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Abstract We study the structure of the neutrino-mass
matrix in the minimal gauged U(1)Lμ−Lτ model, where three
right-handed neutrinos are added to the Standard Model in
order to obtain non-zero masses for the active neutrinos.
Because of the U(1)Lμ−Lτ gauge symmetry, the structure
of both Dirac and Majorana mass terms of neutrinos is
tightly restricted. In particular, the inverse of the neutrino-
mass matrix has zeros in the (μ,μ) and (τ, τ ) components,
namely, this model offers a symmetric realization of the so-
called two-zero-minor structure in the neutrino-mass matrix.
Due to these constraints, all the CP phases – the Dirac CP
phase δ and the Majorana CP phases α2 and α3 – as well as
the mass eigenvalues of the light neutrinos mi are uniquely
determined as functions of the neutrino mixing angles θ12,
θ23, and θ13, and the squared mass differences �m2

21 and
�m2

31. We find that this model predicts the Dirac CP phase δ

to be δ ≃ 1.59π–1.70π (1.54π–1.78π ), the sum of the neu-
trino masses to be

∑
i mi ≃ 0.14–0.22 eV (0.12–0.40 eV),

and the effective mass for the neutrinoless double-beta decay
to be 〈mββ〉 ≃ 0.024–0.055 eV (0.017–0.12 eV) at 1σ (2σ )
level, which are totally consistent with the current experi-
mental limits. These predictions can soon be tested in future
neutrino experiments. Implications for leptogenesis are also
discussed.

1 Introduction

A gauged U(1)Lμ−Lτ symmetric extension of the Standard
Model (SM), where Lμ and Lτ stand for the μ and τ num-
bers, respectively, has widely been considered so far, as it
is one of the several possibilities of gauging an accidental
U(1) symmetry in the SM [1–4]. An attractive feature of this
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class of models is that the muon g −2 anomaly [5–8] may be
explained by the loop contribution of the U(1)Lμ−Lτ gauge
boson if its mass lies around the weak scale or lower [9–12],
though this possibility is severely restricted by the searches
of the neutrino trident production process [13–16]. These
models may also explain anomalies in flavor physics [15,17]
and offer promising candidates for dark matter in the Uni-
verse [18–22]. For other recent studies on gauged U(1)Lμ−Lτ

models, see Refs. [23–35].
On the other hand, neutrino oscillation data show that at

least two of the active neutrinos have non-zero masses and
there is sizable mixing among these neutrinos. This can be
accounted for if we add right-handed neutrinos to the theory
and couple them to the SM lepton and Higgs fields through
the Yukawa couplings. After the Higgs field acquires a vac-
uum expectation value (VEV), these terms lead to the Dirac
mass terms for the neutrinos. In addition, the right-handed
neutrinos can have Majorana mass terms, and if these masses
are much larger than the electroweak scale, then the small-
ness of the neutrino masses can naturally be explained by the
seesaw mechanism [36–39].

In gauged U(1)Lμ−Lτ models, however, the neutrino-mass
structure is tightly restricted since the second and third gener-
ation leptons are charged under the U(1)Lμ−Lτ gauge sym-
metry [40–44]. In fact, in the U(1)Lμ−Lτ preserving limit,
the Dirac mass matrix is diagonal, while in the Majorana
mass matrix only the (e, e), (μ, τ), and (τ, μ) components
can be non-zero. Such a simple structure cannot explain neu-
trino oscillation data, and therefore we need to break the
U(1)Lμ−Lτ symmetry. To that end, one usually introduces
a SM singlet scalar that has a non-zero U(1)Lμ−Lτ charge
such that its VEV spontaneously breaks the U(1)Lμ−Lτ

gauge symmetry and gives a mass to the U(1)Lμ−Lτ gauge
boson. We, however, note that even though the U(1)Lμ−Lτ

gauge symmetry is spontaneously broken, the structure of the
neutrino-mass matrix is still highly constrained if we intro-
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duce just one U(1)Lμ−Lτ -breaking scalar field and consider
only renormalizable interactions. Therefore, it is interesting
to study if this minimal setup can accommodate the neutrino-
mass structure that is consistent with the present neutrino
oscillation data.

In this paper, we consider this “minimal” gauged
U(1)Lμ−Lτ model where three right-handed neutrinos and
one U(1)Lμ−Lτ -charged SM singlet scalar field are added to
the SM. Then it turns out that the observed neutrino mixing
structure can be obtained only when the U(1)Lμ−Lτ -breaking
scalar field has the U(1)Lμ−Lτ charge ±1. In this case, the
(μ,μ) and (τ, τ ) components of the Majorana mass matrix
for the right-handed neutrinos remain zero even after the
U(1)Lμ−Lτ symmetry is spontaneously broken. Because of
this structure of the Majorana mass matrix together with the
diagonal Dirac mass matrix, the inverse of the neutrino-mass
matrix also has zeros in the (μ,μ) and (τ, τ ) components
[42,45]. The minimal gauged U(1)Lμ−Lτ model thus gives
a concrete realization of a two-zero-minor model [46,47].
Intriguingly, due to the condition that the (μ,μ) and (τ, τ )

components in the inverse of the neutrino-mass matrix van-
ish, all the CP phases in the neutrino mixing matrix – the
Dirac CP phase δ and the Majorana CP phases α2 and α3

– as well as the mass eigenvalues of the light neutrinos
are uniquely determined as functions of the neutrino mix-
ing angles θ12, θ23, and θ13, and the squared mass differ-
ences �m2

21 and �m2
31. As we shall see, this prediction is

independent of the U(1)Lμ−Lτ -symmetry breaking scale, and
thus can be regarded as a generic prediction in the minimal
gauged U(1)Lμ−Lτ model. We find that the predicted values
of the neutrino parameters are consistent with the present
neutrino data and can be tested in future neutrino experi-
ments. We also discuss the implications of our results for
leptogenesis.

This paper is organized as follows. In Sect. 2, we intro-
duce the minimal gauged U(1)Lμ−Lτ model and examine
the neutrino-mass structure in this model. We then show
in Sect. 3 the predicted values of the Dirac CP phase
δ, the sum of the neutrino masses

∑
i mi , and the effec-

tive mass for the neutrinoless double-beta decay 〈mββ〉
using the neutrino mixing angles and the squared mass dif-
ferences obtained in neutrino oscillation experiments. In
Sect. 4, we discuss the implications for the leptogenesis.
Finally, our conclusions are summarized in Sect. 5. This
paper ends with two appendices which give further details
of our analysis. In Appendix A, we present some mis-
cellaneous formulas which are useful to study the neu-
trino structure in the minimal gauged U(1)Lμ−Lτ model. In
Appendix B, we perform similar analyses for the minimal
gauged U(1)Le−Lμ and U(1)Le−Lτ models, and show that
these minimal models fail to explain the observed neutrino
oscillation data.

