ER wave, it 

has hit rates which are on average 0.1 point lower than that 

of the MJO, being about 0.3, 0.2 and above 0.1 at weeks 

1, 2 and 3 respectively. The EK wave shows the lowest 

hit rates. They indeed always remain below 0.2, even at 

week 1, and at weeks 2 and 3, stand below 0.1. Note that 

the lower skill associated with the EK wave has already 

been highlighted by previous work (e.g. Li and Stech-

mann 2020). For each mode, the hit rates are generally 

comparable across the eight phases, with however slightly 

higher values in the central phases (phases 3 through 6). 

The differences observed between the different modes are 

in agreement with their spectral properties summarised 

in Table 1. The MJO and ER wave indeed have a longer 

periodicity than the EK wave. This provides them with a 

longer “memory” and leads to slower error growth.

3.3.2  How well does the model simulate the link 

between tropical modes and heatwaves?

Guigma et al. (2020b) already elaborated on the modula-

tion of heatwave occurrence by tropical modes from an 

observational perspective, with a discussion of the under-

lying physical mechanisms. This modulation, as described 

in Sect. 2.5.2, compares heatwave occurrence under active 

phases of the modes to the climatological occurrence. The 

quality of the replication of this modulation by ENS-ext is a 

function of the mode under consideration, and is discussed 

here using T-day heatwaves for illustration. As shown in the 

left panels of Fig. 6, observed phases 1–3 of tropical modes 

(which roughly correspond to a suppression of convection, 

Fig. SM1) are overall favourable to heatwaves, whereas 

phases 5–7 (enhancement of convection) obstruct heatwave 

occurrence. It is apparent that in ENS-ext, the influence of 

the MJO and ER wave on heatwaves is well simulated. Both 

the zonal propagation (eastward for the MJO and westward 

for the ER wave) and the magnitude of the modulation (with 

M values absolutely reaching 1.5) are well captured by the 

model (Fig. 6b, d). On the other hand, for the EK wave 

(Fig. 6f), whilst there is a relatively acceptable simulation 

of the propagation of the modulation across phases, ENS-

ext struggles to get the magnitude correct. There is indeed 

an underestimation of the forcing that EK waves exert on 

heatwave occurrence. This is however not a surprise, given 

that the model also has difficulty to predict the activity of 

this mode (Sect. 3.3.1). For the three other thermal indi-

ces (T-night, HI-night and HI-day), similar conclusions are 

Fig. 5  Hit rates of predicted tropical mode phases at the reference 

longitude of 5°E for the first three weeks of the forecast. The right-

most histograms in each panel represent the average hit rates across 

the eight active phases. The blue, red and green bars represent the 

MJO, ER and EK waves respectively
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Fig. 6  Modulation of T-day 

heatwave probability of 

occurrence by active phases 

of tropical modes in observa-

tion (left panels) and ENS-ext 

(right panels). The modulation 

is the variable M defined in 

Sect. 2.5.2 (Eq. (6))

Fig. 7  Difference of SEDI scores between forecasts falling on active versus inactive phases of the MJO. All active phases are pooled together 

and the significance of the SEDI differences is tested by bootstrap resampling (see Sect. 2.5.2)
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drawn, i.e. a skilful representation of the impact of the MJO 

and the ER wave on heatwaves versus a limited skill for the 

EK wave (not shown).

3.3.3  Heatwave prediction skill in active versus inactive 

phases of the modes

The previous two sections have shown that ENS-ext meets 

the two necessary conditions (according to Marshall et al. 

2014) to be able to draw heatwave predictability from tropi-

cal modes, especially from the MJO and ER (much less 

for the EK wave). This section addresses whether there is 

indeed an enhancement of prediction skill associated with 

the activity of tropical modes during the AMJ season. This 

is done through stratifying the forecast (not observation) into 

active versus inactive phases, as described in Sect. 2.5.2, and 

assessing the SEDI differences between the two instances. 

