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ABSTRACT

Context. Mass loss from massive stars forms an important aspect of the evolution of massive stars, as well as for the enrichment of
the surrounding interstellar medium.

Aims. Our goal is to predict accurate mass-loss rates and terminal wind velocities. These quantities can be compared to empirical
values, thereby testing radiation-driven wind models. One specific topical issue is that of the so-called “weak-wind problem”, where
empirically derived mass-loss rates and (modified) wind momenta fall orders of magnitude short of predicted values.

Methods. We employ an established Monte Carlo model and a recently suggested new line acceleration formalism to solve the wind
dynamics more consistently.

Results. We provide a new grid of mass-loss rates and terminal wind velocities of O-type stars, and compare the values to empirical
results. Our models fail to provide mass-loss rates for main-sequence stars below a luminosity of log(L/Ls) = 5.2, where we appear
to run into a fundamental limit. At luminosities below this critical value there is insufficient momentum transferred to the wind in the
region below the sonic point in order to kick-start the acceleration of the flow. This problem occurs at almost the exact location of the
onset of the weak-wind problem. For O dwarfs, the boundary between being able to start a wind, and failing to do so, is at spectral
type O6/06.5. The direct cause of this failure for O6.5 stars is a combination of the lower luminosity and a lack of Fev lines at the
base of the wind. This might indicate that — in addition to radiation pressure — another mechanism is required to provide the necessary
driving to initiate the wind acceleration.

Conclusions. For stars more luminous than 10°2 L, our new mass-loss rates are in excellent agreement with the mass-loss prescrip-
tion by Vink et al. (2000, A&A, 362, 295) using our terminal wind velocities as input to this recipe. This implies that the main
assumption entering the method of the Vink et al. prescriptions — i.e. that the momentum equation is not explicitly solved for — does
not compromise the reliability of the Vink et al. results for this part of parameter space. Finally, our new models predict terminal
velocities that are typically 35 and 45 percent larger than observed values. Such over-predictions are similar to those from (modified)

CAK-theory.
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1. Introduction

In this article, we present predictions for mass-loss rates and ve-
locity structures for a grid of O-type stars, using two distinct
methods for solving the wind dynamics.

Mass loss forms an integral aspect characterizing massive
O-type stars. Because of their short lifetimes, massive stars are
important tracers of star formation in galaxies. Furthermore, they
enrich the interstellar medium with metals, both during their
lives via stellar winds, as well as when they explode at the
very end of their evolution. In order to build an evolutionary
framework for massive stars, it is essential to map the mass-loss
processes during the various evolutionary stages, as the exact
rates of mass loss greatly influence the evolutionary tracks (e.g.
Maeder 1981; Chiosi & Maeder 1986). The effects of mass loss
on the evolutionary tracks are at least two-fold: first and fore-
most the stellar mass is reduced, and secondly, the rotational ve-
locity is strongly affected, as the mass also carries away angular
momentum (e.g. Langer 1998; Maeder & Meynet 2000).

For the continuous stellar winds from massive stars, the out-
flow is thought to be driven by the transfer of energy and mo-
mentum from the radiation field to the atmosphere through the
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absorption of photons in atomic transitions. The exact amount
of momentum and energy transfer has been the subject of both
theoretical and observational studies for many decades (Lucy
& Solomon 1970; Castor et al. 1975; Pauldrach et al. 1986;
Puls et al. 1996; de Koter et al. 1997; Vink et al. 1999; Krticka
& Kubit 2004; Mokiem et al. 2007). For luminous O-type
stars, with log(L/Ls) > 5.2, the theoretical predictions of Vink
et al. (2000) seem to be in reasonable agreement with empirical
mass-loss rates provided that O-stars are only subject to modest
amounts of wind clumping (with clump filling factors of only
5-10). However, for objects with luminosities log(L/Ls) below
approximately 5.2, a severe drop — by a factor of ~100 — in the
empirically determined modified wind momentum (basically a
multiplication of the mass-loss rate and the terminal velocity)
has been revealed. This problem has in literature been referred
to as “the weak-wind problem” (Puls et al. 1996; Martins et al.
2005Db; Puls et al. 2008; Marcolino et al. 2009).

It deserves proper investigation simply because of the enor-
mity of the effect. It is particularly important to find out whether
the problem is caused by the mass-loss diagnostics or the pre-
dictions, as both are also applied to more luminous stars, where
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agreement between diagnostics and predictions has seemingly
been achieved. But how certain can we be that this agreement is
not a coincidence if we are aware of severe problems at lower
luminosity?

Furthermore, we note that the oft-used mass-loss predictions
of Vink et al. (2000) are semi-empirical, in the sense that empir-
ical values for the wind velocity structure and terminal velocity
are used as input to the modelling. In order to trust our over-
all knowledge of the mass-loss rates from O-type stars — at all
masses and luminosities — it is pivotal to further scrutinize the
Vink et al. (2000) assumptions, most notably that of the adopted
wind dynamics.

Recently, Miiller & Vink (2008) suggested a new
parametrization of the line acceleration, expressing it as a func-
tion of radius rather than of the velocity gradient, as in Castor
et al. (1975, henceforth CAK) theory. The implementation of
this new formalism allows for local dynamical consistency, as
one can determine the energy and momentum transfer at each
location in the wind through the use of Monte Carlo simula-
tions. Although the formalism was applied with three indepen-
dent starting conditions that showed convergence to the same
wind parameters, it has thus far only been applied to one object,
that of an O5 dwarf.

For the adopted line force parameterization Miiller & Vink
identify an exact solution in case the medium is isothermal.
We expand on this result by also accounting for a temperature
stratification. To allow for such a study we employ the new line
acceleration parameterization but solve for the wind dynamics
consistently by applying a numerical method to solve for the
momentum equation.

The purpose of our study is threefold: i) to solve the wind dy-
namics numerically, and compare the results to those of Miiller
& Vink (2008); ii) to compute a larger grid of dynamically de-
rived O-star mass-loss rates and wind terminal velocities, and
determine the accuracy of the predictions made by Vink et al.
(2000); and iii) to utilize the grid in order to investigate the weak-
wind problem.

Our paper is organized as follows. In Sect. 2, we start off
describing the core of our method and the different methods to
treat the wind equation. The results are presented in Sect. 3 and
discussed in the Sect. 4. We end with the conclusions (Sect. 5).

2. Method

The method of de Koter et al. (1997) and Vink et al. (1999), ap-
plied to derive the mass-loss rates of O and early-B type stars
(Vink et al. 2000, 2001), Luminous Blue Variable stars (Vink &
de Koter 2002) and Wolf-Rayet stars (Vink & de Koter 2005), is
an extension of a treatment developed by Abbott & Lucy (1985).
It is based on an iteration cycle between the stellar atmosphere
model 1sa-winD (de Koter et al. 1993) and a Monte Carlo simula-
tion, Mmc-wiND (de Koter et al. 1997), in which the energy per unit
time AL that is extracted from the radiation field in interactions
of photons with the gas, is computed. From this a mass-loss rate
M is computed on the basis of which a new 1sa-wiNp model is
constructed. The predicted mass loss is the one for which the
input mass-loss rate of 1sA-wiND equals the mass-loss rate com-
puted by Mc-WIND.

