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Abstract

Efforts to suppress transmission of SARS-CoV-2 in the UK have seen non-pharmaceutical

interventions being invoked. The most severe measures to date include all restaurants,

pubs and cafes being ordered to close on 20th March, followed by a “stay at home” order on

the 23rd March and the closure of all non-essential retail outlets for an indefinite period. Gov-

ernment agencies are presently analysing how best to develop an exit strategy from these

measures and to determine how the epidemic may progress once measures are lifted.

Mathematical models are currently providing short and long term forecasts regarding the

future course of the COVID-19 outbreak in the UK to support evidence-based policymaking.

We present a deterministic, age-structured transmission model that uses real-time data on

confirmed cases requiring hospital care and mortality to provide up-to-date predictions on

epidemic spread in ten regions of the UK. The model captures a range of age-dependent

heterogeneities, reduced transmission from asymptomatic infections and produces a good

fit to the key epidemic features over time. We simulated a suite of scenarios to assess the

impact of differing approaches to relaxing social distancing measures from 7th May 2020 on

the estimated number of patients requiring inpatient and critical care treatment, and deaths.

With regard to future epidemic outcomes, we investigated the impact of reducing compli-

ance, ongoing shielding of elder age groups, reapplying stringent social distancing mea-

sures using region based triggers and the role of asymptomatic transmission. We find that

significant relaxation of social distancing measures from 7th May onwards can lead to a

rapid resurgence of COVID-19 disease and the health system being quickly overwhelmed

by a sizeable, second epidemic wave. In all considered age-shielding based strategies, we

projected serious demand on critical care resources during the course of the pandemic. The

reintroduction and release of strict measures on a regional basis, based on ICU bed occu-

pancy, results in a long epidemic tail, until the second half of 2021, but ensures that the
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health service is protected by reintroducing social distancing measures for all individuals in

a region when required. Our work confirms the effectiveness of stringent non-pharmaceuti-

cal measures in March 2020 to suppress the epidemic. It also provides strong evidence to

support the need for a cautious, measured approach to relaxation of lockdown measures, to

protect the most vulnerable members of society and support the health service through sub-

duing demand on hospital beds, in particular bed occupancy in intensive care units.

Author summary

The emergence of SARS-CoV-2 virus in humans, the morbidity and mortality inflicted by

the COVID-19 disease it causes, and the initial absence of pharmaceutical treatments led to

many countries introducing nonpharmaceutical interventions and “lockdowns” to curb out-

breaks. However, it is impractical for stringent lockdown rules to be imposed indefinitely. A

form of exit strategy was needed that would allow some relaxation of social distancing mea-

sures, whilst minimising the future impact of the disease on the health service. Mathematical

models that capture the transmission of SARS-CoV-2 are a key tool to support evidence-

based policy-making, providing a quantitative assessment of potential exit strategies.

We developed an age-structured SARS-CoV-2 transmission model that we fit to data

on confirmed cases requiring hospital care and mortality for ten regions of the UK. This

model is used to assess three different exit strategy approaches: (i) relaxing social distanc-

ing independent of age; (ii) relaxing social distancing by age group; (iii) regional lifting

and imposition of restrictions according to healthcare system capacity. The findings sup-

port the non-pharmaceutical measures introduced in March 2020 as being effective in

suppressing the epidemic. Additionally, subsequent waves of infection in the UK from

September 2020 confirm our earlier predictions, highlighting the need for a robust and

managed exit strategy.

Introduction

In late 2019, accounts emerged fromWuhan city in China of a virus of unknown origin that

was leading to a cluster of pneumonia cases [1]. The virus was identified as a novel strain of

coronavirus on 7th January 2020 [2] and the first known death as a result of the disease

occurred two days later [1]. Over the next few days, cases were reported in several other cities

in China and in other countries around the world including South Korea, Japan and the

United States of America. On 23rd January, the Chinese government issued an order for

Wuhan city to enter “lockdown”, whereby all public transport was suspended and residents

were not allowed to leave the city. Over the next 24 hours, these measures were extended to all

the major cities in Hubei province in an attempt to prevent further spread of disease.

Whilst the introduction of these severe social distancing measures began to have an effect

upon reducing the growth rate of cases in Wuhan [3–5], reported cases outside China contin-

ued to grow and by late February the virus, now designated by the World Health Organisation

as SARS-CoV-2, and the disease it causes as coronavirus disease 2019 (COVID-19), had spread

to Europe, with a growing number of cases being reported in northern Italy [6]. As more coun-

tries in Europe and around the world started to experience a dramatic rise in cases, similar

measures were put in place in an effort to protect the most vulnerable members of society and

to ensure that health services capacities were not exceeded [6, 7].
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In the UK, the first cases of COVID-19 were reported on 31st January 2020, in the city of

York in the north of England. In the early stages of the UK outbreak, the government focused

on a strategy of containment, to reduce the likelihood of large-scale within-country trans-

mission occurring. This strategy involved rapid identification and isolation of infected indi-

viduals, achieved through contact tracing and testing of suspect cases. However, by early

March it was evident that sustained community transmission was occurring and there was a

growing concern that a large epidemic could rapidly overwhelm the health service, resulting

in a significant number of deaths. This led to the government considering the introduction

of a range of social distancing measures in order to slow the growth of the outbreak, thus

delaying and flattening the epidemic peak and reducing the risk of exceeding hospital capaci-

ties owing to an influx of COVID-19 patients. On 12th March, the UK officially entered the

“delay” phase, with the government declaring that all individuals with a cough or fever

should self-isolate for a period of seven days. Over the following days, several major sporting

events were cancelled and the public was advised to avoid all non-essential travel and contact

with others. With daily cases and deaths continuing to rise, the government introduced its

most severe measures: all restaurants, pubs and cafes were ordered to close on 20th March;

schools were also ordered to close on 20th March except for the children of key workers;

finally a “stay at home” order was issued on the evening of 23rd March together with the clo-

sure of all non-essential retail outlets for an indefinite period. By this time the reported num-

ber of deaths in the UK had reached 335.