Out of the three modes of variability, the MJO is the largest 

source of prediction skill. For T-night, HI-night and HI-day, 

the MJO-related skill reaches values of 0.4, mainly over the 

central Sahel (Mali, Burkina Faso and western Niger) and 

extends out to week 2–3 of the forecast (Fig. 7). For T-day, 

the skill is mainly observed over the eastern Sahel. The main 

phases responsible for the positive SEDI differences are 

phases 3 and 4 (Fig. SM4). For the ER wave, the improve-

ment of skill, limited to 0.3, is mostly found over the eastern 

(western) Sahel for T-night, HI-night and HI-day (T-day) at 

week 1 (Fig. 8) and comes essentially from phases 7 and 8 

(Fig. SM5). At longer lead-times, the ER-related skill is rela-

tively marginal, apart from T-day and HI-day which show 

some skill over the central Sahel (Burkina Faso and western 

Niger) at week 2–3 (Fig. 8). As for the EK wave, the skill, 

analysed only for week 1 of the forecast (beyond which the 

model cannot well predict it, Sect. 3.3.1) originates mostly 

from phase 3 and is generally not much in excess of 0.1 

(Fig. SM6).

These results therefore show that the MJO, the ER wave 

and, to a lesser extent, the EK wave provide predictability to 

Sahelian heatwaves. This implies that heatwave predictions 

are more reliable when an intense activity of tropical modes 

is also (skilfully) forecast. Such a conclusion is especially 

interesting for operational forecasters in the region. They can 

indeed rely on the local activity of tropical modes to estimate 

the confidence levels of their heatwave warnings.

3.4  Case study of a tropical mode-driven heatwave 
over Burkina Faso

In this section, the detailed analysis of the prediction of a 

heatwave event over Burkina Faso, in the central Sahel, by 

ENS-ext is undertaken with the objective of assessing, in a 

real case, how the activity of tropical modes can impact the 

skill of the model. The choice of this event is justified mainly 

by the fact that it was physically favoured by tropical modes, 

and also because of its relatively large spatial extent.

3.4.1  Description of the heatwave and thermodynamic 

conditions

The heatwave event under scrutiny took place mainly in 

Burkina Faso between 27 May and 02 June 2015. Fig-

ure 9a, b show the spatial distribution and the length of 

the event across the country. Both daytime and nighttime 

were affected (which is unusual in the Sahel; Guigma et al. 

2020a) over the whole country. It should be noted that 

the event was less marked in HI-day and HI-night than in 

T-day and T-night (not shown).

Fig. 8  Same as Fig. 6 but for the ER wave

Fig. 9  Heatwave occurrence and thermodynamic conditions between 

27 May and 02 June 2015. a, b Show the number of heatwave days 

sampled by T-day and T-night respectively. c–f Show the aver-

age anomalies of sensible heat flux (net radiation) at the surface in 

W  m−2 for daytime and nighttime respectively. They are convention-

ally counted positively when oriented from the atmosphere towards 

the surface. g, h Display the average anomalies of heat advection at 

the 925 hPa pressure level superimposed with wind anomalies at the 

same level respectively for daytime and nighttime

◂
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The analysis of some thermodynamic variables over the 

heatwave period reveals that the daytime event was chiefly 

shaped by a strong sensible flux from the ground towards 

the atmosphere (a magnitude above 40 W  m−2 in some 

areas; Fig. 9c) which was anomalously dryer than usual 

(not shown), an increased incoming solar radiation in the 

south of the country (Fig. 9e) and heat advection in the 

north (Fig. 9g). At night, the heat resulted mainly from 

a longwave radiation emission from the ground (Fig. 9f) 

which was overheated during the day (a relatively cool air 

was however advected, reducing the heat load, Fig. 9h).