2 Neutrino-mass structure in the minimal gauged

U(1)Lµ−Lτ model

To begin with, we describe the minimal U(1)Lμ−Lτ model
which we discuss in this paper. The model possesses a new
U(1) gauge symmetry U(1)Lμ−Lτ . Under this gauge symme-
try, μL ,R and νμ have the U(1)Lμ−Lτ charge +1, τL ,R and
ντ have the U(1)Lμ−Lτ charge −1, and the other SM fields
have the zero U(1)Lμ−Lτ charge. We also introduce three
right-handed neutrinos Ne, Nμ, and Nτ to obtain non-zero
neutrino masses. The U(1)Lμ−Lτ charges of these fields are
0, +1, and −1, respectively.1

In the (e, μ, τ) basis, the U(1)Lμ−Lτ charges of the Dirac
Yukawa terms are

QLμ−Lτ (Dirac) :

⎛
⎝

0 1 −1
−1 0 −2
1 2 0

⎞
⎠ , (1)

where the (α, β) entry in the above matrix represents the
U(1)Lμ−Lτ charge of the fermion bilinear term N c

α Lβ , with
α, β the flavor indices. For the Majorana mass terms of the
right-handed neutrinos, on the other hand, we have

QLμ−Lτ (Majorana) :

⎛
⎝

0 1 −1
1 2 0

−1 0 −2

⎞
⎠ , (2)

where the (α, β) component indicates the U(1)Lμ−Lτ charge
of the fermion bilinear term Nα Nβ . From Eq. (1), we find that
the Dirac Yukawa matrix is always diagonal in the gauged
U(1)Lμ−Lτ models – for the same reason, the charged-lepton
Yukawa matrix is also diagonal. As long as renormalizable
interactions are considered, this structure is not violated even
if we introduce a U(1)Lμ−Lτ -breaking scalar field. On the
other hand, the charges of the Majorana mass matrix in Eq. (2)
show that only the (e, e), (μ, τ), and (τ, μ) components can
have non-zero values in the U(1)Lμ−Lτ -symmetric limit. As
we mentioned above, with this simple structure, we cannot
explain the required values of the neutrino mixing angles. We
therefore introduce a scalar boson σ which has a non-zero
U(1)Lμ−Lτ charge, and couple it to right-handed neutrinos.
After this scalar field develops a VEV, these couplings lead
to Majorana mass terms of the right-handed neutrinos. If the
scalar field has the U(1)Lμ−Lτ charge ±1, then the (e, μ),

1 Generically speaking, the U(1)Lμ−Lτ charges of the right-handed
neutrinos can be (0, a,−a) without spoiling anomaly cancelation con-
ditions. We, however, find that only the |a| = 1 case gives a neutrino-
mass structure that can explain the neutrino oscillations. Then we can
define the right-handed neutrinos with the U(1)Lμ−Lτ charge 0, + 1, and
− 1, as Ne, Nμ, and Nτ , respectively, without loss of generality. We also
note that the introduction of two right-handed neutrinos is insufficient
since the observed neutrino mixing angles cannot be reproduced in this
case.
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(e, τ ), (μ, e), and (τ, e) components in Eq. (2) can be induced
after the scalar field acquires a VEV, while the (μ,μ) and
(τ, τ ) can be generated if the scalar has the U(1)Lμ−Lτ charge
± 2. In the latter case, however, the Majorana mass matrix
becomes block-diagonal, which makes it unable to explain
the observed neutrino mixing angles. We are thus left with
the case where the scalar field has the U(1)Lμ−Lτ charge
± 1, and we take it to be + 1 in the following discussion.
We refer to this model as the minimal gauged U(1)Lμ−Lτ

model.
The interaction terms relevant to neutrino masses are then

given by

�L = −λe N c
e (Le · H) − λμN c

μ(Lμ · H) − λτ N c
τ (Lτ · H)

−
1

2
Mee N c

e N c
e − Mμτ N c

μN c
τ − λeμσ N c

e N c
μ

− λeτσ
∗N c

e N c
τ + h.c. , (3)

where the dots indicate the contraction of the SU(2)L indices.
After the Higgs field H and the singlet scalar σ acquire VEVs
〈H〉 = v/

√
2 and 〈σ 〉,2 respectively, these interaction terms

lead to the neutrino-mass terms,

Lmass = −(νe, νμ, ντ )MD

⎛
⎝

N c
e

N c
μ

N c
τ

⎞
⎠

−
1

2

(
N c

e , N c
μ, N c

τ

)
MR

⎛
⎝

N c
e

N c
μ

N c
τ

⎞
⎠ + h.c. , (4)

where

MD =
v

√
2

⎛
⎝

λe 0 0
0 λμ 0
0 0 λτ

⎞
⎠ ,

MR =

⎛
⎝

Mee λeμ〈σ 〉 λeτ 〈σ 〉
λeμ〈σ 〉 0 Mμτ

λeτ 〈σ 〉 Mμτ 0

⎞
⎠ . (5)

The mass matrix for the light neutrinos is then given by [36–
39]

MνL
≃ −MDM

−1
R M

T
D . (6)

An explicit expression forMνL
can be found in Appendix A.1.

We can diagonalize this mass matrix by using a unitary matrix
U (PMNS matrix [48]):

U T
MνL

U = diag(m1, m2, m3) , (7)

2 We can always take the VEV of σ to be real by using U(1)Lμ−Lτ

transformations.

which can be parametrized as

U =

⎛
⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠

×

⎛
⎜⎝

1

ei
α2
2

ei
α3
2

⎞
⎟⎠ , (8)

where ci j ≡ cos θi j and si j ≡ sin θi j for θi j = [0, π/2],
δ = [0, 2π ], and we have ordered m1 < m2 without loss
of generality. We follow the convention of the Particle Data
Group [48], where m2

2 − m2
1 ≪ |m2

3 − m2
1| and m1 < m2 <

m3 (Normal Ordering, NO) or m3 < m1 < m2 (Inverted
Ordering, IO).