This paper was originally written in April 2020, and throughout we use the epidemiological

data up to 21st April in all figures [8]. The data and science surrounding the SARS-Cov-2

infection is fast moving, so much so that publications can rarely keep pace. We therefore

intend this paper to be a record of the state of our predictive modelling in mid-April, just after

the peak of the first wave, although we comment more fully in the discussion about later

improvements to the model formulation and the implications of the results for controlling the

later second wave.

Even at the peak of the UK epidemic, it was clear that the stringent lockdown rules imposed

could not continue indefinitely. It was apparent that epidemiological modelling was a vital tool

for analysing potential “exit strategies”, which could allow some relaxation of social distancing

measures, whilst minimising the future impact of the disease on the health service. At the time

epidemiologists were critically aware that, should measures be relaxed too rapidly when there

were still sufficient susceptible individuals in the population, there was a high risk of a second

infection wave that could once again threaten to overwhelm health services. The increasing

cases, hospitalisations and deaths observed in the UK (and elsewhere in the world) during Sep-

tember and October of 2020 confirms our earlier predictions, and strengthens the need for a

robust and managed exit strategy.

In this paper, we present a novel compartmental mathematical model of SARS-CoV-2

transmission tailored to attributes notable to COVID infections, including household satura-

tion of transmission, household quarantining and age-dependent detectability and transmis-

sion of SARS-CoV-2. The model uses real-time data on confirmed cases requiring hospital

care and mortality to provide short and long term forecasts on epidemic spread in ten regions

of the UK. We investigate how compliance with social distancing affects future epidemic out-

comes. We compare and contrast different exit strategies, namely: relaxing social distancing by

age group, or the regional lifting and imposition of restrictions according to healthcare system

capacity. Finally, we explore the sensitivity of our conclusions to a key biological aspect of

SARS-CoV2 which remains unknown: whether different age groups differ in their core suscep-

tibility to infection, or their likelihood of displaying symptoms.
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Methods

Ethical considerations

The data used in this study were supplied from the CHESS database after anonymisation

under strict data protection protocols agreed between the University of Warwick and Public

Health England. The ethics of the use of these data for these purposes was agreed by Public

Health England with the Government’s SPI-M(O) / SAGE committees.

Transmission model

Here, we describe a compartmental model that has been developed to simulate the spread of

SARS-CoV-2 virus (resulting in cases of COVID-19) in the UK population. In the ongoing

outbreak in the UK, cases of COVID-19 are confirmed based upon testing, with priority for

testing throughout the majority of the initial wave given to patients requiring critical care in

hospitals [9]—generating biases and under-reporting. There is evidence to suggest that a sig-

nificant proportion of individuals who are infected may be asymptomatic or have only mild

symptoms [10, 11]. These asymptomatic individuals are still able to transmit infection [12],

though it remains unclear whether they do so at a reduced level. Our modelling approach has

consequently been designed to elucidate the interplay between symptoms (and hence detec-

tion) and transmission of SARS-CoV-2.

We developed a deterministic, age-structured compartmental model, stratified into five-

year age bands. Inclusion of age-structure within the model was considered critically impor-

tant given the greater number of cases, hospitalisations and deaths amongst older age-

groups. Transmission was governed through age-dependent mixing matrices based on UK

social mixing patterns [13, 14]. The population was further stratified according to current

disease status, following a susceptible-exposed-infectious-recovered (SEIR) paradigm, as

well as differentiating by symptoms, quarantining and household status (Fig 1). Susceptibles

(S) infected by SARS-CoV-2 entered a latent state (E) before becoming infectious. Given that

only a proportion of individuals who are infected are tested and subsequently identified, the

infectious class in our model was partitioned into symptomatic (and hence potentially

detectable), D, and asymptomatic (and likely to remain undetected) infections, U. We

assumed both susceptibility and disease detection were dependent upon age, although the

partitioning between these two components is largely indeterminable (additional details are

given in Table 1 and Section 1 of the S1 Text). We modelled the UK population aggregated

to ten regions (Wales, Scotland, Northern Ireland, East of England, London, Midlands,

North East and Yorkshire, North West England, South East England, South West England),

with each region modelled independently (i.e. we assumed no interactions occurred between

regions).

A drawback of the standard SEIR ordinary differential equation (ODE) formation in

which all individuals mix randomly in the population is that it cannot readily account for

the isolation of households. For example, if all transmission outside the household is set to

zero in a standard ODE model, then an outbreak can still occur as within-household trans-

mission allows infection between age-groups and does not account for local depletion of sus-

ceptibles within the household environment. We addressed this limitation by extending the

standard SEIR models such that first infections within a household (EF, DF, UF) are treated

differently from subsequent infections (ES, DS, US). To account for the depletion of suscepti-

bles in the household, we made the approximation that all within household transmission

was generated by the first infection within the household (for further details, see Section 1 of

the S1 Text).
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Fig 1. Disease states and transitions.We stratified the population into susceptible, exposed, detectable infectious, undetectable infectious, and
removed states. Solid lines correspond to disease state transitions, with dashed lines representing mapping from detectable cases to severe clinical cases
that require hospital treatment, critical care (ICU), or result in death. The model was partitioned into five-year age bands. See Table 1 for a listing of
model parameters. Note, we have not included quarantining and household status on this depiction of the system.

https://doi.org/10.1371/journal.pcbi.1008619.g001

Table 1. Key model parameters.

