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Predictions of protein–RNA
interactions
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Ribonucleoprotein interactions play important roles in a wide variety of cellu-
lar processes, ranging from transcriptional and posttranscriptional regulation of
gene expression to host defense against pathogens. High throughput experiments
to identify RNA–protein interactions provide information about the complexity
of interaction networks, but require time and considerable efforts. Thus, there
is need for reliable computational methods for predicting ribonucleoprotein in-
teractions. In this review, we discuss a number of approaches that have been
developed to predict the ability of proteins and RNA molecules to associate.
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INTRODUCTION

I n the course of the past decade, a number of
large consortia, most notably FANTOM1 and

ENCODE,2 carried out large-scale sequencing of the
human transcriptome. These and subsequent stud-
ies revealed a stunning and unexpected result—that
the majority of the human genome is transcribed
into many thousands of previously uncharacterized
RNA molecules, both long and short. As a matter
of fact, protein-coding genes occupy less than 2% of
the human genome and represent dispersed oases in a
landscape of DNA areas that are actively transcribed
under developmental and environmental conditions.
Most of the RNA molecules do not encode pro-
tein, and are transcribed from both ‘intergenic’ and
previously described protein-coding loci. Noncoding
RNAs (ncRNAs) can be classified by their size: ‘short’
RNAs, including well-known classes such as microR-
NAs or snoRNAs, and ‘long’ RNAs which are defined
as any transcript >200 nucleotides that does not have
a functional open reading frame. Conservative esti-
mates have ∼10,000 long ncRNAs (GENCODE),3

and ∼1500 microRNAs (mirBase Release 17). At
present, the full repertoire of noncoding RNAs in
the human genome is unclear—ever deeper RNAseq
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analyses of human transcriptomes does not appear
close to saturation outside of protein-coding exons,
suggesting that many more lowly expressed or cell-
type-specific noncoding RNAs (ncRNAs) remain to
be discovered, particularly in the poorly explored
non-polyA fraction.4 As for their function, it seems
that most ncRNAs serve to regulate gene expression
in some way by interacting with DNA and protein
molecules.5 In fact, it has been suggested that ncRNAs
are slowly acquiring more power over evolution6 and
that ncRNA are taking on primary responsibility to
regulate cellular processes and could co-opt proteins
to assist in orchestrating the diversity of eukaryotic
cellular pathways. Intriguingly, almost all known ex-
amples of ncRNA function by interfacing with protein
complexes such as transcription, splicing, replication,
and transport.7,8 Indeed, the abundance and diversity
of RNA-binding proteins (RBPs) has been correlated
with the complexity of organisms, with the number
of RBPs reaching thousands in vertebrates.9

There are numerous protein domains involved
in RNA binding, with prevalence of α/β structures.10

For instance, some common and well-characterized
RNA-binding domains include: K Homology (KH)
domain, Arginine Glycine Glycine (RGG) box, RNA
Recognition Motif (RRM), double-stranded RNA-
binding domain (dsRBD), Pumilio/FBF (PUF) do-
main, and the Piwi/Argonaute/Zwille (PAZ) domain.7

The KH is the most abundant domain in structural
databases (173 pdb entries) with a total of 16,184
KH regions identified in different proteomes.11 By

Volume 00, January /February 2012 1c© 2012 John Wi ley & Sons , L td .



Advanced Review wires.wiley.com/wcms

contrast, only 20 pdb entries are present for the PUF
domain.11

In general, computational predictions of RNA
binding requires knowledge on whether a given pro-
tein binds RNA, which residues in the protein se-
quence are directly involved in making contacts with
the RNA, which nucleotides interact with the pro-
tein and what is the structure of the protein–RNA
complex. Availability of protein tertiary structure
can greatly facilitate the prediction of RNA-binding
sites, which is typically identified by surface-exposed
residues that are close to each other in space, but
not necessarily in sequence. RNA-binding sites are
often positively charged patches exposed to the sol-
vent to bind to negatively charged RNA backbone.12

Structure-based predictive methods exploit the distri-
bution of charged amino acids and spatial proximity
of residues with particular features. Sequence-based
algorithms employ the same information as structure-
based methods, but replace structural observable with
predicted features.

In this review, we discuss computational meth-
ods for the identification of protein and RNA-binding
sites. Algorithms can be group in two classes depend-
ing on whether patterns derived from primary or ter-
tiary structure are used for training. The catRAPID
method is the first method that simultaneously pre-
dicts protein and RNA binding sites exploiting pre-
diction of physicochemical properties such as sec-
ondary structure, hydrogen bonding and van der
Waals propensities.

PHYSICOCHEMICAL DETERMINANTS
OF PROTEIN–RNA ASSOCIATIONS
(catRAPID)

catRAPID (http://tartaglialab.crg.cat/) is the first com-
putational method able to perform large-scale predic-
tions of protein–RNA associations.13 The algorithm
was trained on a large set of protein–RNA pairs avail-
able in the Protein Data Bank to discriminate inter-
acting and noninteracting molecules using secondary
structure propensities, hydrogen bonding, and van der
Waals contributions. Accurate predictions have been
reported for long noncoding RNA associations with
proteins and in particular the Polycomb chromatin-
remodeling complex, suggesting that the approach
could be particularly suitable for investigating
RNA molecules involved in epigenetic regulation.13

As interactions between proteins and long ncRNAs
are known to play a pivotal role in gene tran-
scription, histone and DNA methylation, acetylation,
and sumoylation, catRAPID could be particularly

TABLE 1 The catRAPID Method

Dataset: 858 RNA–protein complexes available from the RCSB
databank: a positive dataset containing 7409 interacting
protein–RNA pairs and a negative set containing 958
noninteracting protein–RNA pairs. catRAPID is tested on the
non-nucleic-acid-binding database (NNBP; area under the
receiver operating characteristic (ROC) curve of 0.92), the
NPInter database (area under the ROC curve of 0.88), and a
number of individual interactions (e.g., RNAse mitochondrial
RNA MRP and X-inactive specific transcript XIST networks).
Performances are estimated with a 10-fold cross-validation.