If mi = 0 (i = 1 or 3), then det(MνL
) = 0. As shown in

Appendix A.1, in this case we cannot have desired mixing
angles since MνL

becomes block-diagonal. Thus, we focus
on the mi 	= 0 case, where we obtain from Eqs. (6) and (7)

M
−1
νL

= Udiag
(

m−1
1 , m−1

2 , m−1
3

)
U T

≃ −
(
M

−1
D

)T

MRM
−1
D . (9)

We then notice that the (μ,μ) and (τ, τ ) components of these
terms vanish since MD is diagonal and MR has zeros in
these components. This structure is sometimes called two-
zero minor [46,47]. For other previous studies of the two-
zero minor structure, see Refs. [49,50]. These two vanishing
conditions then lead to

1

m1
V 2

μ1 +
1

m2
V 2

μ2 eiα2 +
1

m3
V 2

μ3 eiα3 = 0 , (10)

1

m1
V 2

τ1 +
1

m2
V 2

τ2 eiα2 +
1

m3
V 2

τ3 eiα3 = 0 , (11)

where the matrix V is defined by U = V · diag(1, eiα2/2,

eiα3/2). Notice that neither the U(1)Lμ−Lτ -breaking singlet
VEV 〈σ 〉 nor Majorana masses Mee and Mμτ appear in these
conditions explicitly. For this reason, the following discus-
sions based on these equations have little dependence on the
U(1)Lμ−Lτ -symmetry breaking scale; it may be around the
electroweak scale, or as large as 10(13−15) GeV, which is a
prime scale for the masses of right-handed neutrinos since
small neutrino masses are explained with O(1) Yukawa cou-
plings via the seesaw mechanism [36–39]. It follows from
Eqs. (10) and (11) that

eiα2 =
m2

m1
R2(δ) , eiα3 =

m3

m1
R3(δ) , (12)
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Fig. 1 The mass ratios m2/m1 and m3/m1 as functions of the Dirac
CP phase δ, from Eq. (15). The bands show uncertainty coming from
the 1σ error in the neutrino mixing parameters. The thin dotted line
corresponds to m2,3/m1 = 1

with3

R2 ≡
(Vμ1Vτ3 + Vμ3Vτ1)V ∗

e2

(Vμ2Vτ3 + Vμ3Vτ2)V ∗
e1

, (13)

R3 ≡
(Vμ1Vτ2 + Vμ2Vτ1)V ∗

e3

(Vμ2Vτ3 + Vμ3Vτ2)V ∗
e1

, (14)

where we have used Ṽ T = V −1 and detV = 1 with Ṽ being
the cofactor matrix of V .4 In Appendix A.2, we give explicit
expressions for R2 and R3 in terms of neutrino oscillation
parameters. By taking the absolute values of the equations in
(12), we find

m2

m1
=

1

|R2(δ)|
,

m3

m1
=

1

|R3(δ)|
. (15)

Therefore, these mass ratios are given as functions of the
Dirac CP phase δ. Notice that R∗

2,3(−δ) = R2,3 since R2,3

contains a single CP phase δ. As a consequence, m2,3/m1 are
symmetric under the reflection δ → −δ (and π +δ → π −δ)
as we see below.

In Fig. 1, we plot the mass ratios m2/m1 and m3/m1

against the Dirac CP phase δ using Eq. (15). The bands
show uncertainty coming from the 1σ error in the neu-
trino mixing parameters. For input parameters of the neu-

3 These expressions are consistent with the results presented in
Ref. [50]. We also find from the explicit expressions (A.3) and (A.4)
that the corresponding equations in Ref. [49] disagree with ours.
4 The cofactor Ãi j of a matrix A is given by the determinant of the
submatrix formed by removing the i-th row and j-th column of the
matrix A, multiplied by a factor of (−1)i+ j . The cofactor matrix of A,
Ã, is defined by Ã ≡ ( Ãi j ). We then have A−1 = (det A)−1 ÃT .

trino mixing angles, we use sin2 θ12 = 2.97+0.17
−0.16 × 10−1,

sin2 θ13 = 2.15+0.07
−0.07×10−2, and sin2 θ23 = 4.25+0.21

−0.15×10−1

[51] (see Table 1).5 It is found that the resultant uncertainty
mainly comes from the error in θ23. From this figure, we find
that when δ ≃ 0, 2π the observed neutrino mixing angles
are incompatible with the condition m1 < m2, and thus these
regions are excluded. Moreover, around δ ≃ π we have
m1 < m3 < m2, which disagrees with the possible neutrino-
mass ordering: either m1 < m2 < m3 or m3 < m1 < m2

[48]. As a consequence, in the region where a consistent
neutrino-mass ordering is obtained, the neutrino-mass order-
ing is always the Quasi-Degenerate Normal Ordering with
m1 � m2 � m3, which is realized around δ ∼ π/2 and
3π/2.

According to the recent global-fit analysis in Ref. [51],
the NO is somewhat favored over IO at ∼ 2σ level. There
are quite a few proposed experiments that may determine
the neutrino-mass ordering at more than 3σ level within a
decade [54,55], such as PINGU [56], ORCA [57], and JUNO
[58,59]. To confirm NO in these future experiments would
be a first consistency check of our model.

Now that the mass ordering has been fixed, we determine
m1 and δ by using the above results. From the neutrino oscil-
lation experiments, we can measure6

δm2 ≡ m2
2 − m2

1 , (17)

�m2 ≡ m2
3 −

(
m2

2 + m2
1

) /
2. (18)

These quantities are related to the neutrino-mass ratios by

δm2 = m2
1

(
m2

2

m2
1

− 1

)
= m2

1

(
1

|R2(δ)|2
− 1

)
, (19)

�m2 +
δm2

2
= m2

1

(
m2

3

m2
1

− 1

)
= m2

1

(
1

|R3(δ)|2
− 1

)
.