Parameter Description Value Source

βba Age-dependent transmission from age group b towards age group a, split into household,
school, work and other

POLYMODmatrices [14]

� Rate of progression to infectious disease (1/� is the duration in the exposed class) �0.2 Fitted as part of MCMC process

γ Recovery rate, changes with τ, the relative level of transmission from undetected
asymptomatics compared to detected symptomatics

�0.5 Fitted from early age-stratified UK case data

α Scales whether age-structure case reports are based on age-dependent symptoms (α = 0) or
age-dependent susceptibility (α = 1)

0–1 Fitted as part of MCMC process

τ Relative level of transmission from asymptomatic compared to symptomatic infection 0–0.5 Fitted as part of MCMC process

da Age-dependent probability of displaying symptoms (and hence being detected), changes with
α and τ

Fitted from early age-stratified UK case data

σa Age-dependent susceptibility, changes with α and τ Fitted from early age-stratified UK case data

ϕ Impact of adherence with restrictions 0–1 Fitted as part of MCMC process or varied
according to scenario

H Household quarantine proportion 0–1 Can be varied according to scenario

Na Population size of a given age By
region

ONS

https://doi.org/10.1371/journal.pcbi.1008619.t001
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Case severity parameterisation

The model is concerned with epidemiological processes and so predicts the number of symp-

tomatic and asymptomatic infections on each day. However, in order to provide evidence

regarding the future impact of the outbreak in the UK, it is crucial to be able to predict the

number of severe cases that may require hospital or critical care. We utilised two processes in

order to estimate hospitalisation rates: (i) we estimated the proportion of clinical cases in each

age group that would require hospitalisation by comparing the age distribution of hospital

admissions to the age structure of early detected cases—assuming these detected cases were an

unbiased sample of symptomatic individuals; (ii) we used age independent distributions to

determine the time between onset of symptoms and hospitalisation. A similar process was

repeated for admission into intensive care units. Both of these distributions were drawn from

the COVID-19 Hospitalisation in England Surveillance System (CHESS) data set that collects

detailed data on patients infected with COVID-19 [15] (for further information, see Section 2

of the S1 Text).

Information on the distributions of length of stay in both intensive care units (ICUs) and

hospital was used to translate admissions into bed occupancy—which adds a further delay

between the epidemiological dynamics and quantities of interest.

In terms of matching the available data and quantities of interest, we also use the prediction

of symptomatic infections to drive the estimated daily number of deaths within hospitals. The

risk of death is again captured with an age-dependent probability, while the distribution of

delays between hospital admission and death is assumed to be age-independent. These two

quantities are determined from the Public Health England (PHE) death records.

Model fitting

We fit the model framework to each of the ten UK regions independently, on a region-by-

region basis, to four timeseries: (i) new hospitalisations; (ii) hospital bed occupancy; (iii)

ICU bed occupancy; (iv) daily deaths (using data on the recorded date of death, where-ever

possible).

The relative transmission rate from asymptomatic cases (τ) and the scaling of whether age-

structure case reports were based on age-dependent susceptibility or age-dependent symptoms

(α) were treated as free parameters. These allowed us to define an age-dependent susceptibility

(σa) and an age-dependent probabilities of displaying symptoms (da), through the next-genera-

tion relationship:

R
0
Ca ¼ dasa

P
bb;aðCb þ t

1� db

db

CbÞ=g

which linked observed cases in the next generation to the number of observed and unobserved

infections in the previous week. By assuming that the two age-dependent probabilities were

linked by:

da ¼ 1=kQ1�a
a sa ¼ 1=kQa

a

we were able to obtain the probabilities that were consistent with the age-distribution of

observed cases, and the required basic reproductive ratio R0 (see Section 1 of the S1 Text for

further details and [16] for more information on the inference scheme).

We performed parameter inference using the Metropolis-Hastings algorithm, computing

likelihoods assuming the daily count data for the four quantities to be independently drawn

from Poisson distributions, with a mean equal to the value derived from the model [16]. After

a burn-in of 250,000 iterations, the algorithm was run for a further 250,000 iterations. We
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thinned the generated parameter sets by a factor of 100, giving 2,500 parameter sets represent-

ing samples from the parameter posterior distributions. Example posterior distributions for

key parameters are given in Section 3 of the S1 Text; in all cases we use relatively uninformative

priors and observe substantial departure from the prior distributions.

Modelling intervention scenarios

In order to capture the impact of social distancing measures that were introduced in the UK

(on 23rd March) to reduce transmission, we scaled down the mixing matrices associated with

schools, work and other activities while increasing the within household transmission matrix

(see Section 4 of the S1 Text). This approach allowed us to flexibly vary the effectiveness of dif-

ferent social distancing measures and investigate the impact of compliance with social distanc-

ing (ϕ) upon the future spread of disease. We considered a range of compliance levels, scaling

from zero (no-compliance) to one (maximal compliance), as well as inferring the compliance

parameter from the available data (ϕ = 0.53(0.36–0.70) across all regions).

