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The genome of the SARS-CoV-2 Omicron variant (B.1.1.529) was released on November

22, 2021, which has caused a flurry of media attention due the large number of mutations

it contains. These raw data have spurred questions around vaccine efficacy. Given that

neither the structural information nor the experimentally-derived antibody interaction

of this variant are available, we have turned to predictive computational methods to

model the mutated structure of the spike protein’s receptor binding domain and posit

potential changes to vaccine efficacy. In this study, we predict some structural changes

in the receptor-binding domain that may reduce antibody interaction without completely

evading existing neutralizing antibodies (and therefore current vaccines).

Keywords: SARS-CoV-2, COVID-19, bioinformatics, computational biology, protein-protein interaction (PPI),
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INTRODUCTION

A team of researchers from the Botswana-Harvard HIV Reference Laboratory submitted a
new SARS-CoV-2 genome sequence to GISAID on November 22, 2021 (GISAID accession.
EPI_ISL_6752027). The specimen was taken from a living 59-year-old male from Gaborone,
Botswana using a nasopharyngeal swab and was sequenced using a Nanopore MinION device.

This sample’s genome contains 60 mutations from the Wuhan-derived reference genome
(GenBank accession no. NC_045512.2) (1), 37 of which are in the Spike (S) protein. This variant
was given the identifier B.1.1.529 by PANGO lineages (2). On November 26, 2021, the WHO has
designated B.1.1.529 as a Variant of Concern (VOC), named Omicron (3).

The emergence of new SARS-CoV-2 variants is expected. Therefore, scientists have advocated
for close international monitoring to determine the need for vaccination boosters and/or redesign
(4). Hence, the identification of the omicron variant is not surprising. What is surprising is the
number of mutations that the omicron variant accumulated compared to the first sequenced
genome of SARS-CoV-2.

Different authors have warned that limited SARS-CoV-2 sampling and sequencing from positive
cases, especially from asymptomatic and symptomatic cases that did not require hospitalization,
would make it challenging to identify new mutations in the virus. For example, Brito et al. (5)
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analyzed the spatiotemporal heterogeneity in each country’s
SARS-CoV-2 genomic surveillance efforts using metadata
submitted to GISAID until May 30, 2021. These authors calculate
that sequencing capacity should be at least 0.5% of cases per
week when incidence is more than 100 positive cases every
100,000 people. Unfortunately, most countries are not reaching
this sequence threshold.

While sampling bias can explain why we may miss new
mutations and fail to identify new variants of low prevalence,
the emergence of new variants is due to factors that favor the
transmission of SARS-CoV-2, including low vaccination rates
in some regions, especially in low and middle-income countries
(LMICs). Therefore, disparities in vaccination rates combined
with sampling bias explain why scientists may continue to be
surprised by the mutations in new SARS-CoV-2 variants.

There are many questions regarding genomic epidemiology
and the lessons we can learn from the COVID-19 pandemic.
Those questions are beyond the scope of this manuscript, and we
addressed them elsewhere (6). While the origin and evolution of
the Omicron variant are still open questions, here we focus on the
potential implications of the mutations observed in this variant.

This seemingly hyper-mutated variant is of public health
concern with unanswered questions surrounding vaccine
protection (from available vaccines), the possibility of reinfection,
transmissibility, and pathogenicity.

Regarding vaccine efficacy, we must look at the receptor-
binding domain (RBD), part of the S1 subunit, of the spike
protein as this is the binding site for neutralizing antibodies. This
domain exists between positions 319 and 541 of the spike protein.
Omicron contains 15 mutations in the RBD, none of which are
deletions or insertions. In contrast, the Delta variant contains 7
mutations across the entire spike protein, only 2 of which are in
the RBD.

Given that an experimentally-derived structure of the
Omicron spike protein is not yet available, we must derive a
predicted structure from its sequence in silico. Then, we can
use available neutralizing antibody structures to computationally
model the interaction between Omicron and the paratopes
of the antibodies, thus allowing us to compare potential
affinity changes due to the mutations and posit their effects to
vaccine efficacy.