(20)

By solving these equations, we can determine m1 and δ.
The observed values of δm2 and �m2 are given by δm2 ≃
7.37 × 10−5 eV2 and �m2 ≃ 2.525 × 10−3 eV2, respec-
tively [51]. This means that the right-hand side of Eq. (19) is
much smaller than that in Eq. (20). From Fig. 1, we see that
such a hierarchy can be realized only when m2

2/m2
1 ≃ 1, i.e.,

|R2(δ)| ≃ 1. With the explicit formula of R2(δ) in Eq. (A.3),
this leads to

5 See also Refs. [52,53].
6 In terms of the squared mass differences �m2

21 ≡ m2
2 − m2

1 and
�m2

31 ≡ m2
3 − m2

1, δm2 and �m2 are expressed as

δm2 = �m2
21 , �m2 = �m2

31 −
1

2
�m2

21 . (16)
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cos δ ≃
cot 2θ12 cot 2θ23

sin θ13
. (21)

When the best-fit values of the mixing angles θi j are used,
this leads to cos δ ≃ 0.46, which corresponds to δ ≃ 0.35π

or 1.65π . In Eq. (A.6) in Appendix A.3, we give a cubic
equation whose solution gives an exact value of cos δ as a
function of the mixing angles θi j and the squared mass dif-
ferences δm2 and �m2. As discussed there, the solution (21)
approximates the real solution of the cubic equation (A.6) at
O(δm2/�m2) level. By solving Eq. (A.6) numerically, we
find cos δ = 0.445 for the best-fit values of θi j , δm2, and
�m2, which means δ = 0.353π or 1.647π , and justifies the
expected accuracy of the approximated formula (21).7

From Eqs. (13) and (19), we obtain m1 as a function of
δ. An explicit expression for m1 is given in Appendix A.2.
As noted above, |R2,3(δ)| are symmetric with respect to the
reflection δ → −δ. This implies that m1 is also symmetric
under this reflection and thus depends only on cos δ (not
sin δ). As a result, even though there are two solutions for δ,
m1 (and thus m2,3 as well) is uniquely determined. Finally,
by substituting the above results into Eq. (12), we determine
the Majorana CP phases α2 and α3. Again, since R∗

2,3(−δ) =
R2,3(δ), we have α2,3(−δ) = −α2,3(δ), as seen in Fig. 7 in
Appendix A.2.

In the next section, we discuss the predictions of the min-
imal gauged U(1)Lμ−Lτ model with the recent oscillation
data. Before closing this section, let us give some general
remarks.

• If the U(1)Lμ−Lτ symmetry breaking scale is much
higher than the electroweak scale, we expect sizable
quantum corrections to the neutrino-mass matrix. Such
quantum corrections can be taken into account by
using renormalization-group equations. Remarkably, it
is found that the two-zero minor structure of MνL

is pre-
served throughout the renormalization-group flow [46,
47]. To see this, we first note that below the right-handed
neutrino-mass scale, which is around the U(1)Lμ−Lτ

symmetry breaking scale in this model, right-handed neu-
trinos are integrated out to give the following dimension-
five effective operator:

Leff =
1

2
Cαβ(Lα · H)(Lβ · H) + h.c., (22)

7 This result disagrees with the observation in Ref. [21], where it was
observed that δ ≃ 0 is predicted in the minimal gauged Lμ − Lτ model.
In the analysis of Ref. [21], the Dirac Yukawa terms of neutrinos are sup-
posed to be real in the basis where MR has only one CP phase, though
it is not the generic case. In addition, we find disagreement between
the neutrino-mass matrix shown in Ref. [21] and ours, as pointed out in
Appendix A.1.

where Cαβ has the two-zero minor structure at the right-
handed neutrino-mass scale. The renormalization-group
equation of the Wilson coefficient Cαβ at one-loop level
is [60]

μ
dC

dμ
= −

3

32π2

[(
Y †

e Ye

)T

C + C
(

Y †
e Ye

)]
+

K

16π2
C,

(23)

with

K = −3g2
2 +2Tr

(
3Y †

u Yu + 3Y
†
d Yd + Y †

e Ye

)
+2λ, (24)

where Yu , Yd , and Ye denote the up-type, down-type,
and charged-lepton Yukawa matrices, respectively, g2 is
the SU(2)L gauge coupling, and λ is the Higgs quartic
coupling: Lquart = − 1

2λ(H† H)2. Now recall that the
charged-lepton Yukawa matrix is diagonal in our model.
In this case, the above equation can readily be solved as
follows [61]:

C(t) = IK (t) I(t) C(0) I(t), (25)

where t ≡ ln(μ/μ0) with μ0 being the initial scale, and

IK (t) = exp

[
1

16π2

∫ t

0
K (t ′) dt ′

]
,

I(t) = exp

[
−

3

32π2

∫ t

0
Y †

e Ye(t
′) dt ′

]
. (26)

Note that I(t) is a diagonal matrix. Therefore, if
C−1

μμ(0) = C−1
ττ (0) = 0, then C−1

μμ(t) = C−1
ττ (t) = 0,

which proves that the two-zero minor structure of the
Wilson coefficient C remains at low energies. As a
result, the two-zero minor neutrino-mass structure in our
model is robust against quantum corrections, even if the
U(1)Lμ−Lτ symmetry breaking scale is much higher than
the electroweak scale.

• By performing a similar analysis, we can study the mini-
mal gauged U(1)Le−Lμ and U(1)Le−Lτ models. We again
obtain two conditions, similar to Eqs. (10) and (11),
which follow from the zero components in the inverse
of the neutrino-mass matrix in each model. We, however,
find that in these cases it is unable to find parameter space
consistent with the observed values of the neutrino oscil-
lation parameters, as demonstrated in Appendix B. We
thus conclude that within the minimal approach discussed
in this paper, the U(1)Lμ−Lτ case is the only possibility
that offers a desirable neutrino-mass structure.

• If we go beyond the minimal model, we may obtain a
different neutrino-mass structure in the presence of the
U(1)Lμ−Lτ gauge symmetry. For example, Refs. [25,
33] discuss gauged U(1)Lμ−Lτ models where neutrino
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Table 1 Input values for the neutrino oscillation parameters we use in
this paper. We take them from Ref. [51]

Parameter Best fit 1σ range 2σ range

δm2/10−5 eV2 7.37 7.21–7.54 7.07–7.73

�m2/10−3 eV2 2.525 2.495–2.567 2.454–2.606

sin2 θ12/10−1 2.97 2.81–3.14 2.65–3.34

sin2 θ23/10−1 4.25 4.10–4.46 3.95–4.70

sin2 θ13/10−2 2.15 2.08–2.22 1.99–2.31

δ/π 1.38 1.18 − 1.61 1.00–1.90

masses are radiatively induced at one-loop level. It turns
out that the neutrino-mass matrices in these models have
the form of the two-zero texture [62–66], which pre-
dicts IO for neutrino-mass spectrum. Thus, the deter-
mination of neutrino-mass hierarchy in future neutrino
experiments allows us to distinguish this class of models
from the minimal model, where NO is predicted as we
have seen above.