3.4.2  Evolution of tropical modes during the event

The increase of incoming solar radiation during the day 

and longwave loss during the night were favoured by 

large-scale conditions that suppressed convection over the 

region. To find out the origins of this convective inhibi-

tion, the time-longitude diagram of the EM mode-filtered 

OLR is shown in Fig. 10. It is apparent that an ER wave 

originating from the Indian Ocean was the main mode sup-

pressing convection over the domain surrounding Burkina 

Faso (green lines in Fig. 10) during the heatwave period. 

Besides, the initial and last days of the heatwave are also 

affected by EK waves on convectively suppressed phases 

which also promoted the heating. An eventual contribu-

tion from the MJO is ruled out since it was instead on a 

convectively enhanced phase (not shown).

3.4.3  Skill of the model over the heatwave period

The average anomalies of T-day and T-night over the heat-

wave period in the ENS-ext EM forecasts and in the ERA5 

analysis, as well as the average anomalies in ERA5 over 

the week preceding the heatwave (persistence) are shown 

in Fig. 11. The first remark is the relatively good spatial 

coherence between the forecasts at different lead-times and 

the observation, valid for both T-day and T-night. The model 

was therefore able to predict the anomalously hot conditions 

that prevailed over Burkina Faso between 27 May and 02 

June 2015, even at the longest lead-times. Better, on the last 

two initialisations before the event, the model beat persis-

tence, notwithstanding that for T-day there is a slight over-

estimation of the magnitude of the anomalies. Two forecasts, 

namely those initialised at lead-times 31 and 10 days to the 

onset, are however characterised by less accuracy than the 

rest, especially in comparison with forecasts initialised at 

longer lead-times than them.

Figure 12 shows the heatwave forecast probabilities at 

different lead-times for T-day and T-night. The flavour of 

the heatwave was already perceptible at lead-time 24 days 

to the onset (i.e. longer than three weeks in advance) with 

at least one individual member predicting the event over the 

vast majority of the country, consistently in both T-day and 

T-night (note that the climatological forecast probability is 

below 0.1 over the heatwave period; not shown). The fore-

cast probabilities increased on the following initialisation 

dates to eventually reach 50% three days prior to the onset. 

However, as with the index anomalies, some initialisation 

days “lost” the heatwave signal in the run-up. Thus, forecast 

probabilities at lead-times 17 and 10 days to the onset are 

lower than that at the respective longer lead-times.

To understand the weakening of the forecast probabilities 

at these dates, the EM forecast of tropical mode activity is 

examined, knowing that the heatwave was associated with 

a convectively suppressed ER wave (Sect. 3.4.2). Figure 13 

thus shows observed and EM predicted ER wave-filtered 

OLR, starting from lead-time 24 days to the onset where the 

heatwave was first significantly predicted. It is apparent that 

Fig. 10  Time-longitude diagram of high-pass filtered OLR aver-

aged between the Equator and 20°N from 15 May to 15 June 2015 in 

W  m−2. The MJO, ER and EK wave-filtered OLR averaged over the 

same domain are superimposed as black, green and purple contours 

respectively. Contour levels are 2 and 8 W   m−2 (only positive con-

tours, representing convectively suppressed phases are shown). The 

rectangular black box in the middle of the plot delimits the longitudi-

nal domain of Burkina Faso (6°W–3°E) and the heatwave period (27 

May–02 June)
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at lead-time 17 and 10 days to the onset, the forecast of the 

ER wave activity over Burkina Faso was less accurate than 

at other lead-times. While the entire country was under the 

influence of a convectively suppressed phase of the ER wave 

during the heatwave period, at lead-times 17 and 10 days, 

the model was predicting a convectively enhanced phase 

across at least half of the country. Therefore it can be said 

that the wrong forecast of the physical driver also led to a 

less accurate forecast of the heatwave itself, with the reverse 

being true.

Previous studies have already highlighted similar cases 

where the misrepresentation of subseasonal variability by 

models also caused misses in heatwave forecasts (e.g. Qi 

and Yang 2019; Hsu et al. 2020). As a result, improving the 

skill of prediction of tropical modes in models could also 

be beneficial for heatwave prediction in the Sahel as well as 

in other regions.