METHODS

Sequence Comparison Among VBMs and
VOCs
We downloaded the reference genome of SARS-CoV-2 (Wuhan-
Hu-1, NCBI’s RefSeq accession no. NC_045512.2) as well as
the first 100 complete genome sequences (≥29,000 bp) of each
Variant of Concern (VOC) and Variant BeingMonitored (VBM).
The total number of input sequences was 1,301. We aligned all of
these complete genomes using MAFFT version 7.475 (7) with the
“auto” option and trimmed the alignment to remove the 5′-UTR
and 3′-UTR regions. We also removed duplicated sequences or
sequences with more than 5% of missing data, leaving us with
1,026 sequences.

We annotated each of the 1,026 remaining sequences using
the strategy described in Machado et al. (8). Once we had all
the predicted spike proteins for each of the 1,026 genomes, we
aligned those sequences based on their translation with the help
of MAFFT using the TranslatorX pipeline (9). We removed
duplicated sequences and sequences with more than 5% of
missing data. Finally, we identified the receptor binding motif on
that alignment based on sequence similarity with the reference.

We then calculated the pairwise p-distances between each pair
of sequences were calculated using MEGA version 11.0.10 (10).
This distance is the proportion (p) of nucleotide sites at which
two sequences being compared are different. The p-distances
were calculated for the whole spike alignments (nucleotides)
but also for the alignment of its receptor binding motif (RBM;
position 430–522 of the spike amino acid sequence, a subset of
the positions in the RBD).

This variant nucleotide sequence for the spike protein was
then translated into amino acids using the standard translation
table. This sequence was then trimmed to only contain the RBD
of the spike protein (positions 319 to 541).

Receptor-Binding Domain Structural
Prediction
Using the derived RBD amino acid sequence for Omicron, we
used AlphaFold2 and RoseTTAFold to create a predicted
3D protein structures. AlphaFold2 is a neural network-based
deep learning model created by Google DeepMind (11). The
algorithm first searches for homologous sequences with existing
structures to use as a scaffold on which to place the new sequence.
RoseTTAFold is a similar neural network-based system by the
Institute for Protein Design at the University ofWashington (12).

The AlphaFold2-based prediction was run with the “single
sequence” mode using the predicted TM-score (PTM) method.
We also specified that the algorithm should run an Amber
relaxation procedure to repair any structural violations in the
predicted model (13). The RoseTTAFold-based prediction was
run with the “mmseqs2” mode [by ColabFold (14)].

Both systems each resulted in a .PDB file of the predicted
RBD structure for Omicron along with metrics surrounding
the multiple sequence alignment coverage, predicted aligned
error (PAE), and predicted confidence (pLDDT) by position
(Available online at: https://github.com/colbyford/SARS-CoV-
2_B.1.1.529_Spike-RBD_Predictions).

Given that this study focuses on antibodies that bind to the
top of the RBD of the spike protein. Since that AlphaFold2
and RoseTTAFold are template-basedmodels that generate the
predicted RBD structures using homologous sequences for which
we have actual structures, we can avoid modeling the entire spike
protein. See Figure 1.

Neutralizing Antibody Interaction
Simulation
Using the predicted structures of the Omicron RBD, we
simulated the interaction with four available neutralizing
antibody structures: C105, CC12.1, CC12.3, and CV30 (PDBs:
6XCM, 6XC2, 6XC7, and 6XE1, respectively) (15–17). We used
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FIGURE 1 | Process flow of the prediction analysis steps.

only a single fragment antigen-binding (Fab) region of the
antibody structures as the paratope location against which to
dock. Each of the RBD structures from these reference files have
identical sequences to the Wuhan-Hu-1 spike RBD.