3 Predictions for the neutrino parameters

Using the results obtained above, we now compute quanti-
ties relevant to neutrino experiments with the errors in the
neutrino oscillation parameters taken into account. For input
values, we use the values given in Ref. [51], which are sum-
marized in Table 1. In particular, we take the three mixing
angles and the two mass squared differences,

θ12, θ23, θ13, δm2, �m2, (27)

as input parameters, and evaluate the predicted values of the
other parameters, including Dirac CP phase δ, the absolute
masses mi , their sum

∑
i mi , and the effective Majorana neu-

trino mass 〈mββ〉. The prediction for the Majorana phases α2

and α3 is also presented in Appendix A.2.
In Fig. 2, we plot the Dirac CP phase δ as functions of θ23 in

the red lines. We vary θ23 in the 2σ renege, where the 1σ range
is in between the vertical thin dotted lines. The dark (light) red
bands show the uncertainty coming from the 1σ (2σ ) errors
in the other parameters θ12, θ13, δm2, and �m2. We find that
this uncertainty is dominated by the error in θ12. We also show
the 1σ (2σ ) favored region of δ in the dark (light) horizontal
green bands. As we discussed in the previous section, there
are two solutions for δ for each value of θ23. Intriguingly,
the upper line is right in the middle of the favored range of
δ; in particular, θ23 ≃ 41.5◦ gives δ ≃ 1.6π , both of which
are within the 1σ allowed region. Consequently, this model
predicts δ ≃ 1.59π–1.70π (1.54π–1.78π ) within 1σ (2σ ).
Future neutrino experiments can test this prediction through
precision measurements of θ23 and δ [67].

δ/
π

θ23 [ ]

0

0.5

1

1.5

2

39 40 41 42 43

°

Fig. 2 The prediction for the Dirac CP phase δ in the minimal gauged
U(1)Lμ−Lτ model. The red lines show the CP phase δ against θ23. θ23 is
varied in the 2σ range, and the 1σ range is in between the vertical thin
dotted lines. The dark (light) red bands show the uncertainty coming
from the 1σ (2σ ) errors in the parameters θ12, θ13, δm2, and �m2. We
also show the 1σ (2σ ) favored region of δ in the dark (light) horizontal
green bands

Next, we evaluate the neutrino masses mi , which are
shown in Fig. 3a as functions of θ23. Here, the other param-
eters are fixed to be their best-fit values. We see that all of
these masses are predicted to be �

√
�m2 ≃ 5 × 10−2 eV.

We also plot the sum of these neutrino masses as a func-
tion of θ23 in Fig. 3b, where the dark (light) red band
shows the uncertainty coming from the 1σ (2σ ) errors in
the parameters other than θ23. In this case, it turns out
that the dominant contribution to the uncertainty (except
for that from the error in θ23) comes from the error in
θ13, though the error in �m2 also gives a sizable contri-
bution. We also show in the black dashed line the present
limit imposed by the Planck experiment:

∑
i mi < 0.23 eV

(Planck TT+lowP+lensing+ext) [68].8 From this figure, we
find that a wide range of the parameter region predicts a
value of

∑
i mi which is below the present limit, though

a part of the parameter region has already been disfavored
by the Planck limit. We, however, note that this bound
relies on the standard cosmological history, and thus if some
new physics effects modify the cosmological evolution, then
this bound may significantly be relaxed. In any case, our
model predicts a rather large value of the sum of the neu-
trino masses,

∑
i mi ≃ 0.14–0.22 eV (0.12–0.40 eV) at 1σ

(2σ ), which may be probed in future cosmological observa-
tions.

These relatively large values of mi open up a possibil-
ity of testing this model in neutrinoless double-beta decay

8 If we exclude the Planck lensing data, we obtain a slightly stringent
bound:

∑
i mi < 0.17 eV [68].
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(a) (b)Mass spectrum i mi

Fig. 3 a The prediction for the neutrino masses in the minimal gauged
U(1)Lμ−Lτ model. The neutrino masses mi are shown as functions of
θ23. The other four parameters (θ12, θ13, δm2, and �m2) are fixed to
their best-fit values. b The sum of the neutrino masses as a function of
θ23. The dark (light) red band shows the uncertainty coming from the

1σ (2σ ) errors in the parameters θ12, θ13, δm2, and �m2. The entire
region is within the 2σ range of θ23, while its 1σ range is between the
thin vertical dotted lines. We also show in the black dashed line the
present limit imposed by the Planck experiment:

∑
i mi < 0.23 eV

(Planck TT+lowP+lensing+ext) [68]

experiments. The rate of neutrinoless double-beta decay is
proportional to the square of the effective Majorana neutrino
mass 〈mββ〉, which is given by

〈mββ〉 ≡
∣∣∣∣∣
∑

i

U 2
ei mi

∣∣∣∣∣

=
∣∣∣c2

12c2
13m1 + s2

12c2
13eiα2 m2 + s2

13ei(α3−2δ)m3

∣∣∣ .

(28)

It should be emphasized that, in the minimal gauged
U(1)Lμ−Lτ model, not only the neutrino masses mi but also
the Majorana phases α2,3 are uniquely determined as func-
tions of the other neutrino oscillation parameters. Thus, the
value of the effective mass 〈mββ〉 is also predicted unam-
biguously. Note also that this quantity has reflection sym-
metry with respect to δ → −δ and thus depends only
on cos δ. In Fig. 4, we show 〈mββ〉 as a function of θ23,
where the dark (light) red band shows the uncertainty com-
ing from the 1σ (2σ ) errors in the parameters other than
θ23. Currently, the KamLAND-Zen experiment gives the
strongest bound on 〈mββ〉: 〈mββ〉 < 0.061–0.165 eV [69]
where the uncertainty stems from the estimation of the
nuclear matrix element for 136Xe. We also show in Fig. 4
the most severe bound from KamLAND-Zen, 〈mββ〉 <

0.061 eV, in the black dashed line [69]. As can be seen,
most parameter region predicts a value of 〈mββ〉 lower than
the strongest bound. At 1σ (2σ ) level, this model predicts
〈mββ〉 � 0.024 eV (0.017 eV)—this can be within the
reach of future neutrinoless double-beta decay experiments
[70].