Another prominent intervention measure to reduce the spread of infection has been house-

hold quarantining, whereby an entire household is instructed to self-quarantine when any

member of that household starts to show symptoms of infection. To incorporate household

quarantining measures into the ODE formulation, we added a quarantined class into our

model, whereby a fraction (H) of the first detectable infection in any household (and therefore

by definition a symptomatic case) is quarantined as are all their subsequent household infec-

tions. Accounting for the effect of household saturation also ensures that subsequent house-

hold infections do not contribute to further transmission. For a complete description of the

model equations, see Section 1 of the S1 Text.

We used this model framework to perform a series of analyses assessing the impact of social

distancing strategies on the future spread of infection. Unless otherwise stated, all interven-

tions shown represent the mean dynamics from the posterior parameters inferred by a Monte

Carlo Markov Chain (MCMC) fitting scheme, rather than the combination of the mean plus

the sampling distribution; where practical credible intervals are also shown.

Short term projections under current lockdown measures. To provide a baseline for

comparison of our intervention scenarios, we initially simulated our model to investigate the

impact of the current intervention policies, continuing from their introduction on 23rd March

2020. We simulated the model from 1st March 2020 to 30th April 2020 and compared the

results to a scenario where no lockdown measures were ever introduced. To quantify predic-

tion uncertainty, a total of 200 simulations were run for each scenario (lockdown activated or

no lockdown imposed) using distinct parameter sets produced by the MCMC procedure, rep-

resenting samples from the posterior parameter distributions. We focused our attention on

estimates of deaths as well as hospitalisation and ICU bed occupancy, as key public-health

considerations.

Age-independent relaxation of lockdown measures. To investigate the longer term

impact of the epidemic, we explored several scenarios in which control measures are relaxed

on 7th May. The first scenario investigated a policy whereby social distancing measures were

relaxed on 7th May for all individuals, regardless of age. To reflect the uncertainty in the

degree of relaxation of the lockdown at this point, we varied our social distancing compliance

parameter (ϕ = 0, 0.25, 0.5, 0.75, 1), which allowed us to consider how the epidemic trajectory

may be affected for a range of relaxation policies. In these simulations we assumed that any

remaining social distancing measures were fully removed at the end of 2020.

Age-dependent relaxation of lockdown measures. Given the far higher fatality levels

observed in the elderly, we next investigated policies imposing age-dependence upon the
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relaxation criteria. Specifically, we allowed all social distancing measures to be lifted from 7th

May for any individual below a certain age (this age threshold was varied between 45 to 75

year old). For those above the age threshold, we assumed that social distancing measures

remained in place until the end of 2020. Simulations were then run to the end of 2021, to cap-

ture any subsequent waves of infection. For each age threshold under consideration, we again

considered the cumulative deaths, as well as cumulative hospital and ICU bed occupancy. We

differentiated between these health impacts that occurred when age-specific restrictions were

in place and when all restrictions were lifted. We also focused on the number of days in which

ICU bed occupancy exceeded 4,000, as a measure of the immediate severity of the outbreak

and the pressure on the health services.

Full relaxation of lockdown measures with region-based reintroduction. Our penulti-

mate set of simulations considered an adaptive intervention strategy, whereby lockdown mea-

sures were fully relaxed on 7th May, but then reintroduced when occupancy of intensive care

units exceeded a given capacity and relaxed again when ICU occupancy declines. To account

for regional variation in the outbreak and local hospital capacities, we assumed that control

measures would operate locally (using the ten regions). We therefore used a pro-rata thresh-

old, which equated to 3,000 occupied beds on a nationwide scale, as a trigger for reintroducing

or relaxing controls (see S1 Text, Table B). Given the sizeable delay between the implementa-

tion of controls and their effects on ICU occupancy, the dynamics only predicted a low num-

ber of switches between control and relaxation. We gathered regional predictions of daily

deaths, ICU bed occupancy and hospital bed occupancy, with simulations run to the end of

2023.

Sensitivity analysis. When evaluating the impact of lockdown measures, we are reliant

upon recorded data on confirmed cases, hospital admissions and ICU occupancy in order to

infer parameters of our model. However, there is still ongoing uncertainty in the relative level

of transmission from asymptomatic individuals (τ) and the mechanisms driving age-specific

detection rates (α). A range of α and τ parameter values are all able to generate predictions that

closely match the available data. We therefore carried out a sensitivity analysis to these two

parameters, investigating the impact of applying lockdown measures for specific age groups,

as these parameters vary. We allowed τ, the relative level of transmission from asymptomatic

individuals, to vary between 0 and 0.5; while α varied between 0 and 1. For large α, higher pro-
portions of confirmed cases in a particular age group is as a result of greater susceptibility;

whereas low vales of α indicate that a higher proportions of confirmed cases is due to greater

severity of symptoms. This key parameter interacts with the relative transmission from asymp-

tomatic infection (τ), although τ plays a minimal role when α is small. To assess the impact of

these parameters on the effectiveness of lockdown measures, we computed the early epidemic

growth rate under restrictions that target four specific age-groupings: (i) pre-school children

under 5 (PS), (ii) school-aged children and young adults, 5-20 (S), (iii) adults between the age

of 20 and 70 (A) and (iv) the elderly over 70 (E).