Each of these neutralizing antibody structures were collected
from patients who had been infected with SARS-CoV-2. Thus,
these structures are serologically-derived antibodies rather than
structures of therapeutic antibodies. All of them bind to the
same “up” location of the S1 subunit of the spike protein
(class I binders). This is a similar location to the interaction
site between the human ACE2 receptor epitope. Thus, the
neutralizing mechanism of these antibodies is in the prevention
of SARS-CoV-2 binding to ACE2 on human cells.

We used HADDOCK version 2.4, a biomolecular modeling
software that provides docking predictions for provided
structures, to predict the binding affinity between the epitope
of the RBD with the paratope of the neutralizing antibody
structures (18). This takes in two or more .PDB files as inputs
and outputs multiple predicted protein complexes in .PDB
format along with docking metrics.

TABLE 1 | List of analyses performed, comparing reference and predicted RBD

structures in complex with reference Fab structures.

Antibody Fab Analysis type RBD source

C105

(6XCM, chains N and S)

Reference 6XCM

(chain B)

Prediction B.1.1.529

(from AlphaFold2)

Prediction B.1.1.529

(from RoseTTAFold)

CC12.1

(6XC2, chains H and L)

Reference 6XC2

(chain A)

Prediction B.1.1.529

(from AlphaFold2)

Prediction B.1.1.529

(from RoseTTAFold)

CC12.3

(6XC7, chains C and D)

Reference 6XC7

(chain A)

Prediction B.1.1.529

(from AlphaFold2)

Prediction B.1.1.529

(from RoseTTAFold)

CV30

(6XE1, chains H and L)

Reference 6XE1

(chain B)

Prediction B.1.1.529

(from AlphaFold2)

Prediction B.1.1.529

(from RoseTTAFold)

We first renumbered the residues according to HADDOCK’s
requirements and then specified the interacting residues between
the RBD structure and the Fab. Specifically, we ensure there are
not overlapping residue IDs between the chains of a .PDB file and
then specify the residues that are assumed to interact between
the structures. This analysis was performed on the antibody-RBD
structure pairs shown in Table 1.

The assessment of these interactions was measured by
multiple biophysical factors including van der Waals energy,
electrostatic energy, desolvation energy, and restraints violation
energy, which were collectively used to derive a HADDOCK
score to quantify changes in protein-protein interaction resulting
from mutations in the RBD. Further, interfacing residues
between the RBD and Fab structures were determined by
identifying residues above the 1.0 Å2 difference in surface area
cutoff between the chains of the RBD and the Fab using the
InterafaceResidues1 functionality in PyMol version 2.4.1 (19).

We then compared the metrics of the actual complexes (i.e.,
the real RBD structure and the Fab) vs. the predicted RBD
structures of Omicron (with the same Fab). This comparison
provides a baseline interaction that was then measured against
the mutated interactions with each respective Fab.

Differences between HADDOCK results were assessed using
Kruskal-Wallis tests and ad hocWilcoxon pairwise comparisons.
All statistical analyses were performed using R version 4.0.4 (20).

1InterafaceResidues Function Documentation: https://pymolwiki.org/index.php/
InterfaceResidues.
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FIGURE 2 | Genetic distance matrix of the spike gene (using nucleotides) for 9

Variants Being Monitored (VBM) and 2 Variants of Concern (VOC). The

distance is the average proportion (p) of nucleotide sites at which two

sequences being compared are different.

FIGURE 3 | Genetic distance matrix of the receptor binding motif (RBM) of

spike gene (using amino acids) for 9 Variants Being Monitored (VBM) and 2

Variants of Concern (VOC). The distance is the average proportion (p) of

nucleotide sites at which two sequences being compared are different.

RESULTS

Variant Sequence Comparison
Although the Omicron RBM (spike amino acid sequence,
positions 430–522) can be efficiently categorized by nine
characteristic mutations (S:N440K, S:G446S, S:S447N, S:T478K,
S:E484A, S:Q493R, S:G496S, S:Q298R, S:N501Y), at least two of
them (S:N440K and S:G446S) may bemissing from some samples
classified as Omicron. Also, some Omicron RBMs contains an
additional mutation at S:Y505H.