Method: catRAPID is trained to discriminate between
interacting and noninteracting molecules using secondary
structure propensities, hydrogen bonding and van der Waals
contributions. Physicochemical properties are combined into
the interaction profiles, from which protein and RNA-binding
sites are calculated.

suitable to predict lncRNA associations with RNA
polymerases, transcription factors and chromatin
modifiers to discover new protein–RNA interactions
(Figure 1, Table 1).14

Examples of Predictions

HOTAIR and SUZ12
HOTAIR (HOX Antisense Intergenic RNA) is a 2.3
kb long intergenic ncRNA that serves as a scaffold
for histone modification complexes.15 The 5′ domain
of HOTAIR binds Polycomb Repressive Complex 2
(PRC2), whereas the 3′ domain does not. HOTAIR is
shuttled from chromosome 12 to chromosome 2 by
the Suppressor of Zeste Homolog SUZ12 protein. By
contrast, indoleglycerol phosphate synthase, which
belongs to the class non-nucleic-acid binding pro-
teins (NNBP)12 shows negligible propensity to bind
to the 5′ of HOTAIR RNA (discriminative power
0%).11,12 Moreover, Suz12 does not bind to HO-
TAIR 3′ (discriminative power 0%), as previously
reported.15

The RNP Complex
There are many clear examples of noncoding RNAs
that function as part of ribonucleoprotein (RNP)
complexes (e.g., ribosome, splicesome, SRP, and
RNase P). A classic example of a functional RNP
complex is RNase P,16 which is found in all kingdoms
of life and is responsible for the generation of mature
5′ ends of tRNAs by cleaving the 5′ leader elements
of precursor tRNAs (pre-tRNAs). In bacteria and eu-
karyotes, RNase P is composed of a core RNA and
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FIGURE 1 | Predictions of RNA associations with protein classes. The catRAPID method is used to calculate the ability of proteins to interact
with ncRNAs.13 (a) RNA-binding, ribonucleo- and DNA-binding proteins show higher propensities to bind to RNA than anionic-, cation-, and
non-nucleic-acid binding proteins.12 (b) In Homo sapiens, The Suppressor of Zeste Homolog Suz12 is predicted to interact with HOTAIR 5′ (NCBI
entry NR 003716.2 nucleotides 56–355; discriminative power 76%), which is in agreement with experimental evidence.15 RNA-binding sites
correspond to the C terminal VEFS-Box, which contains a Zinc finger domain, as well as amino acids 150–200 and 210–250, which are rich in
positively charged residues; (c) indoleglycerol Phosphate Synthase (pdb code 1A53) belongs to the class non-nucleic-acid binding proteins (NNBP)12

and shows negligible propensity to bind to HOTAIR 5′ (discriminative power 0%).11,12 (d) Suz12 does not bind to HOTAIR 3′ (nucleotides
1553-2198; discriminative power 0%), as shown by experiments carried out in HeLa cells.15

1–10 proteins, respectively. In Escherichia coli,
RNase P contains a large catalytic molecule of RNA
(M1) and a small protein subunit (C5). Although
there is evidence for a catalytic activity of the RNA
alone in vitro,15 C5 is strictly required for RNAse P
function in vivo.17 Binding of the protein subunit in-
creases the affinity of the complex for the substrate
up to 1000-fold. Indeed, C5 enhances substrate recog-
nition and catalysis upon binding to the 5′ leader se-
quence of pre-tRNA.18 In agreement with experimen-
tal evidence,18 catRAPID predictions indicate that
92% of E. coli pre-tRNAs have strong propensity
to interact with C5 (Figure 2).

The CSR Regulatory System
The Csr system includes two critical components,
CsrA and CsrB. CsrA is a 61-amino-acid protein
related in sequence to several other RBPs.20,21 CsrA
is essential for the major decay pathway of tran-
scripts and represents a model system to explore the
prokaryotic RNA regulation.22 The second regulatory
component, CsrB, is a noncoding RNA molecule
(fRNAdb code: FR283968), which forms a globular
complex with approximately 18 CsrA polypeptides
and antagonizes CsrA activity.22 In agreement with
previous observations,20,21 catRAPID predictions
indicate that CsrB contacts CsrA in multiple regions
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FIGURE 2 | RNAse P. In Escherichia coli, RNase P is composed of a large catalytic molecule of RNA (M1 RNA) and a small protein subunit (C5
protein). This complex is required to process precursor tRNAs in functional tRNAs molecules. C5 protein enhances substrate recognition and helps
catalysis by discriminating between substrate and product through the binding to the 5′ leader sequence of pre-tRNA.18 The C5 RNA-binding
domain spans the entire protein sequence. High interactions are predicted between C5 and several pre-tRNA molecules.19 (a) High interaction
propensity is predicted between C5 and Ser pre-tRNA (E. coli K12 2816667–2816575 nt; discriminative power 80%). The predicted binding site is
located at the 5′ leader, in agreement with experimental evidence19; (b) randomization of Ser pre-tRNA sequence results in strong reduction of the
C5 binding ability (discriminative power 0%); (c) C5 and Ser pre-tRNA are predicted to have higher interaction propensities than a random pool of
104 associations with same protein and RNA lengths (interaction strength 99%, marked as blue area under the distribution curve). (d) We predict
strong interaction propensities for all the pre-tRNA molecules reported to interact with C5.19 More specifically, we find that 80 pre-tRNAs (i.e., 92%
of the RNA set) have interaction strengths (IS) > 50% with average interaction strength = 82%.

at the 5′ and central region of the transcript, in cor-
respondence to the repeated motifs CAGGATG,
CAGGAAG, AAGGAAA, and AGGGAT23

(Figure 3A). The ability of CsrB to sequester
and antagonize the mRNA decay factor defines
an important biological function for RNA.20,21

catRAPID predicts very strong propensity for the
CsrA-CsrB system (Figure 3B).