As is consistently pointed out in the papers referred to above,
the method does not address the equation of motion but uses a
prescribed trans-sonic velocity structure. This implies that al-
though in a global sense the method fulfills the constraint of en-
ergy conservation, it need not hold that the actual local forces
acting on the gas are consistent with the force implied by the
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adopted velocity law. Miiller & Vink (2008) relax on this as-
sumption and present an improved treatment of the problem in-
troducing a new way to parametrize the line force. We first dis-
cuss an approach presented by these authors, which we refer to
as the “best-8 method, as it allows to link to empirically derived
estimates of the steepness of the velocity law (characterized by
a parameter 3, see below). In a second step, we present solutions
that numerically solve the wind dynamics.

We first briefly introduce 1sa-wmp in Sect. 2.1, emphasiz-
ing the treatment of the heuristic velocity law, and Mc-wiIND in
Sect. 2.2, focusing on the determination of the mass-loss rate us-
ing the global energy argument. In Sect. 2.3 we recapitulate the
essentials of the parametrization of the line force by Miiller &
Vink and in Sect. 2.4 the principle of their best-8 method. In the
following subsection we introduce our hydrodynamical method.
Finally, Sect. 2.6 is devoted to a discussion of the physical con-
ditions at the sonic point.

2.1. The model atmosphere

The code 1sa-wiND computes the structure, radiation field and
ionization/excitation state of the gas of an outflowing stellar at-
mosphere in non local thermodynamic equilibrium (non-LTE),
assuming radiative equilibrium. No artificial separation between
the photosphere and wind is assumed. The temperature structure
is treated somewhat simplified in that it results from initial LTE
based Rosseland opacities (i.e. grey). The fact that the temper-
ature structure is not affected by possible departures from the
populations from their LTE state implies that the effect of line
blanketing is not treated self-consistently, although non-LTE line
blocking is taken into account. Radiation transfer in spectral
lines is treated in the Sobolev approximation (Sobolev 1960).

The input stellar parameters are the luminosity L, the effec-
tive temperature T (specifying the radius R), the mass M and
chemical abundances. The wind is described by the mass-loss
rate M and a velocity structure, which are connected through the
equation of mass continuity

M = 4nrv(r)p(r), (D

where p(r) is the mass density and v(r) is the velocity at radius r.
Outside the photosphere, the velocity structure is assumed to fol-
low a B-law, i.e.

\B
0(F) = Do (1 - r—) - )
r

The free parameter 5 is a measure of the velocity gradient. A
low value of 8 implies that the velocity approaches the terminal
flow velocity v, relatively close to the star; for a large value this
happens only further out in the wind. The S-law does not hold
in the photosphere since the line force is not the dominant term
in the equation of motion, but gravity and the acceleration due
to the gas pressure gradient also contribute to the flow structure.
The radius 7’ is a smoothing parameter that is used to connect
the B-law to the (quasi) hydrostatic photosphere and must as-
sure that v(r) and its spatial derivative are continuous at the point
where one couples the photospheric velocity law to the S-law.
The velocity structure in the photosphere is determined by solv-
ing the non-isothermal equation of motion, neglecting line radi-
ation pressure and assuming that continuum radiation pressure
is the result from Thomson scattering only. An inner boundary
velocity (or density) is chosen, which may be used to tune the
total Rosseland optical depth of the photosphere and wind (see
below).
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The wind is assumed to be homogeneous, i.e. the outflowing
gas is not clumped (but see Muijres et al. 2011), and the termi-
nal velocity is chosen to be 2.6 times the effective escape veloc-
ity from the stellar photosphere, which is in reasonable concor-
dance with empirically determined terminal velocities of O-stars
(Lamers et al. 1995; Kudritzki & Puls 2000). The base of the
photosphere is positioned at a Rosseland optical depth of about
20-25 and the wind extends out to 20 R,.

2.2. The Monte Carlo method MC-WIND

The code mc-winD uses the model atmosphere structure com-
puted by 1sA-wIND to determine the total amount of energy that is
transferred from the radiation field to the wind — in interactions
of photons with ions in the gas — by means of a Monte Carlo sim-
ulation of the trajectories of photon packets emitted at the base of
the photosphere and escaping through the outer boundary of the
model. Each photon can travel an optical depth weighted (ran-
dom) distance to a point of interaction. This point is determined
by taking into account all the opacity the photon encounters on
its path, so it includes contributions from both lines and con-
tinua. At the point of interaction the type of interaction is deter-
mined, using proper weighing functions (Vink et al. 1999). The
possible interactions are thermal absorption and emission, elec-
tron scattering and line scattering. The interaction is assumed
to be coherent in the co-moving frame of the ion. In the ob-
servers frame, however, energy can be exchanged from the ra-
diation field to the gas (or vice versa). It is traced which ion is
involved in the interaction, such that, for instance, the contribu-
tions to the radiative force can be dissected and identified. This
provides us with a powerful tool to study the nature of the line
force at each location in the wind.

The radiative force per unit mass equals (Abbott & Lucy
1985):

1dL
Jrad = M dr s (3)
where dL is the amount of energy lost by the radiation field in a
layer of thickness dr.

Once the total amount of energy transferred to the wind is
known, the mass-loss rate that can be driven for the density and
velocity structure of the adopted 1sSae-wIND model can be calcu-
lated. Neglecting enthalpy:

“)

where AL is the total amount of energy lost by the radiation field
and

AL = %M(vfo+v2 ),

esc,N

2GM.,
5
o 5)

is the Newtonian escape velocity from the stellar surface. G is the
gravitational constant. A new 1sA-wIND atmosphere, adopting the
mass-loss rate as determined in mc-winD, is computed followed
by a new Monte Carlo simulation. This procedure is repeated
until the input mass-loss rate of Mmc-wiNDp equals the output mass-
loss rate. Although the mass-loss rate that is predicted in this
way reflects that in a global sense the energy that is needed to
drive the wind is indeed extracted from the radiation field, it does
not mean that the input line force (implied by the velocity law)
equals the output line force from the Monte Carlo simulation
locally, i.e. the equation of motion of the wind is not solved.

Here we improve on this situation using two methods. Both
methods A and B require a parametrization of the line force pre-
dicted by mc-winp. We therefore first discuss this aspect.
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Fig. 1. The line force (blue crosses) as predicted by mc-winD in the first
iteration step. A fit (black dotted line) using Eq. (6) to represent the line
force is overplotted. Note the modest scatter on the Monte Carlo results
due to noise.

2.3. Line force parametrization

Figure 1 shows the Monte-Carlo line force (blue crosses) as
is produced in the first iteration step of a typical O3V star
(L = 1098 Ly, Teg = 44600K and M = 58 M,). The Monte
Carlo line force is determined in a statistical way and shows scat-
ter. Given the delicate nature of the equation of motion it can not
be used as such and must be represented by an appropriate ana-
lytical fit function. We adopt a parametrization of the line force
as a function of radius, rather than of optical depth, as opted for
by Castor et al. (1975). In Sect. 4.2 we show that this leads to a
more accurate numerical representation of the line force, at least
for the type of stars studied here. In doing so, we follow Miiller
& Vink (2008), who motivate

line 0 if r< 1S
Irad = {go(l — 1o /1)1 if r>r., (6)
where g, . , and y are fit parameters to the Monte Carlo line
force. This choice of the fit function, i.e. without any explicit de-
pendency of the line force on the velocity gradient, implies that
in our models the critical point is the sonic point. Figure 1 shows
a typical result for this fit (black dotted curve). The deviations
are (as mentioned) due to scatter in the simulation.