The Omicron variant is the variant more distantly related
to the reference genome (SARS-CoV-2 Wuhan-Hu-1; NCBI’s
RefSeq accession no. NC_045512.2) in the proportion of shared
nucleotides. Also, Omicron is the variant that is more distantly
related to Gamma. See Figures 2, 3.

Mutational Analysis
Comparing the RBD of Omicron to the reference genome, there
are 15 mutations, all of which are single amino acid substitutions.
Most of the substitutions result in a change in the residue type
(see Table 2).

The resulting RBD structure from AlphaFold2 predicts
that there is little conformational change from the reference

TABLE 2 | Mutations in the receptor-binding domain (RBD) of the spike protein in

the Omicron variant (B.1.1.529).

Position Ref Alt Ref type Alt type Type difference

339 G D Non-polar Negative Yes

371 S L Polar Non-polar Yes

373 S P Polar Non-polar Yes

375 S F Polar Non-polar Yes

417 K N Positive Polar Yes

440 N K Polar Positive Yes

446 G S Non-polar Polar Yes

477 S N Polar Polar No

478 T K Polar Positive Yes

484 E A Negative Non-polar Yes

493 Q R Polar Positive Yes

496 G S Non-polar Polar Yes

498 Q R Polar Positive Yes

501 N Y Polar Polar No

505 Y H Polar Positive Yes

FIGURE 4 | Comparison of reference RBD structure (PDB: 6XC2, shown in

green) and the predicted Omicron (B.1.1.529) RBD structures (AlphaFold2

shown in blue, RoseTTAFold shown in purple). Mutated residues are

highlighted in red.

structure. Conversely, there is a significant conformational
change in the predicted RBD structure from RoseTTAFold. See
Figure 4.

There are multiple mutated residues (shown in red in
Figures 5, 6) in positions that may affect the ability of a
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FIGURE 5 | Possible inhibitory mutated RBD residues in the AlphaFold2

Omicron (B.1.1.529) (structure shown in blue with mutated residues of interest

shown in red) superimposed on a reference RBD structure. Note: the reference

RBD structure (PDB: 6XC2) is shown in green with equivalent position residues

highlighted in yellow. CC12.1 antibody Fab (from PDB 6XC2) is shown in

magenta/pink.

neutralizing antibody to sufficiently bind. Some of these mutated
residues change to much longer side-chained or differently-
charged amino acids. For example, there are two "to lysine"
mutations: N440K and T478K (i.e., from polar, smaller side
chain residues to a positive-charged, longer side chain residue).
These types of changes may have an effect on the binding
affinity between the RBD and an antibody, either by changing
the surface charge on the protein or by inhibiting a tighter
antibody interaction.

Superimposing the predicted RBDs on the reference RBD
with the CC12.1 antibody in place, shown in Figures 5, 6, shows
that mutations Q493R, Q498R, and N501Y in the AlphaFold2
structure and the E484A mutation in the RoseTTAFold
structure may affect the binding position of the antibody. These
side chains clash with particular residues of the Fab, which may
cause a less effective andmore distant binding. Longer/larger side
chains may increase the distance between the Fab paratope of the
antibody and the epitope of the RBD.

Antibody Binding Analyses
The results of all four antibody docking exercises with the
predicted AlphaFold2 RBD structure show that the Fab of
the respective neutralizing antibodies continue to bind to the
RBD of Omicron, though not as well as the reference interaction.
Note that there is a consistent decrease (increase in value) in the
electrostatic energy and an increase in restraints violation energy
between the binding from the reference RBDs and the predicted

FIGURE 6 | Possible inhibitory mutated RBD residues in the RoseTTAFold

Omicron (B.1.1.529) (structure shown in purple with mutated residues of

interest shown in red) superimposed on a reference RBD structure. Note: the

reference RBD structure (PDB: 6XC2) is shown in green with equivalent

position residues highlighted in yellow. CC12.1 antibody Fab (from PDB 6XC2)

is shown in magenta/pink.