Comparisons with Other Methods
The RPISeq predicts ribonucleoprotein interac-
tions using the information contained in pro-

tein and RNA sequence patterns (http://pridb.gdcb.
iastate.edu/RPISeq; see section RPISeq).24 In agree-
ment with catRAPID predictions and experimental
evidence,13,15 RPISeq predicts that HOTAIR 5′ binds
to Suz12 with probabilities P = 0.6 (RPISeq-RF
method) and 0.52 (RPISeq-SVM method). By con-
trast, Suz12 and HOTAIR 3′ are predicted to interact
with P = 0.65 (RF) and 0.95 (SVM). As for the associ-
ations between C5 and Ser pre-tRNA, RPISeq reports
P = 0.35 (RF) and 0.87 (SVM), whereas the CsrA-
CsrB association is predicted with P = 0.71 (SVM)
and 0.13 (RF). The negative controls indoleglycerol
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FIGURE 3 | The CsrA-CsrB system. The central component of the calcium storage regulator system, CsrA, is a 61-amino-acid RNA-binding
protein. This small protein, whose RNA-binding domain spans the entire polypeptide sequence, inhibits glycogen biosynthesis and catabolism,
gluconeogenesis, and biofilm formation, whereas it activates glycolysis, acetate metabolism, motility, and flagellum biosynthesis.20,21 A second
component of the CSR system is untranslated CsrB RNA (fRNAdb code: FR283968), which binds to a number CsrA subunits, forming a large globular
ribonucleoprotein complex (Erwinia carotovora). (a) In agreement with previous observations, CsrB is predicted to contact CsrA (discriminative
power 88%)13 and shows binding regions in the 5′ and central region of the transcript in correspondence to the repeated motifs CAGGATG,
CAGGAAG, AAGGAAA, and AGGGAT.23 (b) Very strong interaction is predicted for the CsrA–CsrB system with respect to a random pool of 104

protein–RNA associations (interaction strength 97%, marked as blue area under the distribution curve).

phosphate synthase and randomized pre-tRNA are
predicted to bind to HOTAIR 5′ and C5 with P =
0.75 (RF) / 0.64 (SVM) and 0.55 (RF) / 0.92 (SVM),
respectively.

Details about the catRAPID Method

The Interaction Profile
The contributions of secondary structure, hydrogen
bonding and van der Waals’ are combined together
into the interaction profile [see Eq. (1)]:

�x = αS Sx + αH Hx + αWWx. (1)

In Eq. (1), X indicates the physicochemical pro-
file of a property X calculated for each amino acid
(nucleotide) starting from the N-terminus (5′). For ex-
ample, the hydrogen bonding profile, denoted by H,
is the hydrogen bonding ability of each amino acid
(nucleotide) in the sequence (Eq. 2):

H = H1, H2, . . . Hlength. (2)

Similarly, S represents the secondary structure
occupancy profile and W the van der Waals’ profile.
The variable x indicates RNA (x = r) or protein (x =
p) profiles. Secondary structure, hydrogen bonding,

and van der Walls contributions are calculated as fol-
lows.

Secondary Structure Propensities
The secondary structure of a RNA molecule is pre-
dicted from its nucleotide sequence using the Vi-
enna package.25 Although the average predictive
power of the RNAfold algorithm is roughly 70%,
lower performances are expected for long noncod-
ing RNAs because these transcripts are poorly char-
acterized. To increase the amount of information
that can be extracted from secondary structure pre-
dictions, ensembles produced with the RNAsub-
opt algorithm from Vienna suite were generated
(http://www.tbi.univie.ac.at/∼ivo/RNA/). The sam-
pling of structures was performed with probabilities
estimated through Boltzmann weighting and stochas-
tic backtracking in the partition function. Six model
structures, ranked by energy, are used as input for
catRAPID. For each model structure, the RNAplot
algorithm was employed to generate secondary struc-
ture coordinates. Using the coordinates the sec-
ondary structure occupancy was defined by count-
ing the number of contacts made by the nucleotide
chain. High values of secondary structure occupancy
indicate that base pairing occurs in regions with
high propensity to form hairpin-loops, whereas low
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values are associated with junctions or multiloops.
The secondary structure of proteins was taken into ac-
count by calculating the Chou-Fasman26 and Deleage-
Roux27 propensities for turn, β-strand and α-helical
elements. As the average predictive power of these
models is around 60%, the individual propensities
were combined to have better perfomances. The cor-
relation between interaction propensities and sec-
ondary structure contributions is 0.73.

Hydrogen-Bonding Propensities
The structural information on purine and pyrimidine
contacts was extracted from a set of 41 nonredun-
dant protein–RNA complexes.28 Both the number
and the frequency of hydrogen-bond contacts are used
in the method. With respect to proteins, Grantham’s29

and Zimmerman’s30 scales were employed to esti-
mate the propensity of amino acids to form hydrogen
bonds. Other propensity scales were disregarded be-
cause they showed lower predictive power. The corre-
lation between interaction propensities and hydrogen
bonding contributions is 0.58.

Van der Waals’ Propensities
Similarly to hydrogen-bonding propensities, the infor-
mation on purine and pyrimidine contacts was taken
from a set of protein–RNA complexes.28 Both the
number and the frequency of van der Waals’ con-
tacts were used in catRAPID. With respect to pro-
teins, Kyte–Dolittle31 and Bull-Breese32 scales were
employed to estimate the propensity to form van der
Waals’ contacts. Other propensity scales were disre-
garded because they showed lower predictive power.
The correlation between interaction propensities and
Van der Waals’ contributions is 0.26 (estimated with
a 10-fold cross-validation).