KamLAND-Zen

m
β

β
[e

V
]

θ23 [ ]

0

0.05

0.1

0.15

39 40 41 42 43

°

Fig. 4 The prediction for the effective Majorana neutrino mass 〈mββ 〉
as a function of θ23 in the minimal gauged U(1)Lμ−Lτ model. The dark
(light) red band shows the uncertainty coming from the 1σ (2σ ) errors
in the parameters other than θ23. The entire region is within the 2σ range
of θ23, while its 1σ range is between the thin vertical dotted lines. We
also show the strongest limit from KamLAND-Zen, 〈mββ 〉 < 0.061 eV,
in the black dashed line [69]

4 Implications for Leptogenesis

In this section, we discuss the implications of our results
for the leptogenesis scenario [71], which is one of the most
attractive mechanisms to explain the origin of the baryon
asymmetry of the Universe. The minimal gauged U(1)Lμ−Lτ

model has three right-handed neutrinos coupled to the Stan-
dard Model leptons, and therefore it contains enough ingre-
dients for the leptogenesis: the CP-violating decay of the
right-handed neutrino in the early Universe can generate the
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lepton asymmetry, which is converted to the baryon asym-
metry via the sphaleron process [72].

As we have seen in the previous sections, the light
neutrino mass matrix MνL

≃ U∗diag(m1, m2, m3)U
† in

the minimal gauged U(1)Lμ−Lτ model is uniquely deter-
mined for a given set of neutrino oscillation parameters
θ12, θ23, θ13, δm2, �m2, and sign(sin δ). Therefore,
the mass matrix of the right-handed neutrino, MR ≃
−MDM−1

νL
MD , is also tightly constrained, having only

three additional free parameters, λe, λμ and λτ . Note that
these neutrino Yukawa couplings can be taken to be real and
positive by field redefinitions. Therefore, there is no addi-
tional phase parameter in the model. By diagonalizing the
masses of the right-handed neutrinos, we can rewrite the
Lagrangian (3) as

�L = −
3∑

i=1

∑

α=e,μ,τ

λ̂iα N̂ c
i (Lα · H)

−
1

2

3∑

i=1

Mi N̂ c
i N̂ c

i + h.c. , (29)

where N̂ c
i are the right-handed neutrino fields in the basis

where the masses are diagonalized, λ̂iα are the neutrino
Yukawa couplings in that basis, and Mi are the masses which
are taken to be real and positive. Explicitly, they are given by

MR = �∗diag(M1, M2, M3)�
†, �†� = I, (30)

N̂ c
i =

∑

α

�∗
αi N c

α, (31)

λ̂iα = �αiλα (not summed). (32)

We emphasize again that both masses Mi and the couplings
λ̂iα are completely determined by the three real parameters
λe,μ,τ and the oscillation parameters θ12, θ23, θ13, δm2,

�m2, sign(sin δ).
One of the most important parameters in the leptogenesis

scenario is the asymmetry parameter ǫ1, which represents
the lepton asymmetry generated by the decay of the lightest
right-handed neutrino. At the leading order, it is given by [73–
75]

ǫ1 =
1

8π

1

(̂λ λ̂†)11

∑

j=2,3

Im
[
{(̂λ λ̂†)1 j }2

]
f

(
M2

j

M2
1

)
, (33)

f (x) =
√

x

[
1 − (x + 1) ln

(
1 +

1

x

)
−

1

x − 1

]
. (34)

Here, one can see that there is a correlation between the
sign of the Dirac phase δ and the baryon asymmetry of
the Universe. Suppose that the sign of the Dirac phase
δ is flipped, δ → −δ, while the other input oscillation

0

1 × 10−5

2 × 10−5

3 × 10−5

4 × 10−5

5 × 10−5

tan θ = 1.5

tan θ = 1

tan θ = 15

0 π/4 π/2

λe = λ cos θ, λµ = λ sin θ cos φ, λτ = λ sin θ sin φ

1
/λ

2

φ

Fig. 5 The asymmetry parameter ǫ1/λ
2 as a function of the

diagonal neutrino Yukawa couplings, which are parametrized as
(λe, λμ, λτ ) = λ(cos θ, sin θ cos φ, sin θ sin φ). The input oscillation
parameters (θ12, θ23, θ13, δm2,�m2) are taken to be their best-fit val-
ues in Table 1, while the sign of the Dirac phase δ is taken to be negative,
δ < 0 (or δ > π )

parameters θ12, θ23, θ13, δm2, �m2 as well as the neu-
trino Yukawa couplings λe,μ,τ are fixed. As discussed in the
previous sections, the Majorana phases then flip the sign,
α2,3 → −α2,3, while the absolute masses of light neutrinos
do not change, mi → mi . Thus, the PMNS matrix transforms
as U → U∗. This then results in MνL

→ M∗
νL

, leading to
MR → M∗

R , � → �∗, λ̂ → λ̂∗, and eventually ǫ1 → −ǫ1.
This means that, for a given input of oscillation parameters
θ12, θ23, θ13, δm2, �m2 and the neutrino Yukawa couplings
λe,μ,τ , there is one-to-one correspondence between the sign
of the Dirac phase δ and the sign of the baryon asymmetry
of the Universe.

In Fig. 5, we show the asymmetry parameter ǫ1/λ
2

as a function of the neutrino Yukawa couplings, which
are parametrized as (λe, λμ, λτ ) = λ(cos θ, sin θ cos φ,

sin θ sin φ).9 Note that the parameter ǫ1 scales as ǫ1 ∝ λ2

in this parametrization, as shown in Eq. (33). The oscillation
parameters θ12, θ23, θ13, δm2, �m2 are taken to be their
best-fit values in Table 1. The sign of the Dirac phase δ is
taken to be negative, δ < 0 (or δ > π ), as it is favored at
2σ level. Note that the observed baryon asymmetry of the
Universe requires ǫ1 < 0, because the sphaleron process
predicts nB/nL < 0 [76]. Surprisingly, negative ǫ1 is real-
ized only in the limited regions of the parameter space. This
is more clearly seen in Fig. 6, where we show the regions
of ǫ1 < 0 in the (θ, φ) plane as red shaded areas. We also
show the contours of the right-handed neutrino-mass ratios
M2/M1 and M3/M1 in the left and right panels, respectively.