TABLE 3 | HADDOCK metrics for the C105 docking prediction, comparing the

6XCM RBD vs. the Omicron (B.1.1.529) predicted RBD structures.

Metric 6XCM

RBD

w/C105

Predicted B.1.1.529 RBD w/C105

AlphaFold RoseTTAFold

van der Waals energy –85 –71.8 (16%) –44.2 (48%)

Electrostatic energy –280.9 –268.9 (4%) –324.5 (–16%)

Desolvation energy -18.6 –17.1 (8%) –3.2 (83%)

Restraints violation energy 154.1 158.8 (3%) 338.6 (120%)

HADDOCK score –144.4 –126.8 (12%) –78.4 (46%)

Buried surface area 2417.8 2299.6 (–5%) 1555.1 (–36%)

RBD of Omicron. The HADDOCK score is worse (higher) across
the board and it appears that the interaction of the Omicron RBD
with the antibodies are more distant, as shown by the buried
surface area changes below.

When looking at the antibody docking exercises with
the predicted RoseTTAFold RBD structure, there is
agreement with the AlphaFold2 results in that there still
seems to be interaction with the neutralizing antibodies.
However, the reduction in binding affinity is much more
severe given the conformational changes seen only in the
RoseTTAFold structure.

Note: All values in Tables 3–6 below represent the best
docking predictions from HADDOCK. Also, values in parentheses
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TABLE 4 | HADDOCK metrics for the CC12.1 docking prediction, comparing the

6XC2 RBD vs. the Omicron (B.1.1.529) predicted RBD structures.

Metric 6XC2

RBD

w/CC12.1

Predicted B.1.1.529 RBD w/CC12.1

AlphaFold RoseTTAFold

van der Waals energy –106.9 –90.7 (15%) –27.5 (74%)

Electrostatic energy –342.6 –284.9 (17%) –259.2 (24%)

Desolvation energy –37.5 –28.8 (23%) –12.4 (67%)

Restraints violation energy 143.2 152.6 (7%) 201.4 (41%)

HADDOCK score –198.6 –163.3 (18%) –71.6 (64%)

Buried Surface Area 2778.5 2584.3 (–7%) 1578.4 (–43%)

TABLE 5 | HADDOCK metrics for the CC12.3 docking prediction, comparing the

6XC7 RBD vs. the Omicron (B.1.1.529) predicted RBD structures.

Metric 6XC7

RBD

w/CC12.3

Predicted B.1.1.529 RBD w/CC12.3

AlphaFold RoseTTAFold

van der Waals energy –86.1 –93.1 (–8%) –48.1 (44%)

Electrostatic energy –248.1 –194.1 (22%) –189.2 (24%)

Desolvation energy –41.7 –37.9 (9%) –23.5 (44%)

Restraints violation energy 159.1 104.7 (–34%) 221.4 (39%)

HADDOCK score –161.5 –159.4 (1%) –87.4 (46%)

Buried Surface Area 2489.8 2416.7 (–3%) 1420.6 (–43%)

TABLE 6 | HADDOCK metrics for the CV30 docking prediction, comparing the

6XE1 RBD vs. the Omicron (B.1.1.529) predicted RBD structures.

Metric 6XE1

RBD

w/CV30

Predicted B.1.1.529 RBD w/CV30

AlphaFold RoseTTAFold

van der Waals energy –86.1 –61.7 (28%) –41.1 (52%)

Electrostatic energy –354.4 –171.8 (52%) –207.9 (41%)

Desolvation energy –13.8 –19.5 (–41%) –10.2 (26%)

Restraints violation energy 147.6 159.4 (8%) 286.0 (93%)

HADDOCK score –156.0 –99.6 (36%) –43.9 (71%)

Buried Surface Area 2479.0 1992.6 (–20%) 1600.2 (–35%)

represent the percentage difference between the given metric for
the predicted structure and the reference structure.