Interaction Propensity
A discrete Fourier transform is employed to compare
interaction profiles of different lengths:

�k,x =
√

2
length

length∑
n=0

�n,x cos

×
[

π

length

(
n + 1

2

) (
k+ 1

2

)]
k= 0, 1, . . . �.

(3)

The number of plane waves is � = 50.
The interaction propensity π is defined as the

inner product between the protein propensity profile
� p and the RNA propensity profile �r weighted by

the interaction matrix I [Eq. (4)]:

π = � p · (I�r ). (4)

The interaction matrix I as well as the parame-
ters αS, αH, and αW are derived under the condition
that the interaction propensities π take maximal val-
ues for associations in the positive training set (and
minimal or associations in the negative training set)
[Eq. (5)]:

I :
{

max � p · (I�r ) ∀ {r, p} ∈ {positive training set},
min � p · (I�r ) ∀ {r, p} ∈ {negative training set}.

(5)

Training Set
The structural data set (X-ray- and NMR-based
models) was retrieved in March 2010 and con-
sisted of 858 RNA–protein complexes available at
the RCSB databank (http://www.pdb.org/). A cut-
off of 7 Å for physical contacts was employed to
discriminate between interacting and noninteracting
protein–RNA pairs. The cutoff was selected in accor-
dance with the average resolution of the structural
complexes and led to define a positive dataset con-
taining 7409 interacting protein–RNA pairs and a
negative set containing 958 noninteracting protein–
RNA pairs. The CD-HIT tool (http://weizhong-
lab.ucsd.edu/cdhit suite/cgi-bin/index.cgi) was used
to filter out RNA and protein sequences with iden-
tities higher than 80% and 60%, respectively. After
redundancy removal, the database contained 410 in-
teracting (‘positive set’) and 182 noninteracting (‘neg-
ative set’) protein–RNA pairs. With regards to the
composition of the positive set, protein–RNA associ-
ations were grouped into five functional classes: Ri-
bosome and protein synthesis, splicing, transcription,
tRNA synthesis, and viral RNA assemblies. For each
class the interaction propensities of protein–RNA
pairs are compared with the interaction propensities
of the entire negative set. Performances were esti-
mated with a 10-fold cross-validation. The algorithm
to compute the interaction propensity with respect
to the negative training set (discriminative power) is
available at http://tartaglialab.crg.cat.

Scoring Function
To evaluate the ability of catRAPID to distinguish
between interacting and noninteracting RNA–protein
associations, the concept of discriminative power (dp)
is introduced:

dp =
∑

i,n ϑ(πi − πn)∑
i,n ϑ(πi − πn) + ϑ(πn − πi )

, (6)
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where π i indicates the interaction propensity of an
interacting RNA–protein pair i, whereas πn repre-
sents the interaction propensity of noninteracting
molecules n. The function ϑ(π i − πn) is 1 if π i −
πn > 0 and 0 otherwise. Accordingly, the denomina-
tor equals the number of interacting pairs I multiplied
the number of noninteracting pairs N [Eq. (7)]:∑

i,n

ϑ(πi − πn) + ϑ(πn − πi ) = I + N. (7)

Following the definition given in Eq. (6), the
discriminative power ranges from 0 to 1. The sig-
nificance of predictions was evaluated by calculat-
ing P values with ANOVA (two-tails’ t-test). With
regards to catRAPID’s performances, the discrimina-
tive power associated with the nonredundant training
dataset is 78%. The discriminative power associated
with the redundant training dataset (X-ray and NMR
structural models) is 90%.

Test Sets
The NNBP12 database was employed to evaluate the
ability of catRAPID to identify proteins that have
little propensity to interact with RNA molecules.
A database of 246 proteins was combined with
RNA sequences of the positive set to generate 2500
random associations. The discriminative power of
the algorithm was evaluated by comparing the in-
teraction propensities of the positive set with the in-
teraction propensities of these random associations.
The NPInter database (http://www.bioinfo.org.cn/
NPInter/)33 was used to evaluate the ability of the al-
gorithm to predict interactions between proteins and
long noncoding RNAs. RNA sequences were obtained
from the fRNAdb database (http://www.ncrna.org/
frnadb/). We note that only a portion of the NPinter
database shows direct physical evidence for protein–
RNA interactions. The discriminative power of the
algorithm was evaluated by comparing the interac-
tion propensities of the NPinter database with the
interaction propensities of the negative set. The re-
ceiver operating characteristic (ROC) analysis was in-
troduced to compare performances of the algorithm
in the training and test sets. In the analysis, interact-
ing and noninteracting pairs of molecules represented
the test sets and the quality of predictions was evalu-
ated by calculating true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN).
Performances were assessed by plotting the true pos-
itive rate (Sensitivity) in function of the false positive
rate (1-Specificity) for different cutoff points:

Sensitivity = TN/(TN + FP). (8)

The areas under the ROC curve are 0.75 for the
training set (0.94 on the redundant dataset), 0.92 for
the NNBP set and 0.88 for the NPinter database.