Results

Reductions in clinical case burden under current lockdown measures
versus no intervention

Our model predicts that, should the current lockdown policies be continued, the number of

daily deaths would peak in April across all regions before starting to decline (Fig 2). England

andWales are found to be most severely affected, with the highest number of predicted deaths

per capita, whilst we predict a lower number of deaths per capita in Scotland and Northern Ire-

land (noting that though our regional model fits generally had strong correspondence with the
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data, the fit to Scotland was weaker). All English regions show similar behaviour, other than

the South East and South West, where we predict a lower number of deaths (Fig 2). We

observe similar behaviour in the levels of hospital and intensive care unit occupancy through-

out this period (see S1 Text, Figs B-D). Our model predicts that, under continued total lock-

down, the average total deaths would be approximately 39,000 (Table 2).

The fit to the available data is imperfect, which may be due to multiple factors. The data for

the individual nations (top row) is by date of reported death, which introduces a number of

reporting delays into the system. In addition, we are striving for a model that matches death,

hospitalisations, hospital occupancy and ICU bed occupancy—the fits therefore represent a

balance of fitting to all four measures. Given the far greater numbers that are hospitalised, we

find that these dominate the fitting procedure.

If the epidemic in the UK had been allowed to progress with no introduction of lockdown

measures, our model predicts that the epidemic would have continued to grow throughout

April, with deaths exceeding 200,000 by the end of 2021 (Table 2). This provides strong evi-

dence to support the necessity of the social distancing measures that were introduced in order

to reduce the growth rate of the epidemic and ensure that the health service was not over-

whelmed with admissions.

Fig 2. Regional projections for deaths per 100,000 with and without imposition of lockdown. In each panel: filled markers correspond to observed
data (squares are for deaths by date of reporting, circles are for when date of death is available), solid lines correspond to the mean outbreak over a
sample of posterior parameters; shaded regions depict prediction intervals, with darker shading representing stricter confidence (dark shading—50%,
moderate shading—90%, light shading—99%); red dashed lines illustrate the mean projected trajectory had no lockdownmeasures been introduced. We
stress that the sample distribution around the expected value is not included in these plots, but would significantly increase the width of the distributions
shown (Predictions were produced on 23rd April, using data up to 21st April).

https://doi.org/10.1371/journal.pcbi.1008619.g002
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Measured age-independent relaxation protocols to reduce health system burden. Eval-

uating a policy whereby social distancing measures were relaxed to different degrees from 7th

May for all individuals, we found that for a significant relaxation of lockdown the epidemic

rapidly resurges with a peak in daily deaths of over 4,000 occurring in late June (Fig 3, top

panel). We project intensive care unit occupancy to near 10,000 by the end of June (Fig 3, sec-

ond panel), implying that significant release of lockdown measures would not be advisable.

For more measured relaxation protocols, we found that, whilst there may be a slight resur-

gence in cases in the short term, hospital and ICU occupancy remained within capacity. How-

ever, whilst the forecasts from these simulations suggest that keeping most lockdown measures

in place can have a positive impact upon reducing cases and deaths in the short-term, we note

that, when lockdown measures are subsequently released in 2021 a large second infection wave

is predicted. These results imply that should the outbreak have to be contained by non-phar-

maceutical interventions alone, then a second wave of infections is somewhat inevitable as

isolation measures are reduced. Of the scenarios investigated here, intermediate levels of relax-

ation (ϕ = 0.5) until 2021 followed by complete cessation of lockdown generates the least

deaths (approximately 152,000 over both years).

Assessment of age-based shielding strategies. We next analysed the lifting of social dis-

tancing measures on 7th May for all individuals below a certain age, with social distancing

measures remaining in place for the remainder of the population until the end of 2020. We

observe that continuing lockdown for anyone over the age of 45 for the duration of 2020

results in the lowest number of deaths and number of admissions into hospital and ICU wards

during that year (Fig 4, first column). However, upon release of these lockdown measures we

observed a significant second wave in 2021 as a substantial number in the over 45 age group

were susceptible allowing a new outbreak (Fig 4, second column). When isolation is only in

place for older age groups (for example the over 70s), a large initial wave of infection occurs

during 2020, but a subsequent secondary wave is not observed. Considering the combined

impact from 2020-2021, we find that a strategy of continuing lockdown measures for anyone

over the age of 65 minimises the total number of deaths, while hospital and ICU occupancy is

minimised by continuing lockdown for anyone over the age of 60 although the overall effect of

this is marginal (Fig 4, third column). We predict that continuing lockdown for the over 60s

throughout 2020 whilst relaxing measures of the remainder of the population results in, on

average, 138,000 deaths by the end of 2021 (Table 2). Finally, we note that the total number of

days for which ICU bed occupancy exceeds 4,000 increases with the age-threshold; this implies

that while the elderly are the most vulnerable and the most likely to need critical care, an

Table 2. Summary of model outputs. � = epidemic would continue.