2.4. Method A: Best-8 solution

In this section, we use the line force representation Eq. (6) to
determine — after making certain assumptions — an analytical so-
lution of the velocity law in the outer part of the wind, following
Miiller & Vink (2008). This solution can be compared to the §-
law (Eq. (2)) and used to derive v, and the 3 value that is most
representative. This is useful in comparing to the often applied
B-law.
We aim to find a solution of the equation of motion

dv R*Ugsc line 1 dp

- - g 7
Yar 2r2 rad o dr @
where p is the gas pressure and
Vesc = Vese,N VI =T, (8)

is the effective surface escape velocity of the star. I is the con-
tinuum radiation pressure in units of the Newtonian gravitational
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acceleration. Sufficiently far from the photosphere this term is
dominated by radiation pressure on free electrons, i.e. ' =T,
where I, is essentially constant for early-type stars. Close to or
in the photosphere, the acceleration due to free-free, bound-free
and bound-bound processes may compete with electron scatter-
ing and should, in principle, be considered in Eq. (8). For our
best-f solution, however, we assume a constant continuum ac-
celeration, which we set to I'.. Substituting the equation of state
for an ideal gas and using Eq. (1), the term (1/p)dp/dr can be
written as:

1dp a*dv  2a?

k dT
p dr m dr ©)

where k is Boltzmann’s constant, m the mean particle mass
and a(r) is the local sound speed, given by:

[kT
a= +|—-
m

We assume the wind to be isothermal, such that the sound speed
is constant. The equation of motion can now be rewritten as

2 2
v a.\dv Rz, 205 e
o\ — = — |7 =~ 2 + + rad °
ao v | dr 2r r

(10)

(1)

where a, is the isothermal sound speed at the effective tempera-
ture of the star. Equation (11) is a critical point equation, where
the left- and right-hand side vanish at the point v(rs) = a., i.e.
where rg is the radius of the sonic point. It yields several types
of solutions. Miiller & Vink (2008) show that for the isothermal
case and a line force as described in Eq. (6), analytical expres-
sions for all types of solutions of Eq. (11) can be constructed
by means of the Lambert W function (as for a further discus-
sion of the solution of Eq. (11) containing an additional centrifu-
gal term, see Miiller 2001). Even for the interesting trans-sonic
case of a stellar wind, the analytical solution has an intricate
shape. However, a useful approximate wind solution for the ve-
locity law can be constructed if the pressure related terms 2a>/r
and a/v can be neglected. We note, however, that at the sonic
point the contribution of the two pressure terms is non-negligible
(Miiller & Vink 2008). After some manipulation one finds that
the approximate velocity law is given by:

R* 2 2 o o ’y+]
v(r) = loe y 29 (1 - r—) +C,
r 7o (1 +7v) r

where C is an integration constant. From this equation, the ter-
minal wind velocity can be derived if the integration constant C
can be determined. This can be done assuming that at radius 7,
the velocity approaches zero. This yields

12)

R.v?
€ = e, (13)
Fo
In the limit r — oo we find that:
2 g R.v%
Do = 4| =22 — Tl (14)
7o (1 +7) 2

The terminal velocity v, can also be determined from the equa-
tion of motion. At the critical point, the left-hand and right-hand
side of Eq. (11) both equal zero. Introducing v, in relation to g,
as expressed in Eq. (14), we find

2 I's 7 Is (Uesc ) ) 5
Voonew = | — — = 2rg) — U5 |-
ne o |[\trs—7) (L+y)\ 2 s ese
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5)

A direct comparison to the S-law can be made for the supersonic
regime of the wind and results in

1+y
2

B= : (16)
Given the assumptions made in this derivation, this result is only
approximately correct.

The procedure that is followed to obtain the best-3 solution
is that in each Monte Carlo simulation the values of g., 7., and y
are determined by fitting the output line force. Using these values
and the current value of the sonic point radius, Eqs. (14)—(16) are
used to determine v, and 8. v derived from Eq. (15), the mass
loss predicted in Mc-wiND, and the expression derived for 3 serve
as input for a new 1sa-winp model. The two codes are iterated
until convergence is achieved.

Following Miiller & Vink (2008), we assume that conver-
gence is achieved when the values for v, derived from Egs. (14)
and (15) agree within 10 percent. This implies that our predicted
terminal velocities have at least this uncertainty. Once the ve-
locity convergence criterion is fulfilled all fit parameters and the
values for M and the sonic point radius will be stable to within
five to ten percent.

2.5. Method B: Hydrodynamic solution

The accuracy of the best-3 solution hinges on the assumptions
that the wind is isothermal and that the Eddington-factor I is
constant (here taken to be equal to I'.). It may be expected that
these assumptions have an impact on the velocity structure near
the sonic point, which is where the mass-loss rate is set. To as-
sess this impact and to improve on the physical treatment, we
devise a numerical solution of the equation of motion (Eq. (11))
throughout the entire photosphere and wind, referred to as the
hydrodynamic solution.

To this end we start our solution at the critical point v = a
and proceed both down-stream and up-stream using a 4th order
Runge Kutta method with adaptive stepsize control (Press et al.
1992). Applying 1’Hopital’s rule (see e.g. Lamers & Cassinelli
1999) an expression can be devised to determine dv/dr at v(rs) =
a. In order to determine the location of the sonic point r; we
require

2 2
_ R. Vesc 2a line _ 0

17
2}% Fs rad ( )

The above equation is solved numerically.

So far, the hydrodynamic solution assumes an iso-thermal
medium. At the sonic point the temperature gradient is very
small, therefore the location of r5 can be reliably determined us-
ing Eq. (17), even if dT/dr would be taken into account. The
neglect of the temperature gradient in the hydrodynamic solu-
tion in the region below the sonic point has a significant impact
on the structure — for instance on the total (Rosseland) optical
depth from the inner boundary to the sonic point. To solve this
problem, we account for the temperature structure inward of the
critical point. This requires an iterative procedure between the
solution of the non-isothermal equation of motion

k dT

v a\dv RV 2 e
—_———)— == — me . —— 18
a( )dr m dr (18)

a v 2r2 r rad
and the temperature structure (see Sect. 2.1). After starting nu-

merical integration of the velocity structure at the sonic point rg
now determined by applying Eq. (17), but using the local value
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Fig. 2. A comparison between the best-8 and hydrodynamic velocity laws for an O3 V star. Here, the best-3 velocity law is the one determined
by using the fit-parameters of the hydrodynamic solution. The label “approx” in the left panel refers to the approximate velocity law, as given
by Eq. (12). Three different radial regimes are plotted: full radial range (left panel); the region around the sonic point (middle panel) in which
the location of the sonic point in the hydrodynamic solution is indicated with an arrow, and the photospheric region (right panel). Note that at
high velocities both methods, as well as the approximate velocity law, yield very similar velocity stratifications. Near the sonic point the best-3
velocity law is steeper than the hydrodynamic velocity law. Its sonic point is closer to the star. Given this difference, the right panel shows that in
the photosphere where hydrostatic equilibrium controls the equation of motion, the shape of both velocity profiles is very similar.

of the temperature at the sonic point) in the down-stream direc-
tion, we include the d7'/dr term in Eq. (18). This implies that
the location of the sonic point is not affected. In the up-stream
direction the temperature gradient is negligible, and is ignored.

Figure 2 compares the best-8 and hydrodynamic velocity
laws for an O3 main sequence star. It shows that the best-f3 so-
lution behaves very similar to the numerical velocity law. Note
that if one zooms in on the location of the sonic point, one sees
that for the best-8 velocity structure 7y is positioned slightly
more inward, or, alternatively, that the velocity law is steeper
in the lower part of the wind. In the best-5 method, the abso-
lute scaling of the velocity structure in the photosphere is based
on the adopted velocity at the inner boundary of the model (see
Sect. 2.1). Therefore, only the position of r as predicted by the
hydrodynamical method is physically meaningful, albeit in the
context of the assumption I' = I'...