Comparison with Random Sets
For each ribonucleoprotein association, a reference
set is generated using random protein and RNA se-
quences that have exactly the same lengths as the
molecules under investigation. The reference set con-
tains random interactions between polypeptide and
nucleotide sequences and represents a negative con-
trol because little interaction propensities are ex-
pected from these associations. In the calculations,
the interaction propensity π of a protein–RNA asso-
ciation is compared with the interaction propensities
π̃ of the reference set (104 protein–RNA pairs). Using
the interaction propensity distribution of the refer-
ence set, the scores are compared:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m = 1
L

	∑
i=1

π̃i ,

s2 = 1
L

	∑
i=1

(π̃i − m)2,

(9)

where the number of interactions is L = 104. From
the distribution of interaction propensities, the inter-
action strength, IS, is computed as

IS = P(π̃ ≤ π ). (10)

SEQUENCE PATTERNS FOR
PROTEIN–RNA INTERACTIONS
(RPISeq, SCRPRED, PPRINT, and
PRINTR)

Sequence patterns are particularly useful to identify
binding motifs in protein and RNA molecules. The
algorithms SCRPRED,34 PPRINT,35 and PRINTR36

exploit evolutionary information on protein se-
quences, whereas RPISeq37 uses a reduced alphabet
to describe protein and RNA sequences. Machine
learning methods, such as support vector machines
(SVMs), neural networks (NN), and random for-
est (RF), are used to identify RBPs (SCRPRED,34

PPRINT,35 and PRINTR36) as well as protein–RNA
couples (RPISeq37).

RPISeq
The RPISeq method (http://pridb.gdcb.iastate.edu/
RPISeq/) consists of two classifiers: RPISeq-SVM
(SVM classifier) and RPISeq-RF (random forest
classifier).24 In both algorithms, 343 features are used
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TABLE 2 The RPISeq Method

Dataset: Two nonredundant datasets of RNA–protein
interacting pairs were extracted from a total 943
protein–RNA complexes using a cutoff of 8 Å. Two datasets
obtained from RNA immunoaffinity purification and
microarray experiments are employed to test the
performances.

Method: Each RNA–protein pair is represented by a
599-feature vector, of which 343 are related to protein
properties and 256 describe RNA characteristics. Proteins are
encoded using the conjoint triad feature: the 20 amino acids
are classified into 7 groups according to their dipole
moments and the volume of their side chain. RNAs are
encoded 4-mers describing nucleotide frequencies. The
output of the support vector machine (SVM) is a binary label
indicating whether the given RNA–protein pair interacts or
not. The authors use the sequential minimal optimization
implementation to train the SVM classifier.

to encode the protein sequence and 256 features are
used to encode the RNA sequence. Proteins are en-
coded using the conjoint triad feature representation:
the 20 amino acids are classified into 7 groups: {A, G,
V}, {I,L,F,P},{Y,M,T,S},{H,N,Q,W},{R,K},{D,E},
and {C}. Thus, each protein sequence is represented
by a 7 × 7 × 7 or 343-dimensional vector, where
each element of the vector corresponds to the nor-
malized frequency of the corresponding 3-mer in the
sequence. Based on the k-mer frequency representa-
tion of RNA sequences, RNA sequences were encoded
using a 4 × 4 × 4 or 256-dimensional vector, in
which each feature represents the 4-mer normalized
frequency appearing in a RNA sequence (e.g., AUUG,
CCAU, GACA). On two nonredundant benchmark
datasets extracted from the Protein–RNA Interface
Database (PRIDB), the method performs with accu-
racies varying between 76–90% (RF) and 73–87%
(SVM) and areas under the ROC curves of 0.92–0.97
(RF) and 0.81–0.85 (SVM). RPISeq classifiers trained
on PRIDB predict a number of noncoding RNA–
protein interactions present in the NPInter database33

(Table 2; see also catRAPID test sets).

SRCPRED
SRCPRED (http://tardis.nibio.go.jp/netasa/srcpred/)
uses neural networks to predict RNA-interacting
amino acids by means of sequence (global amino
acid composition, GAC scores) and evolutionary in-
formation (position-specific scoring matrix, PSSM
scores).34 To train the neural networks, the authors
employed protein sequence-neighbors feature matri-

TABLE 3 The SRC PRED Method

Dataset: One hundred and sixty clusters of protein chain
sequences (25% identity) retrieved from Protein Data Bank
protein–RNA complexes with the highest number of
dinucleotide RNA contacts (atom–atom distance <3.5 Å).

Method I: A vector representing global amino acid composition
(GAC) of each protein sequence was concatenated to the
evolutionary profile of each residue, represented as
position-specific scoring matrices (PSSMs) computed by
using the PSI-BLAST. Sliding windows of sizes ranging from
1 to 8 sequence neighbors were centered on each residue.
Different combinations of feature matrices were tested and
the best performing combination was retained. Different
network architectures were optimized for every feature
matrix varying the number of nodes in the hidden layer.
Neural networks were trained to return a vector of 16
dinucleotide-binding prediction scores for a protein residue
between 0 and 1, which are transformed to binary states of
binding or nonbinding by choosing a cutoff.

Method II: Combinations of protein–RNA fragment pairs were
generated matching each protein fragment to all RNA
fragments. A fragment pair was labeled as ‘1’ if any of the
atoms from the protein fragment is in contact with any of
the atoms of the RNA fragment at a threshold of 3.5 Å
distance (‘0’ otherwise). The protein fragments are encoded
in feature vectors built by concatenation of dinucleotide
scores of each residue in a given fragment, while the RNA
sequence fragments were encoded using dinucleotide
compositions. The protein and RNA feature vectors for each
fragment pair in a given complex are concatenated forming
a fragment-pair feature matrix per complex. The neural
network predicts a one-dimensional binary vector encoding
the ‘paired’ or ‘nonpaired’ state of the protein–RNA
fragment pairs.

ces, and protein–RNA fragment-pair feature matri-
ces. The area under the ROC curve ranges from 0.61
to 0.84 for four tested RNA functional classes (vi-
ral RNA, mRNA, tRNA, rRNA). The analysis of
PSSM scores38 indicates that, although more com-
plex and varied than protein–DNA interactions, the
substitution patterns of the functional residues in
RBPs are significantly constrained during evolution
(Table 3).

PPRINT
Combining evolutionary information and SVMs,
PPRINT was developed to predict RNA-binding
sites in protein sequences (http://www.imtech.res.in/
raghava/pprint/).35 The original dataset contains
86 RNA interacting protein chains extracted
from structures of RNA–protein complexes. Using
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TABLE 4 The PPRINT Method

Dataset: Eighty-six RNA interacting protein chains extracted
from Protein Data Bank.