Control Time frame Total deaths
(thousands)

Total QALY loss
(thousands)

ICU occupancy
(thousand bed

days)

Hospital
occupancy

(thousand bed
days)

Lockdown scale
(days / population

size)

No Control 1/1/2020–1/1/
2021

201
(145-238)

1997
(1140-2658)

476
(204-671)

3000
(1566-4161)

0

Observed lockdown� 1/1/2020–1/1/
2021

39
(36-42)

315
(288-346)

69
(62-75)

462
(422-501)

285

Observed lockdown until 1/1/2021 then no
control

1/1/2020–1/1/
2022

198
(131-234)

1976
(974-2589)

477
(180-657)

2966
(1389-4009)

285

Regional switching based on ICU occupancy 1/1/2020–1/1/
2023

155
(106-187)

1352
(742-1817)

280
(122-416)

1933
(1029-2642)

242
(121-347)

Lockdown of>60s until 2021 1/1/2020–1/1/
2022

138
(111-165)

1245
(721-1692)

368
(151-530)

1677
(886-2249)

132

https://doi.org/10.1371/journal.pcbi.1008619.t002
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uncontrolled outbreak in the younger population can still place severe demands upon the

health service (Fig 4, third row).

Utility of reintroducing lockdown measures regionally with ICU occupancy triggers.

Relaxing the lockdown from 7th May allows subsequent secondary waves of infection to begin,

Fig 3. Clinical case projections for differing strengths of relaxing lockdownmeasures, ϕ.We assume social distancing measures were relaxed on 7th
May for all individuals. The different line types (and shades) correspond to the dynamics using differing levels of relaxation (ϕ = 0, 0.25, 0.5, 0.75, 1),
with ϕ = 0 corresponding to a total removal of social distancing measures, and ϕ = 1 representing a continuation of lockdownmeasures until 1st
January 2021. Shaded regions represent the 95% posterior prediction intervals. We display daily counts of (Row one) deaths; (Row two) ICU
occupancy; (Row three) hospital occupancy. At the start of 2021, all remaining social distancing measures are removed (the “no control” phase).

https://doi.org/10.1371/journal.pcbi.1008619.g003
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Fig 4. Impact of age-based shielding strategies on outbreak burden. In these simulations, social distancing measures were lifted on 7th May for all
individuals below an age threshold, with social distancing measures remaining in place for the remainder of the population until the end of 2020. No
interventions were applied post-lockdown release, with simulations continued until the end of 2022. Box plots for each statistic give median values
(circles), interquartile range (box) and 95th percentiles (whiskers). Solid lines depict the profile of median estimates across age threshold space. The
following statistics were computed for the period 23rd March 2020 to the end of 2021: (Row one) cumulative deaths; (Row two) cumulative ICU bed
occupancy; (Row three) amount of days ICU occupancy exceeded 4000; (Row four) cumulative hospital bed occupancy. We stratify the outputs
occurring across the considered time horizon in three ways: (Column one) during lockdown; (Column two) after lockdown; (Column three)
combined (entire time horizon).

https://doi.org/10.1371/journal.pcbi.1008619.g004
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but a local increase in ICU occupancy triggers the reintroduction of social distancing measures

on a region-by-region basis (Fig 5). This results in multiple regional waves of infection, gradu-

ally becoming smaller and more asynchronous over time. The consequence of this adaptive

strategy is that the total number of deaths and confirmed cases gradually reduce over a long

Fig 5. Clinical case projections under an adaptive intervention strategy with regionally activated lockdowns (responding to ICU occupancy). In all
simulations we assumed social distancing measures were relaxed on 7th May for all individuals, with subsequent reintroduction of lockdownmeasures
at a regional level (in the seven English regions, Scotland, Wales, and Northern Ireland) if ICU occupancy exceeded 45 ICU cases per million within the
given region. Thick solid lines correspond to the mean outbreak over a sample of posterior parameters, with shaded regions corresponding to the 95%
prediction intervals. The paler lines correspond to the dynamics in the individual regions. We display statistics on daily counts of (Row one) deaths;
(Row two) ICU bed occupancy; (Row three) hospital bed occupancy.

https://doi.org/10.1371/journal.pcbi.1008619.g005
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period of time (Fig 5, top and bottom panels), with the epidemic reaching low levels in mid

2021. As a result this policy balances the overall demand on the health services against the

need to exit the epidemic without a substantive second wave.

Role of asymptomatics crucial in determining the effect of age-based lockdown relaxa-

tion measures. Finally, we investigate the impact of applying lockdown measures for specific

age groups, whilst varying τ, the relative level of transmission from asymptomatic individuals,

and α, the scaling determining whether the age-dependence in cases comes from susceptibility

(α = 1) or symptoms (α = 0). We observe that, regardless of the values of τ and α, applying con-
trol on only a single age group (PS, S, A or E) results in large-scale epidemics (Fig 6). Similarly

Fig 6. Sensitivity of intervention measures to τ and α. Each panel represents the application of lockdown measures to combinations of specific age
groups (PS—PreSchool (0-4yrs), S—School (5-20yrs), A—Adults (21-70yrs), E—Elderly (over 70 yrs). The colour of each square represents the growth
rate of the epidemic under the specified age-specific policies. Growth rates less than 0 (blue) imply that the epidemic is under control; the red line
separates regions that are under control from regions where we expect exponential growth. Columns distinguish inclusion or exclusion of PS and S
groupings in lockdown coverage: (Column one) coverage includes PS, not S; (Column two) coverage includes S, not PS; (Column three) coverage
includes both PS and S; (Column four) neither PS or S included in lockdown.

https://doi.org/10.1371/journal.pcbi.1008619.g006
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ineffective strategies are observed when combining PS control with one of S, A or E. However,

control of school aged children, adults and the elderly, results in epidemics that are under con-

trol for all values of τ and α.
Should we exempt the elderly from lockdown we find that, for high levels of α, large epi-

demics are observed, whereas if the true value of τ is high and α is small, applying control on

the younger age groups and releasing lockdown on the elderly can result in epidemics that will

rapidly die out. In contrast, if we relax lockdown on school children but keep it in place for

other age groups, we note that this only has a positive effect upon the epidemic if the true value

of α is high, or the true value of τ is low. If α is low and τ is high, then this implies that the age-

dependence of reported cases is primarily as a result of clinical symptoms rather than suscepti-

bility and the transmission rate of asymptomatic cases is high. Therefore, school children will

play a much larger role in transmission, implying that a policy of re-opening school would

cause a much larger epidemic. These results reinforce the need to resolve uncertainty regard-

ing the role of asymptomatic individuals in the infection process in order to establish the opti-

mal intervention strategy.