Once this iterative procedure has converged, and the non-
LTE state of the gas is computed throughout the atmosphere,
we iterate between 1sA-wIND and Mc-WIND in the same manner as
described in Sect. 2.4. Again, save for v, the fit parameters con-
verge on an accuracy of better than ten percent in a few iteration
cycles. For v, we are forced to adopt an accuracy of 20 percent.
Our predicted terminal velocities have at least this uncertainty.

2.5.1. Remaining assumptions and uncertainties

In the hydrodynamic solution the contribution of bound-free and
free-free opacity to the continuum radiation pressure is ignored
(see Sect. 2.1). In the photosphere, the contribution of these pro-
cesses to I is not negligible and may in fact be of the order of I'..

We use the Sobolev approximation for line radiation transfer.
The Sobolev approximation becomes ill-founded for small ve-
locity gradients dv/dr or velocities lower than the sound speed.
Pauldrach et al. (1986) showed that in the photosphere (where
the velocity is very small) the line force is underestimated in the
Sobolev approximation. Further out, in the region of the sonic
point, the line optical depth is overestimated compared to co-
moving frame values, implying an overestimate of the line force
in this region and therefore an overestimate of the mass-loss rate.

In addition to the above two sources of uncertainty to the
balance of forces at and below the sonic point is the quality of
the fitting function Eq. (6) in this part of the wind, that may be
uncertain by up to a factor of two. This is not expected to be a
big problem deep in the photosphere, as both the fit function as

well as the simulated Monte Carlo line force are small compared
to the radiative force on free electrons, but at the sonic point it
might play a role.

2.6. The line force at the sonic point: a test for the validity
of the best-f method

The critical point of the equation of motion is the sonic point. A
dissimilarity between the sonic point and the critical point may
occur when the line force is represented by an explicit function
of dv/dr, such as in CAK and modified-CAK theory (Pauldrach
etal. 1986). Although these descriptions provide extremely valu-
able insights, they do make assumptions regarding the behavior
of g'ri:‘(f (see Sect. 4.2). The same applies for our method. Here
we want to point out that Eq. (17) implies that — whatever the
description of the line force — at the sonic point gg':f > geff
as the pressure gradient terms 2a*/r and (k/m)dT /dr are small
compared to the line force. This is characteristic for monotonic
winds of early-type stars (see Feldmeier & Shlosman 2000, for
non-monotonic flows). Here ger = GM.(1 =T)/r? = R*U§SC/2r2.
This implies that for the velocity structure to be a physical so-
lution it must be that at the sonic point g™ /g.q = 1, as pointed
out by e.g. Castor et al. (1975). We require from our best-3 so-
lutions, that this criterion is fulfilled. If glr;':f /geft 18 NOt approxi-
mately equal to 1 at the sonic point, we interpret this as a failure
of the wind to become trans-sonic due to a lack of line force at
the location in the wind where it is essential. Dynamical effects
might occur, such as fall back, that are beyond the topic of this
paper. In any case, we interpret such solutions as cases in which
the wind cannot be initiated by line driving alone. For the hy-
drodynamical solution a failure to fulfill the above requirement

implies that we do not find a solution at all.

3. Results
3.1. Grid

In order to study our predictions of the wind properties of O-
type stars in a systematic manner, we define a grid of main
sequence, giant and supergiant stars using the spectral cali-
bration of Martins et al. (2005a) adopting theoretical effective
temperature scales. This calibration is based on non-LTE mod-
els that take into account line blanketing effects and an outflow-
ing stellar wind. We have applied solar abundances as derived
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Fig. 3. Predicted M, v, and g for the main se-
quence stars. Best-f solutions are given in red
and hydrodynamic solutions in green. For com-
parison, theoretical results by Vink et al. (2001)
are provided in blue.

Fig. 4. Predicted M, v, and f for giants. Colors
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by Anders & Grevesse (1989), consistent with the predictions of
Vink et al. (2000). For all stars in the grid, we have derived the
mass-loss rate, terminal velocity and S-parameter. The hydrody-
namic solution does not feature a 3, rather vy is the parameter that
describes the slope of the velocity law. To better facilitate a com-
parison between the different methods we have applied Eq. (16)
to convert y into a 8-value, referred to as 8,. The calculated grid
is given in Table 1. The final column lists the mass-loss rate as
predicted using the fitting formula of Vink et al. (2000) that as-
sume a fixed value of § = 1, but for an input variable value of
Voo = 2.0 Uesc.

Figures 3-5 show wind properties as a function of effective
temperature, for dwarfs, giants and supergiants respectively.

We present all the results of the best beta method, i.e. prior
to applying the requirement defined in Sect. 2.6 that at the sonic
point the acceleration due to the line force should approach the
effective gravity. Having pointed this out, we first draw attention
to the striking behavior in our best-3 predictions of dwarfs. In the
direction of decreasing temperature, the terminal flow velocity
drastically increases for spectral types 06.5 or later. For giants
the O7 star shows a similar behavior. We argue below that this
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have the same meaning as in Fig. 3.

behavior reflects the failure of the wind to become supersonic,
therefore we interpret these solutions to be non-physical.

3.2. Early O-stars (spectral types O3 through O6)

Let us, however, first focus on stars of spectral type earlier than
06.5. The two methods give quite comparable results. The best-
3 method predicts M values that are higher by up to ~0.1 to
0.3 dex in all cases, i.e. dwarfs, giants and supergiants. The best-
B terminal flow velocities are ~10 to 20 percent lower compared
to the hydrodynamic solutions. These differences can be under-
stood by focusing on the velocity structures near the sonic point.
In the best-8 solution the velocity law is steeper in the region
near the sonic point, therefore the sonic point is closer to the
photosphere. This leads to a higher mass-loss rate and lower ter-
minal velocity. The absolute value of the terminal velocity and
the ratio of v, to the effective escape velocity as a function of
temperature will be compared to observations in Sect. 4. Typical
error bars on the v, determination are 10 percent for the best-3
solutions (see Sect. 2.4) and 20 percent for the exact solutions
(see Sect. 2.5) due to Monte Carlo noise on the line force (see
also Fig. 1).
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The slope of the velocity law in the best-g solution increases
slightly with luminosity class, from typically 0.85 in dwarfs, to
0.95 in giants, to 1.0 in supergiants. In the hydrodynamic models
(method B) the B, value is typically 0.05-0.10 lower than the
corresponding best-f solution.

3.3. Late O-stars (spectral types 06.5 through 09.5)

Figures 3 and 4 show that for spectral type 06.5 the terminal ve-
locity of dwarfs and giants suddenly peaks, relative to spectral
type O6. We investigate this behavior in more detail in Fig. 6 in
which the line force from the Monte Carlo simulation is plotted
in the region around the sonic point for the best-8 solutions of the
dwarf O6 and O6.5 star. For the O6 star, the line force at the base
of the wind (below the sonic point) rises steeply. At first the dom-
inant contributors are iron lines, notably from Fe v. The ensem-
ble of transitions mainly occur between excited states, although
some are from meta-stable states that are relatively strongly pop-
ulated. Further out, the iron contribution levels out (at ~30%)
and other elements start to contribute to the force, such as car-
bon, nitrogen, sulfur, argon and nickel. The contribution of reso-
nance lines of carbon and nitrogen at the sonic point amounts to
~20%. Note that at the sonic point the ggﬁf /ger ~ 1 condition is
nicely fulfilled for the O6 V.