Method: A support vector machine trained on protein sequence
patterns. The performance is high when multiple sequence
alignments are used in the form of PSSM profiles (Matthew’s
correlation coefficient of 0.45).

PSI-BLAST,38 nonredundant protein chains are se-
lected for training (sequence similarity <70%). The
evolutionary information is derived from PSSM gen-
erated during PSI-BLAST searches against a nonre-
dundant database of protein sequences. To train
PPRINT, the authors use fixed-length patterns of
amino acids. A pattern is considered positive when
the central residue is in direct contact with RNA (neg-
ative otherwise). The patterns are converted into bi-
nary vectors and each amino acid was described us-
ing a vector of 20 entries. PPRINT performs with
an accuracy of 76% in predicting residues that con-
tact RNA (Matthew’s correlation coefficient of 0.45;
Table 4).35

PRINTR
PRINTR (http://210.42.106.80/printr/) uses SVMs
and PSSMs to predict protein residues at RNA-
binding surfaces.36 The method achieves an area
under the ROC curve of 0.83 using information de-
rived from multiple sequence alignment, solvent ac-
cessibility, and secondary structure. The stringent
criterion used to choose nonhomologues dataset
(<30% sequence homology) and the combination
of SVM and PSSMs are key features of the method
(Table 5).

STRUCTURE-BASED PREDICTIONS OF
RNA-BINDING SITES (RNABindR,
Struct-NB, PRIP, PatchFinderPlus, SPOT,
AND OPRA)

The algorithms Struct-NB,39 PRIP,40

PatchFinderPlus,41 SPOT,42 and OPRA43 pre-
dict RNA-binding using properties of protein
surfaces. SVM and Naı̈ve Bayes Classifiers (NBCs)
trained on structural data are employed to analyze
surface features. The RNABindR method combines
structural information with sequence-based predic-
tions of hydrophobicity and entropy.37 In general,
the success of structure-based predictive methods can
provide great structural detail on substrate-binding

TABLE 5 The PRINTR Method

Dataset: One hundred and nine protein chains from Terribilini
et al.37 database.

Method: After position-specific scoring matrices (PSSMs)
generation, five different encoding schemes are employed:
(1) single sequence; (2) multiple sequence alignment; (3)
single sequence plus predicted secondary structure; (4)
multiple sequence alignment plus predicted secondary
structure; (5) multiple sequence alignment plus secondary
structure and solvent accessibility information. In the case of
single sequence, the feature vector representing a residue is
calculated using an optimized sliding window. In case of
multiple alignments, the feature vector representing a
residue is extracted using PSSM. Moreover, DSSP
(http://swift.cmbi.ru.nl/gv/dssp/) is used to compute residue
solvent-accessible surface area, and secondary structure
information was encoded as helix, strand, and coil.

clefts, but is greatly limited by the availability of
protein–RNA complexes as templates.42

RNABindR
RNaBindR (http://einstein.cs.iastate.edu/RNABindR/)
is a classifier that predicts RNA-binding regions.37

The variables used in RNaBindR method are relative
accessible surface area (rASA), sequence entropy, hy-
drophobicity, secondary structure, and electrostatics.
The rASA is computed using the program Naccess
(http://wolf.bms.umist.ac.uk/naccess/). Sequence en-
tropy is estimated using the relative entropy for each
residue from the HSSP database (http://www.cmbi.
kun.nl/gv/hssp/). Hydrophobicity of each residue is
obtained from the consensus normalized hydropho-
bicity scale derived by Sweet and Eisenberg.44 In
addition, the authors use information on secondary
structures extracted from the protein databank. Elec-
trostatic potentials are calculated using the program
APBS (http://agave.wustl.edu/apbs/). In the leave-
one-out cross-validation procedure, RNABindR
identifies interface residues with 85% accuracy. The
training set is extracted from structures of known
RNA–protein complexes solved by X-ray crystal-
lography. Proteins with >30% sequence identity
or structures with resolution worse than 3.5 Å are
removed using PISCES.45 Amino acids in the RNA–
protein interface are identified using ENTANGLE.46

Positively charged amino acids arginine and lysine
show the highest interface propensities, consistently
with their enhanced ability to participate in interac-
tions with bases and negatively charged phosphate
backbone. Another favored residue, histidine, is
found to participate in stacking interactions with
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TABLE 6 The RNABindR Method

Dataset: A set of 109 nonredundant protein chains containing a
total of 25,118 amino acids.

Method: A Naive Bayes classifier trained using data from 108
chains and evaluated on the 109th chain. The algorithm
employs relative accessible surface area, sequence entropy,
hydrophobicity, secondary structure, and electrostatic
potential (calculated on known structures).

RNA bases through the imidazole ring. In contrast,
phenylalanine and negatively charged amino acids
glutamate and aspartate are significantly under-
represented in interfaces. Hydrophobic residues
such as leucine, isoleucine, valine, and alanine are
significantly depleted at interfaces (Table 6).

Struct-NB
Struct-NB (http://www.public.iastate.edu/∼ftowfic)
uses an ensemble of NBCs and a structural-based
Gaussian Naı̈ve Bayes classifier (GNBC) to pre-
dict RNA-binding sites.39 The NBC is trained on
sequence-based features present in the RNABindR
algorihm,37 whereas the structural-based GNBC ex-
ploits two main structural features: the surface rough-
ness (i.e., degree of irregularity on the surface) and
the CX value (i.e., the ratio of the volume of atoms
that occupy a 6 Å sphere compared to the empty
volume within the sphere). Struct-NB achieves an
area under the ROC curve of 0.75. With respect
to other sequence-based classifiers, the classification
performance is improved with integrated structural
information. The analysis of the structural features
reveals that protein–RNA interface residues are asso-
ciated with higher degree of irregularity at the surface
(amino acids protruding out of the surface) compared
to noninterface residues (Table 7).