Fig. 11  Average anomalies of T-day and T-night over the 27 May–02 

June 2015 period in (top panels) ERA5 analysis and persistence and 

(subsequent panels) in ENS-ext ensemble mean forecasts at different 

start dates. The persistence (‘Pers’) is taken as the average of ERA5 

anomalies over the period from 20 to 26 May 2015. The numbers 

between brackets indicate the lead-times in days from the forecast 

start dates to the onset and cessation of the heatwave
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4  Conclusion

The ECMWF ENS extended-range forecasting system shows 

significant skill for heatwave prediction across most parts 

of the Sahel in the first two to three weeks of the forecast. 

The AMJ season has a longer lead-time predictability than 

the FM season, likewise nighttime heatwaves are better 

predicted at longer lead-times than their daytime counter-

parts. This study has also demonstrated that atmospheric 

tropical modes of variability, mostly the MJO and ER 

waves, are effective sources of skill for heatwave prediction 

in the Sahel. The forecast skill is indeed higher when they 

are active in the region than when they are weak. The case 

study of the prediction of a heatwave event driven by tropi-

cal modes in 2015 over Burkina Faso further illustrated this, 

by showing that the forecasts of heatwaves are more skilful 

when that of the tropical modes are accurate. Information on 

the predicted activity of tropical modes can thus be useful to 

forecasters in their heatwave warnings.

In addition, as already highlighted by Guigma et  al. 

(2020b), a more accurate simulation of tropical modes will 

have a positive repercussion on heatwave prediction in the 

region. This will likely improve the current skill and extend 

it to longer lead-times, thus winning more time and preci-

sion for preparedness actions. In this context and given the 

connection between convection and tropical modes, convec-

tion-permitting models can play an important role as they 

reduce model errors, and likely offer a better representation 

of tropical modes (Judt 2020). It has indeed been shown that 

the parameterisation of moist convective processes and their 

links to the large-scale flow is an important source of errors 

in the tropics (Dias et al. 2018).

Fig. 12  T-day and T-night average heatwave forecast probabilities (in %) over the 27 May–02 June 2015 period at different start dates. The num-

bers between brackets indicate the lead-times in days from the forecast start dates to the onset and cessation of the heatwave
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But even with the current level of predictability, there is 

a potential for HEWSs. With a predictability of two to three 

weeks, there is indeed a range of actions that can be trig-

gered in advance (e.g. Matthies and Menne 2009; Lowe et al. 

2016; Nissan et al. 2017). As evidenced in other regions 

of the globe, many socio-economic sectors (especially pub-

lic health) can benefit from such systems (e.g. Knowlton 

et al. 2014). The scaling up of HEWSs actually emerges as 

a pressing necessity given the future projections of global 

warming (Xu et al. 2020; Raymond et al. 2020) and could 

therefore serve as an efficient tool to mitigate its adverse 

effects. Furthermore, since the predictability is extendible 

when the verification criteria are relaxed, low-cost prepared-

ness actions can be taken at even longer lead-times, follow-

ing the “Red-Set-Go!” approach of the Red Cross.

However to get the best of such systems, it is important 

to have a clear understanding of how the heat hazard affects 

populations (e.g. WMO N°1142; Casanueva et al. 2019). 

This includes identifying the most affected social groups, the 

most lethal heat thresholds, the most relevant thermal indi-

ces, the most recurrent heat-related illnesses in the region 

etc. Such a research area is still in its infancy in the Sahel 

and should therefore receive more attention now that the 

potential for anticipatory action is evidenced. Furthermore 

the investigations can extend to other sectors like energy and 

water management which are heat-sensitive in this semi-arid 

region. This will allow a holistic approach to the heat issue 

and contribute to save many lives and protect livelihoods in 

the Sahel.
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