For the 06.5 star this is not the case. Here the line force at
the base of the wind (below the sonic point) rises only gradu-
ally. The difference with the O6 V star is that in this region iron
is mainly in the form of Fe1v, which for this particular spectral
flux distribution is less efficient in absorbing stellar flux than are
Fev lines!. Therefore the velocity structure will be shallower,
limiting the potential of other elements in contributing to the
force. As a result the sonic point starts to shift out to larger radii,
and we find that at the sonic point the cumulative line acceler-
ation is some 40% less than the effective gravity. We therefore
interpret this outcome as a failure of the wind to become super-
sonic at ry and do not consider it to be a physical solution.

The best-g solutions where we clearly encounter this prob-
lem have brackets placed around the predicted wind properties
as listed in Table 1. These include all the dwarf stars of spectral
type 06.5 or later. They are to be considered non-physical.

! We note that a similar situation occurs at spectral type B1, where
the relatively inefficient Fe 1v lines are replaced by the more effective
Fe m lines (Vink et al. 1999).

Fig. 5. Predicted M, v, and f for supergiants.
Colors have the same meaning as in Fig. 3.
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Fig. 6. The Monte Carlo line force as a fraction of the effective gravity
in the region around the sonic point for the best-f solution of the O6 V
(top panel) and O6.5 V (bottom panel) stars. The contribution of iron is
shown separately (blue dotted line). Note that in the case of the 06.5 star
the line acceleration does not balance the effective gravity at the sonic
point. This is interpreted as a failure to support a line driven wind.

1.08

The supergiants do not suffer from this problem. In all cases
the g&'}f /gesr ~ 1 was reached at the sonic point and we consider
them physical solutions. The terminal velocities for the 06.51
to 09.51 scatter by about 20%, with a small hint that here also
the 06.5 star has a higher v.,. The latter occurs because elements
such as silicon, iron and sulfur add to the line force in the outer
wind along with the normal contribution of carbon, nitrogen and

oxygen.
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Table 1. Model parameters, following Martins et al. (2005a), and predicted wind properties for dwarfs, giants and supergiants.

Model parameters Method A Method B Vink et al.
ST Tefr log gspec  log L R Mipec Vese log M Voo B =1 logM Voo By log M
K cms~2 Lo Ro Mg kms~! log Mo/yr kms~! at vg Mo/yr  km 57! Mo/yr
Dwarfs
3 44616 3.92 5.83 13.84 58.34 1054 —5.641 3794 0.92 yes -5.972 4530 0.87 -5.375
4 43419 3.92 5.68 1231 46.16 1016 -5.836 3599 0.90 yes -5.929 3973 0.83 -5.571
5 41540 3.92 5.51 11.08  37.28 992 -5.969 2838 0.84 yes -6.118 3394 0.79 -5.829
5.5 40062 3.92 5.41 10.61  34.17 990 —6.152 2762 0.84 yes —6.265 3260 0.77 —6.011
6 38151 3.92 530 1023 31.73 994 -6.386 2697 0.81 yes —6.493 3277 0.77 -6.234
6.5 36826 3.92 5.20 9.79 29.02 983 [-7.243] [6395] [1.87] no -6.918 5244 0.95 —6.427
7 35531 3.92 5.10 9.37 26.52 972 [-7.340] [7325] [2.65] no - - - —6.624
7.5 34419 3.92 5.00 8.94 2415 959 [-7.745] [12028]  [1.81] no - - - —6.820
8 33383 3.92 4.90 8.52 2195 944 [-7.781] [10650]  [1.57] no - - - -7.019
8.5 32522 3.92 4.82 8.11 19.82 923 [-7.802] [9427] [1.40] no - - - -7.167
9 31524 3.92 4.72 7.73 18.03 908 [-7.818] [8283] [1.21] no - - - -7.374
9.5 30488 3.92 4.62 7.39 16.46 892 [-7.793] [6704] [1.10] no - - - -7.590
Giants
3 42942 3.77 592 1657 58.62 915 —5.445 3275 0.90 yes -5.551 3756 0.87 -5.182
4 41486 3.73 5.82 1583 48.80 866 -5.540 2945 0.90 yes -5.641 3272 0.84 -5.303
5 39507 3.69 570 1526 4148 837 -5.630 2460 0.90 yes -5.810 3053 0.83 -5.491
5.5 38003 3.67 5.63 15.13 3892 833 -5.867 2852 0.96 yes -5.946 3160 0.83 -5.629
6 36673 3.65 556 1497 36.38 825 -6.100 3165 0.98 yes —6.108 3200 0.84 -5.769
6.5 35644 3.63 549 1474 33.68 810 -6.278 3534 1.07 yes -6.320 3743 0.91 -5.902
7 34638 3.61 543 14.51  31.17 798 [-6.804] [7140] [3.46] no - - - -6.016
7.5 33487 3.59 536 1434  29.06 785 —6.606 4408 1.20 yes - - - —6.166
8 32573 3.57 530 1411  26.89 768 —6.655 3668 1.05 yes —6.692 3857 0.93 —6.286
8.5 31689 3.55 524 1388 2484 749 —6.557 2266 0.80 yes -6.770 3490 0.91 —6.409
9 30737 3.53 5.17  13.69  23.07 733 -6.812 2960 0.90 yes - - - —6.564
9.5 30231 3.51 5.12 1337  21.04 709 —6.848 2594 0.89 yes -6.923 3002 0.85 —6.646
Supergiants
3 42551 3.73 6.00 1847  66.89 912 -5.347 3346 0.92 yes —5.445 3719 0.86 -5.083
4 40702 3.65 594 1891 58.03 837 -5.387 2877 0.92 yes -5.497 3299 0.86 -5.144
5 38520 3.57 5.87 1948 50.87 779 -5.561 2974 0.95 yes -5.554 3030 0.86 -5.247
5.5 37070 3.52 5.82 1992 4829 764 -5.611 2938 1.04 yes -5.664 3153 0.87 -5.352
6 35747 3.48 578 2033 4578 747 -5.751 3000 1.05 yes -5.814 3270 0.90 -5.438
6.5 34654 3.44 574  20.68 43.10 732 -5.945 3531 1.16 yes -5.920 3328 0.93 -5.520
7 33326 3.40 5.69 21.14 4091 715 -5.995 3230 1.09 yes -6.059 3606 0.96 -5.642
7.5 31913 3.36 564 21.69 39.17 702 -6.036 2702 1.03 yes -6.116 3043 0.90 -5.781
8 31009 3.32 560 22.03 36.77 678 —6.058 2366 1.06 yes —6.181 2756 0.88 -5.873
8.5 30504 3.28 5.58 2220 33.90 644 -6.143 2498 1.08 yes -6.189 2572 0.90 -5.895
9 29569 3.23 554 22,60 3195 629 —6.385 2988 1.05 yes -6.319 2640 0.91 -5.998
9.5 28430 3.19 549 2311 3041 613 —6.487 2921 1.08 yes —6.449 2642 0.93 —6.148

Notes. The label “spec” indicates that spectroscopic masses are adopted from Martins et al. Predictions give the mass-loss rate, terminal velocities
and S parameters for both method A (best-f solution) and B (hydrodynamic solution). The 11th column states whether or not the best-S solution
fulfills the requirement that at the sonic point glri;f /gerr = 1 (see Sect. 2.6). For the hydrodynamic solutions a failure of this requirement implies
that we do not find a solution at all. The last column provides the M by Vink et al. (2001) when we use ve, = 2.6 U in their mass-loss recipe.
The hydrodynamic solution does not provide a 3 value, but rather the fit parameter y. As to facilitate a comparison, we applied Eq. (16) to convert

this y into a S.