C105 Antibody Binding
Resulting binding metrics from the C105 HADDOCK docking
analysis are shown in Table 3. This interaction shows that
there is a ∼ 4% reduction in the electrostatic energy
and an ∼ 5% decrease in buried surface area comparing
between the 6XCM RBD and the predicted RBD of
Omicron from AlphaFold2. From RoseTTAFold,
the interaction shows that there is ∼ 16% increase in the
electrostatic energy but with a ∼ 36% decrease in buried
surface area. See Figure 7.

FIGURE 7 | HADDOCK docking prediction using C105 (shown in

magenta/pink), comparing the 6XCM RBD (shown in shown in green) vs. the

Omicron (B.1.1.529) predicted RBD structures (AlphaFold2 shown in blue,

RoseTTAFold shown in purple).

CC12.1 Antibody Binding
Resulting binding metrics from the CC12.1 HADDOCK docking
analysis are shown in Table 4. This interaction shows that there
is a ∼ 17% reduction in the electrostatic energy and an ∼ 7%
decrease in buried surface area comparing between the 6XC2
RBD and predicted RBD of Omicron from AlphaFold2. From
RoseTTAFold, the interaction shows that there is ∼ 24%
reduction in the electrostatic energy but and a ∼ 43% decrease
in buried surface area. See Figure 8.

CC12.3 Antibody Binding
Resulting binding metrics from the CC12.3 HADDOCK docking
analysis are shown in Table 4. This interaction shows that there
is a ∼ 22% reduction in the electrostatic energy and an ∼ 3%
decrease in buried surface area comparing between the 6XC7
RBD and predicted RBD of Omicron from AlphaFold2. From
RoseTTAFold, the interaction shows that there is ∼ 24%
reduction in the electrostatic energy and a ∼ 43% decrease in
buried surface area. See Figure 9.

CV30 Antibody Binding
Resulting binding metrics from the CV30 HADDOCK docking
analysis are shown in Table 3. This interaction shows that there
is a ∼ 52% reduction in the electrostatic energy and an ∼ 20%
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FIGURE 8 | HADDOCK docking prediction using CC12.1 (shown in

magenta/pink), comparing the 6XC2 RBD (shown in shown in green) vs. the

Omicron (B.1.1.529) predicted RBD structures (AlphaFold2 shown in blue,

RoseTTAFold shown in purple).

decrease in buried surface area comparing between the 6XE1
RBD and predicted RBD of Omicron from AlphaFold2. From
RoseTTAFold, the interaction shows that there is ∼ 41%
reduction in the electrostatic energy and a ∼ 35% decrease in
buried surface area. See Figure 10.

Antibody Interaction Comparison
All of the interaction predictions among the four antibodies
tested in this study (C105, CC12.1, CC12.3, and CV30) agree
that there is a decrease in binding affinity when comparing the
respective RBD interactions with the Omicron RBD interactions.
Across all of the docking predictions using the AlphaFold2
RBD structure, we see a drop in electrostatic interaction
(increase in the electrostatic energy value) ranging from ∼ 4%
to ∼ 52% and a consistent decrease in buried surface area
(increase in distance) of the RBD and the antibody Fab.
In addition, we see a variable increase (worsening) in the
HADDOCK score, indicating that all of the Omicron RBD
structures have a lower binding affinity when compared to
their respective reference RBD structures as a benchmark. See
Figure 11.

FIGURE 9 | HADDOCK docking prediction using CC12.3 (shown in

magenta/pink), comparing the 6XC7 RBD (shown in shown in green) vs. the

Omicron (B.1.1.529) predicted RBD structures (AlphaFold2 shown in blue,

RoseTTAFold shown in purple).

Similarly, we see a more extreme reduction in the binding
affinity of the Fab structures and the RBD structure predicted
by RoseTTAFold. We see a drop in electrostatic interaction
(increase in the electrostatic energy value) ranging from ∼ 24%
to ∼ 41% in three of the four interactions (with an odd ∼ 16%
increase in the C105 interaction) and a consistent ∼ 35% to
∼ 43% decrease in buried surface area (increase in distance) of
the RBD and the antibody Fab.