9 We can take account of the one-loop renormalization-group effects
by instead regarding I

1/2
K (t)λαIαα (α = e, μ, τ ) as input parameters

(see Eqs. (25) and (26)). Thus, our consequence here is robust against
one-loop quantum corrections.
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Fig. 6 The sign of the asymmetry parameter ǫ1 and contours of the
right-handed neutrino-mass ratios M2/M1 (left) and M3/M1 (right) in
the (θ, φ) plane, where the neutrino Yukawa couplings are parametrized
as (λe, λμ, λτ ) = λ(cos θ, sin θ cos φ, sin θ sin φ). The input oscilla-

tion parameters (θ12, θ23, θ13, δm2,�m2) are taken to be their best-fit
values in Table 1, while the sign of the Dirac phase δ is taken to be neg-
ative, δ < 0 (or δ > π ). The green cross corresponds to λe = λμ = λτ

As we see, the asymmetry parameter ǫ1 can be negative when
some of the right-handed neutrinos are degenerate in mass—
M1 ≃ M2 in the negative ǫ1 region around φ ≃ π/4 while
M2 ≃ M3 for θ ≃ π/2 and φ ≃ 0, π/2. In the latter regions,
θ ≃ π/2 and φ ≃ 0, π/2, the lightest right-handed neutrino
mass is much smaller than the other ones, and λe,τ ≪ λμ

(λe,μ ≪ λτ ) for φ ≃ 0 (φ ≃ π/2). In these cases, the abso-
lute value of the asymmetry parameter |ǫ1| is found to be
quite suppressed, and thus it is rather difficult to obtain a
sizable value, say |ǫ1| � 10−6.10 Similarly, |ǫ1| gets small
for φ ≃ π/4 and θ ≪ π/4. These observations further
restrict the promising parameter region for leptogenesis to
be (θ, φ) ≃ (π/4, π/4).

The final baryon asymmetry depends on the production
mechanism of the right-handed neutrino. In the case of ther-
mal leptogenesis, the predicted range of the lightest neutrino
mass in the present model, m1 � 0.03 eV, corresponds to
the so-called strong wash-out region (see, e.g., [77]). More-
over, as we see from Fig. 6, around (θ, φ) ≃ (π/4, π/4),
right-handed neutrino masses are close to each other. In this
case, to properly estimate the net baryon asymmetry gener-
ated via the decay of right-handed neutrinos, we may need to
include not only the contribution of the lightest right-handed
neutrino but those of the other ones. Flavor effects [78–80]
may also become important. A more detailed study will be
given elsewhere [81].

5 Conclusions

We have studied the structure of the neutrino-mass matrix
in the minimal gauged U(1)Lμ−Lτ model. Because of the

10 Note that the function f (x) in Eq. (34) goes as f (x) ≃ −3/(2
√

x)

for x ≫ 1.

U(1)Lμ−Lτ gauge symmetry, the structure of both Dirac and
Majorana mass terms of neutrinos is tightly restricted, which
results in a two-zero minor structure of the neutrino-mass
matrix. Because of this restriction, all the CP phases and the
neutrino masses are uniquely determined. We find that this
model gives the following prediction at 1σ (2σ ) level:

• Dirac CP phase: δ ≃ 1.59π–1.70π (1.54π–1.78π ),
• the sum of the neutrino masses:

∑
i mi ≃ 0.14–0.22 eV

(0.12–0.40 eV),
• the effective mass for the neutrinoless double-beta decay:

〈mββ〉 ≃ 0.024–0.055 eV (0.017–0.12 eV).

They are totally consistent with the current experimental
limits, and hold independently of the U(1)Lμ−Lτ breaking
scale and the Majorana mass scale. In this sense, the above
predictions are the generic features of the minimal gauged
U(1)Lμ−Lτ model. Remarkably, these predictions can be
tested in various neutrino experiments in the near future –
regardless of the scale of the U(1)Lμ−Lτ symmetry break-
ing – which we believe sheds light on the gauge structure of
physics beyond the Standard Model.

We have also discussed the implications of the minimal
gauged U(1)Lμ−Lτ model for the leptogenesis scenario, and
found that the correct sign of the baryon asymmetry of the
Universe can be obtained only in the limited regions of the
parameter space, as the right-handed neutrino-mass struc-
ture is also severely restricted in this model. In particular,
the observed value of baryon asymmetry can be realized
when right-handed neutrinos are degenerate in mass, which
requires a further detailed study to assess the viability of
leptogenesis in this model [81].
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Appendix

A Miscellaneous formulas

Here we give formulas that are useful for the study of the
neutrino-mass structure in the minimal gauged U(1)Lμ−Lτ

model.

A.1 Neutrino-mass matrix MνL

The light neutrino-mass matrix MνL
in Eq. (6) can be

expressed in terms of the Lagrangian parameters in Eq. (3)
as11

MνL
=

v2

2(Mee Mμτ − 2λeμλeτ 〈σ 〉2)
×

⎛
⎜⎜⎝

−λ2
e Mμτ λeλμλeτ 〈σ 〉 λeλτλeμ〈σ 〉

λeλμλeτ 〈σ 〉 −λ2
μλ2

eτ 〈σ 〉2

Mμτ

λμλτ (−Mee Mμτ +λeμλeτ 〈σ 〉2)

Mμτ

λeλτλeμ〈σ 〉 λμλτ (−Mee Mμτ +λeμλeτ 〈σ 〉2)

Mμτ
−λ2

τ λ2
eμ〈σ 〉2

Mμτ

⎞
⎟⎟⎠ .

(A.1)

11 We obtain a different result from that given in Ref. [21].

The determinant of this mass matrix is given by

det
(
MνL

)
=

λ2
eλ

2
μλ2

τv
6

8Mμτ

(
Mee Mμτ − 2λeμλeτ 〈σ 〉2

) . (A.2)

We find that this determinant vanishes if and only if λν = 0
(ν = e, μ, or τ ). In this case, the mass matrix MνL

is block-
diagonal, and thus cannot reproduce the required neutrino
mixing angles.

A.2 R2 and R3

The functions R2(δ) and R3(δ) defined in Eqs. (13) and (14),
respectively, are expressed in terms of neutrino oscillation
parameters as

R2(δ) = −
2 sin2 θ12 cos 2θ23 + sin 2θ12 sin 2θ23 sin θ13eiδ

2 cos2 θ12 cos 2θ23 − sin 2θ12 sin 2θ23 sin θ13eiδ
,

(A.3)

R3(δ) = −
sin θ13e2iδ

[
2 cos 2θ12 cos 2θ23 sin θ13 − sin 2θ12 sin 2θ23

(
e−iδ + sin2 θ13eiδ

)]

cos2 θ13
[
2 cos2 θ12 cos 2θ23 − sin 2θ12 sin 2θ23 sin θ13eiδ

] . (A.4)

Using Eq. (19) together with Eq. (A.3), we find

m1 = δm

[
4s4

12 cos2 2θ23 + 4s3
12c12s13 sin 4θ23 cos δ + s2

13 sin2 2θ12 sin2 2θ23

2
(
2 cos 2θ12 cos2 2θ23 − s13 sin 2θ12 sin 4θ23 cos δ

)
] 1

2

. (A.5)

This expression shows that m1 depends only on cos δ (not
sin δ), as we have argued in Sect. 2.