PRIP
PRIP (http://qfab.imb.uq.edu.au/PRIP) exploits
NBCs and SVMs combined with graph-theoretic
properties of interface residues.40 Contact graphs
derived from interface residues neighborhood patches
(sequential and spatial) are used to derive the model.
Moreover, topological features, such as betweenness
centrality, are calculated based on the entire contact
map of a protein chain and define clusters of residues
(close in space and sequence) present in the patch.
Overall, SVMs outperform NBCs by about 5%, and
spatial patches give better signal than topological
and sequential patches (Table 8). The area under the
ROC curve is 0.83 and is calculated using spatial
patch, ASA, betweenness centrality, and retention

TABLE 7 The Struct-NB Method

Dataset: One hundred and forty-seven protein structures from
Terribilini et al.37 database.

Method: The sequence-based NBC is trained to label the target
residue with a ‘+’ (protein–RNA interface residue) or a ‘−’
(otherwise), using sequence-based features of the RNABindR
method (Terribilini et al.37). The structural information of a
residue is encoded to attribute values within a sequence
window. Two structural properties of amino acid residues
are employed: surface roughness (i.e., degree of irregularity
of that point at the surface) and CX value (i.e., the ratio of
the volume of atoms that occupy a 6 Å sphere compared to
the empty volume within the sphere). The structural-based
Gaussian Naı̈ve Bayes classifier is similar to the NB classifier,
except that the attribute values are numerical. Overall, 5 NB
classifiers were trained, one for each feature representation:
sequence-based, Calpha-based (CX score for the alpha
carbon atom as the score for the corresponding residue),
average CX-based (average of the CX scores for all atoms), R
group-based (average of the CX scores atoms in the R-group
only), and roughness-based feature representations,
respectively. Struct-NB returns the interface propensity of a
property as a measure of the preference for a value (or a
range of values) of a property among the interface residues
(relative to the entire set of surface residues).

TABLE 8 The PRIP Method

Dataset: One hundred and forty-four protein chains from
Terribilini et al. (2007) database.

Method: A residue is classified as interacting or noninteracting
based on the features of three types of interface residues
(cutoff of 5 Å): (1) sequential patch (or sequence sliding
windows) of size n, i.e., the n residues nearest to the residue
(center residue); (2) spatial patch of size n, i.e. the set of the
n residues with the smallest euclidean distance between
their Calpha atoms and the Calpha atom of the center
residue; (3) topological patch, i.e., the n vertices with the
smallest geodesic distances (shortest paths) to the center
vertex. Features such as amino acids indexes, sequence
profiles, accessible surface area, betweenness centrality, and
retention coefficient are compared with respect to their
predictive power to detect interface residues.

coefficient (Table 8). This analysis indicates that
network theory can describe the collective properties
of interface residues accounting for their binding
affinity and specificity.

PatchFinderPlus
Using an ensemble of protein features and specific
properties extracted from electrostatic patches with
the algorithm PatchFinderPlus (http://pfp.technion.
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TABLE 9 Method Based on PatchFinderPlus

Dataset: The set includes 76 nonredundant structures. As a
control, the authors use a nonredundant database of 246
non-nucleic-acid-binding protein (NNBP) chains.

Method: The authors use a SVM classifier to distinguish
between the nonredundant set of RNA-binding proteins
(RBPs) and the NNBPs, as well as between the RBPs and the
subset of NNBPs with large positive patches. For training, a
feature vector is employed. The vector includes 40 sequence
and structural parameters extracted from both the
electrostatic patches and the whole protein. To test the
method, the authors apply a cross-validation test, where for
each SVM run, one protein is extracted from the training and
tested separately.

ac.il/), the authors train a SVM to distinguish
RBPs from other positively charged proteins that
do not bind nucleic acids.41 The method is applied
on proteins possessing the RNA recognition motif
(RRM) and successfully classified as RBPs from RRM
domains involved in protein–protein interactions
(Table 9). In addition to the features extracted from
the surfaces patches alone, the authors calculate other
global parameters of each protein, such as the molec-
ular weight, surface accessibility, the size of the largest
clefts, and the overlap between the clefts and the
patches. Among the general properties, the molecu-
lar weight and surface accessibility are significantly
lower in RBPs compared to NNBP.41,47 The dipole
and quadrupole moments for all the proteins in the
datasets are also calculated. As expected, the dipole
moment is significantly higher in the RBPs compared
to NNBPs.

SPOT
SPOT (http://sparks.informatics.iupui.edu) employs
structural alignments of known protein–RNA com-
plex structures and a statistical energy function to
discriminate RBPs from nonnucleic acid binding
proteins.42 The relative structural similarity measured
with alignments shows a Matthew’s correlation coef-
ficient MCC of 0.48 and efficiently discriminate RBPs
from nonbinding proteins (Table 10). Optimal per-
formances are reached combining a number or scores
such as the binding affinity, the raw structural align-
ment and a global Z-score to measure structural simi-
larity. The method is applied to predict RNA-binding
residues on a dataset of nonredundant RNA-binding
domains (MCC of 0.72), holo-targets (MCC of 0.56),
and apo-targets (MCC of 0.56). When applied to
SCOP RNA-binding domain superfamily prediction,
the method achieves a 86% success rate. Among 2076

TABLE 10 The SPOT Method

Dataset: Seven datasets used: (1) 250 representative
RNA-binding holo-domain (i.e., bound) structures (RB250
libary); (2) 6761 non-RNA-binding domain; (3) 212
nonredundant RNA-binding holo-domains structures; (4) 75
RNA-binding apo-domains (i.e., unbound) structures with
45–100% sequence identity to the 75 out of the 250
holo-domains; (5) 331 DNA-binding domains structures; (6)
292 RNA-binding domains belonging to five superfamilies
(canonical, noncanonical, splicing factor U2AF subunits,
Smg-4/UPF3, and GUCT); (7) 2076 domains from previously
collected structural genomics targets.