Potential exit strategies comparison. Our findings are summarised in Table 2, where we

focus on deaths (and the associated Quality Adjusted Life Year (QALY) losses), hospital occu-

pancy and the scale of the lockdown as a measure of potential economic burden. QALYs are a

standard measure in health economics which accounts for the number of life years lost due to

an illness or disease, while also taking into account quality of life. Hence, under the QALY

framework deaths in younger individuals have greater impact than deaths of older individuals

due to the additional years of life lost (for further details, see Section 5 of the S1 Text). Our

lockdown scale measures the pro rata number of days the population is under lockdown; so if

50% of the population is under lockdown for 200 days, we report a value of 100 (50% of 200).

A completely uncontrolled outbreak is predicted to lead to around 200,000 deaths, approxi-

mately 2 million QALY losses but no lockdown impacts. If the current controls are maintained

until the end of 2020, then we predict 39,000 deaths this year, but a further 159,000 if controls

were then completely removed. Regional switching and age-dependent strategies provide alter-

native exit strategies in the absence of pharmaceutical interventions. Of these, the age-depen-

dent shielding of those age 60 or over generates the lowest mortality and also the lowest

lockdown scale, thereby minimising socio-economic disruption. However, it is unclear if a

protracted lockdown of this age-group would be practical, ethical or politically acceptable.

Discussion

In this paper, we have developed an age-structured compartmental SARS-CoV-2 transmission

model that has been used to make short-term predictions and analyse the effectiveness of the

strict social distancing measures that were implemented in the UK during April 2020. The

paper reflects the state of the model in April 2020 and our predictions at that time. We have

not used the advantages of hindsight to improve the fits nor to change the scenarios considered

[8]; instead, we use this discussion to consider what these results imply for the unfolding sec-

ond wave and long-term exit strategies.

Our model shows that, without the introduction of the large scale social distancing mea-

sures that were introduced on 23rd March 2020, the epidemic in the UK would have continued

to grow exponentially and hospital and ICU occupancy would have rapidly exceeded capacity.

However, under the enacted policies, the epidemic was predicted to peak in April for all

regions of the UK, before starting to decline (Fig 2).

One of the most important questions postulated in April was when and how social distanc-

ing measures might be relaxed; a question that is still pertinent in early 2021. We consistently
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found that any relaxation of control measures in the short term leads to a rapid resurgence of

COVID-19 disease with the health system potential being overwhelmed by a sizeable second

epidemic wave (Fig 3). In contrast, moderate or no adjustments to current social distancing

measures allows hospital and ICU occupancy to remain within capacity over the duration of

the outbreak, although this leaves dangerously high numbers of susceptible individuals in the

population (Fig 3). It was apparent from the data on confirmed cases and deaths as a result of

COVID-19 disease available in early April 2020 that the risks associated with infection increase

with age [17–19]. We therefore also investigated the impact of age-specific control policies,

whereby lockdown measures remained in place for all individuals over a certain age until the

end of 2020. We found that, whilst some marginal gains can be made should everyone over the

age of 60 be put under isolation measures, extending this policy to include younger age groups

increases the risk of a second wave occurring when measures are relaxed. Furthermore, we

projected critical care to be stretched and ICU bed occupancy to exceed 4,000 during the

course of the pandemic in all but the most wide-ranging age-specific lockdown policies (Fig

4). This extreme form of shielding has since been advocated as a potential exit strategy [20, 21]

but there are ethical issues as well as practical problems with isolating the most vulnerable

from the rest of society.

Our sensitivity analysis shows that the effectiveness of any age-specific intervention policy

is critically dependent upon the precise role of asymptomatic individuals in the epidemic.

Even in April, undocumented infection has been inferred to have facilitated the spread of

SARS-CoV-2 in China [22], suggesting the potential of asymptomatic transmission. At the

time government advice for self-quarantining focused upon individuals who showed symp-

toms of COVID-19 (primarily a fever and a dry persistent cough) and therefore, our predic-

tions for asymptomatic (or pre-symptomatic) infections playing a significant role in the

transmission process, weaken such a policy. Asymptomatic transmission and transmission

before symptom onset are now well recognised phenomena [23], which emphasises the need

for efficient test-trace-and-isolate policies.

In practice, to minimise the risk of subsequent large epidemic wave occurring in the UK,

adaptive policies may need to be considered that react to local health pressures. To that end,

we examined a more bespoke intervention policy whereby measures were relaxed and re-

introduced on a regional basis, with a defined trigger for the reintroduction of interventions

when ICU occupancy exceeded a certain level. This results in a longer epidemic tail, until the

second half of 2021, but ensures that the health service is protected by reintroducing social dis-

tancing measures for all individuals in a region when required.