The value of g for the late spectral types increases to 1.05
from 1.0 for earlier spectral types. The 3, values associated to
the hydrodynamic solutions increase marginally compared to
that in early-O stars.

4.1. Comparison to Vink et al. mass-loss recipe

The Monte Carlo method by de Koter et al. (1997) as summa-
rized in Sect. 2 has been used by Vink et al. (2000, 2001) to
compute a grid of mass-loss rates for O-type stars from which
a fitting formula has been derived that provides M as a function
of luminosity, effective temperature, mass and the ratio of the
terminal velocity over the effective escape velocity, i.e. Voo /Uesc-
This mass loss prescription is widely used in stellar evolution
predictions (see e.g. Meynet & Maeder 2003; Palacios et al.
2005; Limongi & Chieffi 2006; Eldridge & Vink 2006; Brott
et al. 2009; Vink et al. 2010).

4. Discussion

In discussing our results we first compare with previous theo-

retical predictions for mass-loss rates and terminal velocities in
Sects. 4.1 and 4.2. We compare to observations in Sect. 4.3.
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For the spectral range that is investigated here the canoni-
cal value, based on empirical findings, for the ratio of terminal
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Fig.7. The wind energy as a function of the effective temperature for dwarfs (left panel), giants (middle panel) and supergiants (right panel). The
best-8 method is given by the red squares, the hydrodynamic method by the green circles and the Vink et al.-recipe by the blue triangles. Note that
the kinetic energy in the wind is almost equal for all three methods. The mass-loss rate and terminal velocity for the three methods vary.

velocity over escape velocity is 2.6. To compare to the Vink et al.
(2000) results, we calculated the mass-loss rate of our grid of
stars using their prescription, that assumes S = 1. The results
are given in the last column of Table 1. Figure 7 shows the to-
tal energy that is extracted from the radiation field and that is
transferred to the stellar wind for all three methods: best-3, hy-
drodynamic and Vink et al. prescription. All three methods yield
similar, but not identical results in the regime where the best-3
and hydrodynamical method provide physical solutions. In terms
of mass loss rates, we find that the predictions with the best-3
and hydrodynamical method are on average about 0.2 to 0.3 dex
lower than Vink et al., again with the clear exception of the stars
for which we fail to drive a stellar wind. As suggested by the
similar wind energies the terminal velocities predicted by our
best-3 and hydrodynamical method turn out to be higher than
adopted by Vink et al.. We discuss these v, in more detail in
Sect. 4.3 as well as the reason why Vink et al. are able to predict
M values for late O-type dwarfs and giants, where we fail.

We emphasize that if the Vink et al. prescription is used as-
suming the terminal velocities predicted by our best-3 or hydro-
dynamical method, wherever these yield physical solutions, the
mass loss rates agree to within ~0.1 dex.

4.2. Comparison to (modified) CAK-theory

Since Lucy & Solomon (1970) it is generally accepted that the
winds of massive stars are driven by the transfer of momentum
(and energy) from the radiation field to the atmospheric gas, and
that atomic transitions play a pivotal role in this process. Castor
et al. (1975) describe the force associated to atomic transitions
by introducing a force multiplier

Tt (1)
M = — =
=50

where k and « are fitting parameters and ¢ is an optical depth like
parameter given by:

do\™"
I=0cpln|== :

kt®, (19)

dr (20)

Here p is the density, vy, the thermal velocity of carbon ions
at the effective temperature of the star (Pauldrach et al. 1986)
and o the mass scattering coefficient of the free electrons. This
parametrization of the line force is based on the expression of
the force multiplier for a single spectral line,

AVD FV 1

Miine(t) = 7 [1 —exp(mp)],

21)

where Avp is the Doppler shift of the frequency of the spectral
line due to the thermal velocity of the particles in the wind, F, is
the flux at frequency v, F the total flux and 7 is the ratio of line
opacity to electron scattering opacity. Note that for optically thin
lines Mine(¢) becomes independent of ¢, whilst for optically thick
lines Mi;,e(?) o< t. The cumulative effect of an ensemble of lines
of various strengths is then expressed by Eq. (19). The constant
a in this expression is a measure of the ratio of line accelera-
tion from optically thick lines only to the total line acceleration
and £ is related to the overall (line)strength of the ensemble of
lines. See Puls et al. (2000) for a more in depth discussion on the
CAK line force. It is assumed that @ and k are constants through-
out the wind (but see Kudritzki 2002). The effects of changes in
the ionization structure of the wind are modeled by multiplying
expression 19 by the term (1n./ W)?, introduced by Abbott (1982).
n. is the electron number density, W the dilution factor and ¢ is
a constant.

The parametrization of the line force as given by Eq. (19)
leads to an analytical expression for M and v., as a function of
the fitting parameters k and « and the stellar parameters. These
expressions are given by Castor et al. (1975). Pauldrach et al.
(1986) extend these expressions to account for the finite size of
the stellar disk.

To allow for a comparison with Abbott’s results for the be-
havior of the force multiplier as a function of #, we ignore the
effect of n./W. We calculated the force multiplier of the simu-
lated line force, i.e. Eq. (6), at all our radius grid points and de-
termined the corresponding value ¢. Typically, the optical depth
like parameter ranges from ¢ = 107> to large 7. At large ¢ the
line force can be neglected compared to the continuum radiation
force. Following Abbott (1982), we do not consider these large ¢
points in this discussion but we focus on the range t < 10703,

Figure 8 compares the behavior of the force multiplier for
our best-g solution of the O3V star. Note that our Monte Carlo
solution shows that M(t) can not be fully described by a strict
power law, as assumed in (modified) CAK, or equivalently, « is
not independent of # (Vink 2000). Two causes can be pointed out
(see e.g. Puls 1987; Schaerer & de Koter 1997): 1) the presence of
a diffuse field due to multiple scatterings; ii) a complex behavior
of radial stratification of the excitation and ionization, specif-
ically near the sonic point. Here the wind accelerates rapidly,
which causes a sudden steep drop in the electron density. As a
result, elements which happen to have two dominant ionization
stages (near r5) may temporarily re-ionize.

The introduction of a §-dependence of the CAK force multi-
plier in Eq. (19), by adding the term (n./W)°, does not improve
the fit to the Monte Carlo line force. This extended CAK de-
scription describes a plane through the three dimensional space
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Fig. 8. Top panel: the logarithm of the force multiplier M(¢) for the hy-
drodynamic solution of our O3 V model (red plusses) as a function of
the optical depth like parameter ¢; our fit function Eq. (6) to this data
(green line) and the CAK fit function Eq. (19) to this data (blue line).
Bottom panel: the force multiplier as a function of radius r for the same
star. Note that the CAK force multiplier is smaller than ours for large
radii, resulting in a lower predicted ve..

spanned by the logarithms of ¢, n./W and M(¢), while the Monte
Carlo line force follows a curved line through this space and is
thus not confined to that plane.

Our fitting function, Eq. (6), nicely captures the curved be-
havior of the line force in the supersonic part of the flow?.

Using the force multipliers k and o as derived from the
Monte Carlo line force we can compute the CAK mass loss and
terminal velocity (Castor et al. 1975). The Mcax values derived
from these k and « are typically 0.0 to 0.3 dex higher than our
best-S results and our hydrodynamic solutions. A comparison of
the terminal velocities is not meaningful since the slope in the su-
personic part of the wind is not represented well by «. Therefore,
the velocities derived with our k and « are on the order of the es-
cape velocity. If we compare to the modified CAK terminal ve-
locities, following (Pauldrach et al. 1986), we note that they are
slightly lower than the velocities we derive (see also Sect. 4.3.1).