Using Eqs. (12), (A.3), and (A.4), we determine the Majo-
rana CP phases α2,3 as functions of δ, and show them in
Fig. 7. Here, we fix the other neutrino oscillation parame-

ters to be their best-fit values. The green band depicts the
2σ favored region of δ predicted in the minimal gauged
U(1)Lμ−Lτ model. As can be seen, sizable Majorana CP
phases are predicted in this model. In addition, we find
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Fig. 7 Majorana phases αi as functions of δ. We fix the other neutrino
oscillation parameters to be their best-fit values. The green band depicts
the 2σ favored region of δ predicted in the minimal gauged U(1)Lμ−Lτ

model

α2,3(−δ) = −α2,3(δ) (or α2,3(π − δ) = −α2,3(π + δ)),
as discussed in Sect. 2.

A.3 Cubic equation for cos δ

Here, we show a cubic equation whose real solution in terms
of x gives cos δ:

s2
13

[
4s2

13 cos2 2θ12 cos2 2θ23 − s13 sin 4θ12 sin 4θ23(1 + s2
13) x

+ sin2 2θ12 sin2 2θ23

(
c4

13 + 4s2
13 x2

)]

×
[
2

(
2 cos 2θ12 cos2 2θ23 − s13 sin 2θ12 sin 4θ23 x

)]

− ǫ

[
4s4

12 cos2 2θ23 + s2
13 sin2 2θ12 sin2 2θ23

+4s3
12c12s13 sin 4θ23 x

]

×
[
4 cos2 2θ23(c

4
12c4

13 − s4
13 cos2 2θ12) − s13 sin 4θ23

× {4c4
13c3

12s12 − s2
13 sin 4θ12(1 + s2

13)} x

− 4s4
13 sin2 2θ12 sin2 2θ23 x2] = 0 , (A.6)

where

ǫ ≡
δm2

�m2 + δm2/2
. (A.7)

In the limit of ǫ → 0, the above equation leads to

4s2
13 cos2 2θ12 cos2 2θ23 − s13 sin 4θ12 sin 4θ23

(
1 + s2

13

)
x

+ sin2 2θ12 sin2 2θ23

(
c4

13 + 4s2
13 x2

)
= 0 , (A.8)

or

2 cos 2θ12 cos2 2θ23 − s13 sin 2θ12 sin 4θ23 x = 0 . (A.9)

The discriminant of the quadratic Eq. (A.8) is given by

8c4
13s2

13 sin2 2θ12 sin2 2θ23(cos 4θ12 + cos 4θ23) , (A.10)

which is negative as cos 4θ12 +cos 4θ23 ≃ −1.63 < 0. Thus,
Eq. (A.8) does not give a real solution. On the other hand,
Eq. (A.9) gives

x =
cot 2θ12 cot 2θ23

sin θ13
, (A.11)

which agrees with Eq. (21). From the above derivation, we
see that the solution (A.11) approximates the real solution
of the cubic equation (A.6) with an accuracy of O(ǫ) =
O(δm2/�m2).

B U(1)Le−Lµ and U(1)Le−Lτ

In this section, we examine the neutrino-mass structure in the
minimal gauged U(1)Le−Lμ and U(1)Le−Lτ models and show
that it is unable to obtain a solution that is consistent with the
observed values of the neutrino oscillation parameters.12

B.1 U(1)Le−Lμ

Following an analysis similar to that in Sect. 2, we find
that the (e, e) and (μ,μ) components in the inverse of
the neutrino-mass matrix vanish in the minimal gauged
U(1)Le−Lμ model. The corresponding two vanishing con-
ditions are

1

m1
V 2

e1 +
1

m2
V 2

e2 eiα2 +
1

m3
V 2

e3 eiα3 = 0 , (B.1)

1

m1
V 2

μ1 +
1

m2
V 2

μ2 eiα2 +
1

m3
V 2

μ3 eiα3 = 0 . (B.2)

Solving these equations, we have

eiα2 =
m2

m1
R

eμ
2 (δ) , eiα3 =

m3

m1
R

eμ
3 (δ) , (B.3)

with

R
eμ
2 ≡

(Ve1Vμ3 + Ve3Vμ1)V ∗
τ2

(Ve2Vμ3 + Ve3Vμ2)V ∗
τ1

, (B.4)

R
eμ
3 ≡

(Ve1Vμ2 + Ve2Vμ1)V ∗
τ3

(Ve2Vμ3 + Ve3Vμ2)V ∗
τ1

. (B.5)

12 A similar conclusion was also reached in Ref. [50].
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Fig. 8 The mass ratios m2/m1
and m3/m1 as functions of the
Dirac CP phase δ for the gauged
a U(1)Le−Lμ and b U(1)Le−Lτ

models. The bands show
uncertainty coming from the 1σ

error in the neutrino mixing
parameters. The thin dotted line
corresponds to m2,3/m1 = 1
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In Fig. 8a, we plot the mass ratios m2/m1 and m3/m1 as
functions of δ. As we see from this figure, m2 < m1 is pre-
dicted for any value of δ, and thus there is no solution which
gives an allowed pattern of neutrino-mass spectrum.

B.2 U(1)Le−Lτ

In this case, the (e, e) and (τ, τ ) components in M−1
νL

are
zero, which leads to

1

m1
V 2

e1 +
1

m2
V 2

e2 eiα2 +
1

m3
V 2

e3 eiα3 = 0 , (B.6)

1

m1
V 2

τ1 +
1

m2
V 2

τ2 eiα2 +
1

m3
V 2

τ3 eiα3 = 0 . (B.7)

These equations read

eiα2 =
m2

m1
Reτ

2 (δ) , eiα3 =
m3

m1
Reτ

3 (δ) , (B.8)

with

Reτ
2 ≡

(Ve1Vτ3 + Ve3Vτ1)V ∗
μ2

(Ve2Vτ3 + Ve3Vτ2)V ∗
μ1

, (B.9)

Reτ
3 ≡

(Ve1Vτ2 + Ve2Vτ1)V ∗
μ3

(Ve2Vτ3 + Ve3Vτ2)V ∗
μ1

. (B.10)

Using these equations, we plot the mass ratios m2/m1 and
m3/m1 as functions of δ in Fig. 8b. Again, m2 < m1 over
the whole range of δ, and thus this model cannot provide a
desirable neutrino-mass ordering.
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