We performed Kruskal-Wallis tests with each of the
HADDOCK metrics, which show that there is a statistically-
significant difference between the three sets of binding
experiments (Alpha and the two predicted Omicron sets). See
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FIGURE 10 | HADDOCK docking prediction using CV30 (shown in

magenta/pink), comparing the 6XE1 RBD (shown in shown in green) vs. the

Omicron (B.1.1.529) predicted RBD structures (AlphaFold2 shown in blue,

RoseTTAFold shown in purple).

Figure 11. Interestingly, performing the Wilcoxon Rank-Sum
tests on these metrics to compare the differences between
the predictions and reference results shows that there is no
statistically-significant difference at the α = 0.05 level between
the AlphaFold2 RBD structure binding and the reference
structures. However, when comparing the RoseTTAFold RBD
structure to the reference results, differences in the restraints
violation energy, van der Waals energy, HADDOCK score,
and buried surface area are statistically significant at the
α = 0.05 level and the differences in desolvation energy is
statistically significant at the α = 0.10 level. Also, the same
metrics are significantly different between the AlphaFold2 and
RoseTTAFold, further showing that these predicted structures
are quite different from one another.

Fab-RBD Interfacing Residues
Furthermore, when comparing residues that are interfaced
between the Fab and RBD, there is agreement in that particular
residues in Omicron are no longer interfacing with the antibodies
analyzed in this study. In particular, residues 448N, 484A, and
494S may not interface with the Fab structure as they are in
the reference RBD-Fab complexes. However, the aforementioned
N501Y and S477N mutations (along with a variety of other

FIGURE 11 | HADDOCK results comparison between the reference RBD

structures and the predicted Omicron (B.1.1.529) RBD structures. The bars

indicate results that are significantly different and the “*” indicates Wilcoxon

Rank-Sum’s p-value ≤ 0.005).

mutations) do not appear to affect the interfacing of the residues
at these positions.

This implies that there are certain positions that are more
sensitive to mutations in that substitutions at these loci are more
likely to affect the interface of the RBD with the antibody’s Fab
(denoted by a△ symbol in Table 7).

In contrast, there are other positions that have been
substituted between the reference RBDs and the predicted
Omicron RBDs that continue to interface with most of the Fab
structures (denoted by a � symbol in Table 7).

Finally, there are some residues that remain unchanged in
the Omicron variant RBD amino acid sequence relative to the
Wuhan reference isolate, yet we see changes in the interfacing at
these loci (denoted by a ◦ symbol in Table 7). This suggests that
there are other mutated residues around these stable positions
that may be affecting their ability to interface.

Many of these findings concur with the findings in Sharma
et al. (21). Specifically, we also continue to see a reliance
on residues at positions K417, S477, Q493, Q498, N501, and
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TABLE 7 | Interfacing residue changes of interest between the Fab paratope and the RBD structures.

Interface position 417 448 477 484 493 494 498 501 505

(K◮N) (N) (S◮N) (E◮A) (Q◮R) (S) (Q◮R) (N◮Y) (Y◮H)

6XC2 vs. B.1.1.529 Reference K N S E Q S Q N Y

AlphaFold2 Prediction N - N - R - R Y H

RoseTTAFold Prediction - N N A - - - - H

6XC7 vs. B.1.1.529 Reference K N S E Q S Q N Y

AlphaFold2 Prediction N - N - R - R Y H

RoseTTAFold Prediction - - N - R - R Y -

6XCM vs. B.1.1.529 Reference K - S E Q S Q N Y

AlphaFold2 Prediction N - N - R S R Y H

RoseTTAFold Prediction - N N A - - - - H

6XE1 vs. B.1.1.529 Reference K - S - Q S Q N Y

AlphaFold2 Prediction N - - A R S R Y H

RoseTTAFold Prediction - N N A - - - - H

Legend:

� - Mutated positions with few interface changes,

© - Non-mutated positions with interface changes,

△ - Mutated positions with interface changes

△ © � △ △ © △ △ �

(Note that a ‘-’ means that the residue at this position no longer interfaces with the Fab structure).