4.3. Comparison with observations

In this section, we compare our results to observations. We first
compare predicted and empirical terminal velocities. Given that

2 We also compared our fitting formula to the output of the starting
model of the iteration cycle of the O3V star. This allows us to assess
whether the iteration procedure perhaps forces the line force into the
shape of Eq. (6). However, also the line force resulting from the first
iteration cycle is well represented by our description, indicating that it
is quite generic.
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we find that for stars more luminous than 10°2 Lg, our mass-loss
rates agree well with the Vink et al. prescription — which has
been extensively scrutinized (see e.g. Repolust et al. 2004) — we
focus the comparison of empirical and predicted mass-loss rates
on lower luminosity stars, for which a “weak-wind problem” has
been identified.

4.3.1. Terminal velocities

Several studies have been devoted to measuring the terminal ve-
locities of early-type stars. Summarizing the work by Howarth
& Prinja (1989); Prinja et al. (1990); Lamers et al. (1995);
Howarth et al. (1997); Puls et al. (1996), and Kudritzki et al.
(1999), Kudritzki & Puls (2000) derive that the average value of
empirically determined terminal velocities for stars hotter than
21000K is v = 2.65 vesc. The quoted accuracy of this mean
value is roughly 20 percent. The v, values are “measured” from
the maximum blue-shifted absorption vy, in resonance lines of
ions such as Civ, Nv and Si1v, located in the ultraviolet part
of the spectrum. These measurements are prone to systematic
uncertainties, that have been extensive discussed in the litera-
ture (see for instance the above references). They may work in
both directions. Effects that may cause the terminal velocity to
be higher than vy, are measurements from lines that are not
saturated in the outer wind (where for all practical purposes v
is reached) or from ions that recombine in the outer wind. The
former may be expected for stars with weak winds, the latter is
more likely to occur in very dense winds. Effects that may cause
Vs to be smaller than vy,,x may be the presence of turbulence
in the outflow or the presence of strong atmospheric absorption
at wavelengths slightly bluer than the wavelength correspond-
ing to the terminal velocity, mistakenly contributed to absorp-
tion in the resonance line. Given the possible occurrence of these
systematic effects, the uncertainty in the terminal velocity may
be 10-15 percent for supergiants, and substantially larger than
20 percent for dwarfs. The error in the ratio v /vesc also includes
uncertainties in vesc. The largest contribution to this error comes
from uncertainties in the stellar masses, that have been derived
from a comparison to tracks of stellar evolution. It seems realis-
tic to adopt a 30—40 percent uncertainty in the empirical values
of v /Vesc Tather than the 20 percent; quoted at the beginning of
this section.

Although Kudritzki & Puls (2000) (and also Lamers et al.
1995) conclude that the ratio ve, /vesc 18 constant for O-type stars,
the results of Howarth & Prinja (1989) show this ratio to de-
crease with temperature, from about 3.5 at 31 500K to about 2.4
at 43 500 K. A luminosity class dependence of ve /vesc has to our
knowledge not yet been reported.

Figure 9 shows our predictions of v.,/vesc plotted against
temperature. Different symbol types denote best-3, hydrody-
namic results and empirical values from Howarth & Prinja
(1989) and Lamers et al. (1995). As discussed in Sects. 2.4
and 2.5 our predictions of v, have individual random error bars
of 10 to 20 percent

In all cases, our predictions result in terminal velocities that
are larger than observed. For the main sequence O3-O6 stars the
mean predicted ratio is 3.1 for the best-8 method and 3.6 for
the hydrodynamical method. This is 17% and 36% higher than
the observed mean value of 2.65. For giants the discrepancies
are respectively 30% and 44%. For the supergiants the largest
discrepancies are found. Using all O stars, the best-8 method
over-predicts the ratio by 54%. The hydrodynamical method
yields values that are on average 60% higher. The discrepancy
between theory and observations thus seems to increase from
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Vinf/ Vesc

1 Q1

Fig. 9. Predictions of the ratio of terminal velocity over effective escape
velocity at the surface for both the best-g (in red) and hydrodynamic
method (in green) as a function of effective temperature. The blue cir-
cles denote the data from Lamers et al. (1995) and the black triangles
show the empirical values from Howarth & Prinja (1989) in which v,
is determined from the ultraviolet P-Cygni profiles.

dwarfs to giants to supergiants. Given the uncertainties, the over-
prediction for the dwarfs may not be significant.

The predictions show a tentative trend of a decreasing ve, /Vesc
with temperature. As pointed out, recent empirical studies do not
recover this behavior. Interestingly, this type of trend appears to
be visible in the study by Howarth & Prinja (1989). Their trend
is plotted in Fig. 9, featuring a slope that is comparable to the
slope of our predictions. However, given the uncertainties in the
current empirical estimates of v.,, we do not feel that this can be
applied to (further) scrutinize the theory.

Larger predicted terminal velocities are also reported by
Lamers et al. (1995). In their sample, dominated by supergiants,
a comparison to CAK models yields over-predictions by about
33 percent, so slightly less compared to what we find. The rea-
son for the over-predicted v, values is unclear. Possible explana-
tions (for part of the problem) include, i) overestimated correc-
tions for the effect of turbulence (see above); ii) a clumped and
porous outer wind, hampering the acceleration of the flow in this
part of the outflow from reaching as high a terminal velocity as
predicted here and in (modified) CAK (see Muijres et al. 2011);
or iii) a systematic over-estimate of stellar masses. A system-
atic discrepancy between masses of galactic stars derived from
comparing their positions in the Hertzsprung-Russell diagram
to evolutionary tracks and masses calculated from the spectro-
scopically determined gravity was reported by e.g. Herrero et al.
(1992, but see Weidner & Vink 2010). Improvements in both
the model atmospheres and fitting procedure seem to have re-
duced, but possibly not yet eliminated, the size of this discrep-
ancy (Repolust et al. 2004; Mokiem et al. 2005).

Unfortunately, progress in resolving the differences in pre-
dicted and empirical ve/vese ratios quite strongly depends on
our knowledge of stellar masses. Hopefully, detailed studies
of very large populations, such as the VLT-FLAMES Survey
of massive stars (Evans et al. 2005) and the VLT-FLAMES
Tarantula Survey (Evans et al. 2011) may help resolve this
issue.

4.3.2. Mass loss rates: the weak-wind problem

Relatively recent, analysis of appreciable samples of galactic
stars using sophisticated model atmospheres has revealed a mis-
match, possibly as high as a factor of 100, between empirically

derived mass-loss rates and theoretical predictions for stars less
luminous than about 1032 L, (see e.g. Martins et al. 2005b;
Mokiem et al. 2007; Marcolino et al. 2009, and Fig. 10). As mass
loss scales with some power of the luminosity, this problem oc-
curs below a critical mass-flux and is termed the “weak-wind”
problem (for a recent review, see Puls et al. 2008). Proposed
explanations address deficiencies in determining the empirical
mass-loss rates as well as in mass-loss predictions. Regarding
empirical M determinations it should be realized that only UV
resonance lines can be used as a diagnostic in the weak-wind
regime, whilst in the (lets call it the) strong wind regime Ha and,
in the Galactic case, radio-fluxes may also be used. The ions that
produce the UV resonance profiles, such as C1v, Nv and Siv,
often represent minor ionization species. The ionization continua
of these species border the soft X-ray regime and therefore wind
material may be susceptible to (non-thermal) processes produc-
ing soft X-ray emission, such as shocks or magnetic mechanisms
(Martins et al. 2005b).