Method: The target structure is scanned against templates with
sequence identity < 30% in a reference library (RB250)
using the structural alignment program TM-align. If the
structural similarity score is higher than a threshold, the
protein–RNA complex structure is predicted by replacing the
template structure with the aligned target structure. Two
structural similarity scores are employed: one is based on the
raw TM-score and the other one is based on Z-score. If the
lowest binding energy between the target protein and
template RNA is lower than a threshold and the structure
similarity is higher than a threshold, the target is predicted
as an RBP and its RNA-binding site can be predicted from
the predicted protein–RNA complex structure. If no
matching template is found to satisfy these two thresholds,
this target is predicted as a non-RNA-binding protein.

structural genomics domains of unknown function,
the authors observe that 80% of the predicted targets
are putative RBPs according to NCBI annotations.
This study reveals the importance of dividing struc-
tures into domains, using a Z-score to measure struc-
tural similarity, and a statistical energy function to
measure protein–RNA-binding affinity. One advan-
tage of the method is the simultaneous prediction of
protein–RNA complex structures.

OPRA
OPRA (Optimal Protein–RNA Area) was developed
to identify RNA-binding sites on proteins surfaces.43

For each protein residue, a predictive score is cal-
culated using protein–RNA interface propensities
weighted by ASA (Table 11). As individual propen-
sities are found to be a poor indicator of protein–
RNA interfaces (residues with high individual inter-
face propensity scores are not necessarily involved
in protein–RNA interactions), the authors employ
patch energy values modified by scores of neighbor-
ing residues. Remarkably, 80% of the test set is cor-
rectly predicted to interact. This study suggests that
protein–RNA-binding determinants are laying on the
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TABLE 11 The OPRA Method

Dataset: One hundred and seventy filtered protein–RNA
complexes from PDB, comprising 316 nonredundant
protein–RNA interactions (cutoff ≤4 Å); 282 interactions
were used for training and 33 for testing.

Method: Statistical interface propensities of
residues/ribonucleotides converted to free-energy estimates
(statistical potentials). Considering statistical potentials as
additive by surface area units, the authors identified
residues/ribonucleotides that have favorable tendency to be
at the interface (effective surface-to-interface energy
transfer).

protein side, at least from a residue composition point
of view.

CONCLUSIONS

The number of reported protein–RNA complexes
is rapidly increasing. This growth is visible in the
PDB database as the yearly increase of deposited
protein–nucleic acid complexes and in the PubMed
database as the change in the number of publications
associated with the term ‘RNA-binding proteins’. Yet,
the determination of structures for proteins in com-
plex with their partner RNAs is laborious and slow
and there is a large demand for the development of
computational methods for predicting such structures
either from homologue structures of the components
or directly from sequences.

The critical assessment of prediction of in-
teractions (CAPRI) experiment (http://www.ebi.ac.
uk/msd-srv/capri), a blind international docking com-
petition to evaluate performances of protein–protein
computational docking methods, recently proposed
the first protein–RNA complex as target.48 The study
of protein–RNA targets indicates the growing inter-
est in computational prediction of ribonucleoprotein
structures and consequently, the need for new meth-
ods to solve protein–RNA docking problems. The
CAPRI experiment encourages modeling groups to
adapt existing protein–protein docking methods or
develop new ones for protein–RNA docking prob-
lems. Indeed, previous methods could be adapted to
predict the three-dimensional structure of protein–
RNA complexes49 but, owing to the high flexibility
of RNA molecules, generation a protein–RNA model
from the unbound structure is highly challenging.50

The importance and difficulties of RNA modeling
have also motivated the recent CASP-like challenge
RNA-Puzzles to predict three-dimensional structure
of RNA.51

Despite the success of structural genomics
efforts,52 the number of solved protein–RNA struc-
tures substantially lags behind the number of possi-
ble protein–RNA complexes and is underrepresented
with respect to many RNA-binding motifs. Because
of the difficulties associated with the experimental
determination of protein–RNA complexes and RNA-
binding sites in proteins,53,54 there is an urgent need
for reliable computational methods. At present, 289
X-ray and 116 NMR protein–RNA complexes solved
at ∼3 Å resolution constitute the principal source
of information for structural models. Various meth-
ods for predicting RNA structures and RNP com-
plexes based on low-resolution experimental could
be developed.55,56 For instance, the structure of many
macromolecular complexes can be modeled by using
cryo-EM maps and restraints from biochemical exper-
iments and other bioinformatics-based predictions.57

Yet, dedicated algorithms for automated predictions
of protein–RNA interactions remain to be developed.
As a matter of fact, more than 300 intrinsically
disordered proteins have been recently classified as
RNA binding.58 Given the difficulty of assigning ref-
erence structures to natively unfolded proteins, it is
likely that new predictors of protein-RNA associa-
tions should be based on primary rather than tertiary
structure.

Synergy is expected from the combination of
predictive methods with low-resolution experimen-
tal analyses. Structural probing experiments such as
footprinting and crosslinking can provide informa-
tion about RNA secondary structure, inter- and in-
tramolecular interactions,59 whereas SAXS and cryo-
EM experiments can be used to obtain information
about the shape of macromolecular complexes.60 In
particular, through-space distance constraints derived
from biochemical experiments could provide crucial
information to determine RNA folding. Small number
of long-range, through-space distance constraints are
sufficient to limit the conformational space enough
to allow accurate structure predictions.61 Indeed, ex-
perimental methods such as site-directed hydroxyl
radical footprinting, cross-linking and fluorescence
resonance energy transfer will provide valuable in-
formation to build new models for ribonucleoprotein
associations.61
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