Y505, which are stated to increase binding affinity. Interestingly,
the interfacing residues that are non-mutated N448 and S494
(denoted with a ◦ symbol) are rarely, if ever, listed as interfacing
residues in Table 3 in Sharma et al. (21). This further supports
the notion that there are residue positions that are important for
interfacing with neutralizing antibodies, but that the mutations
seen here in the Omicron RBD may not seriously affect this
RBD-antibody interface.

CONCLUSION AND DISCUSSION

While in vitro experiments are needed to validate these
predictions, the predicted results here suggest that existing
neutralizing antibodies may still bind to the mutated spike
protein of the Omicron variant. However, it appears that
the affinity of Omicron’s RBD for neutralizing antibodies
is reduced compared to the reference RBD structures. The
results of both AlphaFold2 and RoseTTAFold suggest
that antibodies elicited from previous infection will provide
at least some protection against Omicron. Additionally,
these results indicate that the SARS-CoV-2 Omicron
variant will note completely evade vaccines based on the
spike protein.

Though there aremanymutations in the RBD of Omicron, the
predicted structure fromAlphaFold2 suggests thesemutations
do not appear to be causing any large conformational change that
would totally evade antibody interaction. However, we do see
some amino acid substitutions to different, longer side chained
residues at the binding site. This result may be due to the slightly
more distant interaction with the antibody and therefore may
reduce the binding affinity.

The results ofRoseTTAFold suggest that themutations have
a different effect on the overall 3D structure of the Omicron
RBD. The conformational change seen in this structure may
contribute to antibody evasion or more severely reduce antibody
binding affinity.

AlphaFold2 has not been validated for predicting the
effect of mutations and is not expected to produce a completely
unfolded structure if the Omicron sequence contains any
destabilizing point mutations. This may explain the extremely
similar backbone structure to the reference RBD structures.

Given that the antibody docking results between
AlphaFold2 and RoseTTAFold are statistically different,
this further posits that this potential conformational change seen
in the RoseTTAFold RBD may directly affect the binding of
neutralizing antibodies.

Though the predicted RBD structures between AlphaFold2
and RoseTTAFold are quite different, the HADDOCK antibody
docking results seem to converge on specific positions with which
the Fab will interface. S477N and Y505H may be useful positions
on which to focus for future vaccine design or mutational
surveillance in new variants.

Further analyses are needed using a broader range of
different classes of antibodies, including therapeutic antibodies
and neutralizing antibodies that bind to other locations on
the spike protein. Recent preprint articles show more drastic
reductions in the binding affinity of some other antibodies like
CB6, a neutralizing antibody similar to ones used in this study,
as well as a variety of therapeutic antibodies (22, 23). Thus,
while we fail to see complete evasion of the antibodies used in
this study, there are far more Omicron-antibody interactions to
be understood.
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Once a true structure of the Omicron RBD is determined,
it will be of interest to compare the true structure to both
of the predicted RBD structures from AlphaFold2 and
RoseTTAFold, mainly to see if a large conformational change
occurs (as is seen in the RoseTTAFold) or if the overall
backbone/3D structure is very similar to the reference structures
used in this study (as is seen in the AlphaFold2). In
addition, it will be necessary to validate the antibody interactions
predicted using HADDOCK with true, experimentally-derived
binding measurements.

Determining the actual structure of a protein is a time-
consuming process. Further, quantifying protein-protein
interactions (like spike-to-antibody interactions) are also
experimentally difficult to perform in vitro. Given the public
health urgency in understanding the impacts of new SARS-CoV-
2 variants quickly requires that we act quicker than is possible
in a lab. Thus, in silico predictive tools like AlphaFold2,
RoseTTAFold, and HADDOCK are important for quickly
understanding the biochemistry of variants and can help us to
infer the epidemiological implications of the variant.
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