In mid-April many countries around the world had now seen significant epidemics of

COVID-19 and many had implemented severe lockdown policies in an effort to contain the

disease. In China and other countries in East Asia, once the epidemic was regarded to be

under control, in seeking to prevent the occurrence of a large second wave the relaxation of

isolation measures was implemented in a gradual fashion, and was tightly reimposed if new

cases were detected. Our model findings support the need for this form of relaxation policy.

We recognise that there is a need for certain measures to be lifted as soon as is feasible, for a

range of practical, social and economic reasons. However, government agencies should be pre-

pared to resume lockdown if needed, based upon the the progression of the epidemic following

relaxation. Identifying triggers, such as ICU occupancy exceeding a certain threshold, may be

beneficial in allowing decision makers to follow a clear set of guidelines for controls to be rein-

troduced. The identification of such triggers need be based upon the objective of an interven-

tion measure and the ability to resolve epidemiological uncertainty as the outbreak progresses.

To this end, formal adaptive management approaches may help to facilitate the establishment

of state dependent intervention strategies [24].

PLOS COMPUTATIONAL BIOLOGY Potential exit strategies for COVID-19 in the UK

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008619 January 22, 2021 16 / 20

https://doi.org/10.1371/journal.pcbi.1008619


The model described is necessarily a simplified representation of reality based on several

assumptions and has various limitations. Data informing contact structure for the UK were

measured historically [13]. Were contact patterns in early 2020 (pre-lockdown) to substantially

differ from the preexisting data, the influence of projected intervention effects may be

impacted. Similarly, while we can infer the compliance to the currently imposed rules, we had

limited understanding of how people would behave when the controls are released—would

they remain wary of potentially infectious situations, or would they compensate for the time in

lockdown. This still remains an open question [25] and is a key policy consideration as restric-

tions are varied. Throughout, we have assumed that when controls are lifted mixing patterns

would return to their pre-pandemic norm.

Heterogeneities in compliance and in infection patterns, such as increased transmission in

hospitals and institutions, may affect the outcome of the measures considered. We note that

these early estimates of deaths resulting from an individual strategy does not take into account

the potential for increased deaths due to exceeding hospital or ICU capacities, and so may

underestimate deaths from strategies resulting in high occupancies. However, our April esti-

mate of around 39,000 deaths from the first wave of COVID-19 infections in the UK compares

well with the true figure of 41,265 from 1st August 2020 before cases began to rise again. In

addition, though there have been recorded instances of superspreading events for COVID-19

[26], our model does not explicitly account for such highly stochastic dynamics. Such stochas-

tic effects will be important at times of low infection (such as troughs between waves) and

could influence the timing of a subsequent wave of infection. However, beyond the early stages

of the outbreak the dynamics at the population-level are generally driven by the average pat-

tern of social mixing, rather than individual level variation, meaning a deterministic frame-

work is a justifiable approximation.

Since these results were produced in April, there have been multiple changes to the method-

ology precipitated largely by additional data, and the need to match to these new sources [16].

Three key additional data sets have shaped the model development. Frommid-June age-struc-

tured data became available on antibody seroprevalence from weekly blood donor samples

from different regions of England (approximately 1000 samples per region) [27]. Matching to

serology allowed us to set an independent scaling between infections and epidemiological

observations (such as hospitalisations and deaths), particularly important given that a signifi-

cant proportion of infections are asymptomatic. The age-structured nature of this data also

helps to refine the key parameter α in our model that determines the contribution of age-

dependent susceptibility and age-dependent symptomatic probability. This has since been sur-

passed by serological data from the REACT-2 study [28–30], which was a carefully designed

sample of 100,000 individuals to gain a representative sample across England. Finally, commu-

nity swab testing (through the Pillar 2 arm of the Test and Trace scheme), provides the most

rapid assessment of current infection levels across the UK, without the delays associated with

hospitalisation or death. Each of these requires a restructuring of the model framework to

account for the new data stream. There have also been significant improvements in fitting the

model to the data: integer quantities are assumed to be drawn from a negative binomial distri-

bution, while proportions are drawn from a beta binomial—both leading to increased variance

for a given mean. Finally, the impact of restrictions (ϕ) is allowed to vary slowly on a weekly

time scale to account for the multiple changes in both policy and compliance.

All the strategies we have considered here assume that an exit strategy will have to rely on

non-pharmaceutical interventions. In this case, a second (or subsequent) wave of infections

follows any return to normality while there is sufficient susceptibility in the population. We are

therefore faced with three potential exit solutions: 1) Seek a measured reduction in restrictions

that minimises the impact of the unfolding outbreak, but acknowledging that a significant
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proportion of the population will become infected (although not necessarily symptomatic); 2)

Accept a substantial and long-term change to our social interactions (practising far better pre-

vention of transmission), such that the reproductive ratio of the virus is constantly held below

one—electronic and traditional methods of tracing and isolation [31] fall into this category; or

3) rely on the development of an effective vaccine, in which case the best approach may be to

extend the lockdown, reducing infection until mass vaccination can occur.

In conclusion, the COVID-19 pandemic has resulted in the introduction of multiple levels

of social distancing measures in the UK and many other countries around the world. Following

the strict lockdowns to mitigate the first wave, public-health agencies are continually analysing

how best to develop an exit strategy that balances the epidemiological consequences against

impacts on mental health and the economy. Our work provides strong evidence to support the

need for a cautious, measured approach to relaxation of any controls, in order to provide nec-

essary support for the health service and to protect the most vulnerable members of society.
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