From a theoretical viewpoint, potential causes of the weak-
wind problem include the decoupling of the major driving ions
(the metals) from the bulk of the plasma at low densities,
when Coulomb coupling fails, and the subsequent ionic runaway
(Springmann & Pauldrach 1992; Babel 1995, 1996; Krticka &
Kubat 2000; Owocki & Puls 2002; Krticka et al. 2003); the shad-
owing of wind-driving lines by photospheric lines (Babel 1996),
and the neglect of curvature terms in the velocity field (Puls et al.
1998; Owocki & Puls 1999).

The results presented in this paper point to a cause for the
weak winds related to the predictions of mass loss. This potential
cause was quantitatively explored by Lucy (2010), who pointed
out that the global dynamical constraint imposed by Vink et al.
(2000) and recapped in Sect. 2.2 (notably Eq. (4)) need not guar-
antee that the derived mass-loss rates are consistent with station-
ary trans-sonic flows. Here we have shown that although this
assumption by Vink et al. (2000) is allowed for stars with lu-
minosities above 10>2 L, it is not for lower luminosities. This
luminosity limit for galactic O stars agrees with the empirical
limit at ~10°2 Ly, to within 0.1 dex in log L. The physical cause
of the different M regimes (weak and strong winds) is a lack
of line acceleration at the base of the wind. In main sequence
stars, a contribution of Fev lines is present in O6 stars and is
missing in the (lower luminosity and cooler) 06.5 stars, where
Ferv is more dominant (see Sect. 3.3). The importance of the
Fe v/1v ionization balance has been pointed out by Lucy (2010)
and is confirmed by our results.

In one fundamental aspect our results differ from that of
Lucy (2010). For the sample of low luminosity stars (i.e. less
than 10°2 L) investigated by Marcolino et al. (2009), Lucy
(2010) predicts mass-loss rates that are about 1.4 dex lower than
anticipated by Vink et al. (2000). The hydrodynamical method
presented in this paper, which identifies the ability of the star to
drive an outflow with a balance of the line force and the gravi-
tational force at the sonic point, predicts that these stars do not
have a wind at all. As it is clear form the presence of the shape of
UV resonance lines that these stars do have stellar winds (with
average mass loss rates that are 0.8 dex lower than Lucy’s pre-
dictions), our result suggests that either some other mechanism
is driving the wind or is supplementing the line acceleration at
the base of the wind. Which force (or forces) counterbalances
gravity remains to be identified, but perhaps magnetic pressure,
effects of turbulence, and/or pulsations may play a role.

We do point out that once material is accelerated, there
is sufficient opacity available to further accelerate it to larger
velocities. Interestingly, Martins et al. (2005b) report that for
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Fig. 10. The modified wind momentum Dyon = V(R./Ro)Mv,, as a
function of stellar luminosity using the data of Mokiem et al. (2007).
Black symbols refer to mass-loss estimates based on the fitting of the
Ha-profile; grey symbols are mass-loss estimates that rely strongly on
ultraviolet resonance lines. Note that the Ha estimates at L < 10>? L,
are upper limits. A steep jump — of about 2 dex — can be seen at a lu-
minosity of 1032 L. The red dots are our predictions for Dyop. The
squares denote the supergiants, the circles the giants and the triangles
the main-sequence stars. Below 10°2 L, we do not find wind solutions
for dwarf stars. At higher luminosity our predictions are close to the ob-
served values. We therefore interpret the origin of the weak-wind prob-
lem in dwarf stars to be connected to a lack of line driving for objects
less bright than about 10°2 L.

their sample of galactic weak-wind objects the average value of
Uoo /Uesc 18 Tather close to unity, and not 2.65. Although they con-
cede that given the low wind densities their v, values may be
lower limits, they point to a mechanism of X-ray heating pro-
posed by Drew et al. (1994) that may perhaps explain these re-
sults. In the outer atmospheres of weak winds the cooling times
can become quite long, such that heating of the material in for
instance shocks may warm up the medium and strongly modify
the ionization structure, in effect canceling the line force.

Modified CAK theory does not predict the weak-wind dis-
continuity. In this theory the adopted values for k and « are
based on the input stellar spectrum, while the dilution and exci-
tation/ionization changes throughout the wind are described by a
fixed 6. Therefore, no self-consistent feedback between the wind
properties and the line acceleration is accounted for. We note that
in the predictions by Pauldrach et al. (2001) a change of slope
of the modified wind momentum luminosity relation can be seen
at a luminosity of about 1032 L. It is tentative to suggest that if
Pauldrach et al. would have implemented the iterative procedure
that we use, they might have identified a weak-wind regime on
theoretical grounds.

5. Conclusions

We have presented new mass-loss rates and terminal wind veloc-
ities for a grid of massive O-type stars, improving the treatment
of physics in the Monte Carlo method by Abbott & Lucy (1985)
and de Koter et al. (1997) to predict wind properties of early-
type stars. Two new types of solutions have been discussed. First,
building on the work of Miiller & Vink (2008), we present so-
called best-g solutions in which one still assumes a S-type veloc-
ity law (see Eq. (2)) in the wind, but in which the terminal veloc-
ity and 3 are no longer adopted but constrained by requiring that
they best fit the line force (distribution). Second, we abandon
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the S-type velocity structure and introduce numerical solutions
of the wind stratification. Our main conclusions are:

1. For stars more luminous than 10°2 Ly, the best-8 and hydro-
dynamical method yield 8 and v, results in agreement with
each other (within 5-20 percent), whilst the mass-loss rates
agree within a factor of 2.

2. Furthermore, both methods are in very good agreement with
the mass-loss prescription by Vink et al. (2000) using our
terminal velocities in their recipe. This implies that the
main assumption entering the method on which the Vink
et al. results are based — i.e. that the momentum equation
is not solved explicitly — is not compromising their pre-
dicted M in this luminosity range. Terminal velocity is an
input parameter to the Vink et al. recipe. If we apply the
canonical value v, = 2.6ves, the discrepancy between our
mass-loss rates and their mass-loss rates is of the order of
0.2, although occasionally 0.6 dex.

3. At luminosities $10°2 L our hydrodynamical method fails
to produce an outflow because of a lack of line driving at the
base of the wind. This critical luminosity coincides with the
onset of the “weak-wind problem”.

4. For O dwarfs the above luminosity criterion translates to
a boundary between starting and failing to start a wind at
06/06.5. The direct cause of the failure to start a wind in
06.5 V stars is the lower luminosity and the lack of Fe v lines
at the base of the wind compared to O6 V stars.

5. The fact that our hydrodynamical method fails to drive a
wind at L < 10’2 L, may imply that some other mechanism
is driving the weak winds or is supplementing the line accel-
eration at the base of the wind to help drive gas and initiate
the wind.

6. For stars more luminous than 10>? Ly, we predict, using the
best-8 and hydrodynamical method, terminal velocities that
are typically 35 and 45 percent higher than observed. Such
over-predictions are similar to what is seen in MCAK-theory
(Lamers et al. 1995).

7. We predict beta values in the range 0.85 to 1.05, with a trend
that supergiants have slightly higher 8 values than dwarfs.
This range of 5 values agrees very well with empirical results
by Massa et al. (2003).

Acknowledgements. We would like to thank the referee Achim Feldmeier for
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