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Abstract

Predictions on the surface finish of work-pieces in electrical discharge machining (EDM) based upon
physical or empirical models have been reported in the past years. However, when the change of electrode
polarity has been considered, very few models have given reliable predictions. In this study, the comparisons
on predictions of surface finish for various work materials with the change of electrode polarity based
upon six different neural-networks models and a neuro-fuzzy network model have been illustrated. The
neural-network models are the Logistic Sigmoid Multi-layered Perceptron (LOGMLP), the Hyperbolic
Tangent Sigmoid Multi-layered Perceptron (TANMLP), the Fast Error Back-propagation Hyperbolic Tan-
gent Multi-layered Perceptron (Error TANMLP), the Radial Basis Function Networks (RBFN), the Adaptive
Hyperbolic Tangent Sigmoid Multi-layered Perceptron, and the Adaptive Radial Basis Function Networks.
The neuro-fuzzy network is the Adaptive Neuro-Fuzzy Inference System (ANFIS). Being trained by experi-
mental data initially screened by the Design of Experiment (DOE) method, the parameters of the above
models have been optimally determined for predictions. Based upon the conclusive results from the com-
parisons on checking errors among these prediction models, the TANMLP, RBFN, Adaptive RBFN, and
ANFIS model have shown consistent results. Also, it is concluded that the further experimental results
have agreed to the predictions based upon the above four models.  2001 Elsevier Science Ltd. All
rights reserved.

1. Intrduction

Electrical discharge machining (EDM), is a nontraditional machining process for metals remov-
ing based upon the fundamental fact that negligible tool force is generated during the machining
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process. The removal of metals in the process is characterized by the erosive effects from a series
of electrical sparks generated between tool and work materials with constant electric field emerged
in dielectric environment. The EDM process is typically used for manufacturing cutting tools,
punch dies, and other difficult-to-cut parts. Although the process has been accepted as the standard
machining process in the tools, dies, and molds industry, the process is yet treated as the so-
called “know-how” process today. That means, the tuning of EDM process variables for obtaining
process efficiency and part accuracy has been empirical. Even though the up-to-date computer
technology has been applied on the machine controller, the EDM process is still one of the expert-
ise-demanding processes in the industry. From the literatures, the comprehensive mechanism of
metal erosion during sparking is still debatable although the basic physical laws have been laid
for many years. On the other hand, complex thermal conduction behaviors have been widely
accepted as the principal mechanism of metal erosion based upon ad-hoc engineering approach.
This explains why the models for correlating the process variables and surface finish are hard to
be established accurately.

In the past decade, neural networks have been shown to be the highly flexible modeling tools
with capabilities on learning the mathematical mapping between input variables and output fea-
tures for nonlinear systems [1,2]. Also, the superior performances of neural networks for modeling
machining processes have been published elsewhere [3–20]. In these, multi-layer Perceptrons
based on back-propagation (BP) technique have been employed for monitoring and modeling the
reported processes. For example, Rangwala and Dornfeld [3], Masory [4], Tansel et al. [5], and
Tarng et al. [6,7] have employed BP or Adaptive Resonance Theory (ART2) on the neural net-
works for monitoring tool wear and breakage in turning or drilling processes. On the other hand,
Tansel et al. [8,9], and Lee et al. [10] have also adopted BP or ART2-A on the neural networks
for detecting and suppressing tool chatter in turning or drilling processes. In order to increase the
reliability of detection method, Li et al. [11] have developed parallel multi-ART2 neural networks
for identifying tool failure due to chatter in the turning operation. The percentage of effective
detection has been increased from 80.4% on single-ART2 case to 96.4% on parallel multi-ART2
case. In addition, Cariapa et al. [12], Tarng et al. [13,14], Liao and Lin [15], Lee et al. [16], and
Ko and Cho [17] have applied various neural networks for modeling and predicting the machining
processes. In the EDM process, both Kao and Tarng [18] and Liu and Tarng [19] have employed
feed-forward neural networks with hyperbolic tangent functions and abductive networks for the
on-line recognition of pulse-types. Based on their results, discharge pulses have been identified
and then employed for controlling the EDM machine. Meanwhile, Katz and Naude [20] have
adopted back propagation errors on neural networks for improving the geometric shape of EDM
products based upon coupling feature design in the EDM process. Never the less, the effects of
the change of electrode polarity have all been intentionally neglected without proper explanations.

The objective of this paper is to establish surface finish models based upon the various neural-
networks for predicting the surface finish with the effects of change of electrode polarity in the
EDM process. First of all, pertinent process variables affecting surface finish, such as the polarity
of electrode, the discharge time, the peak current, and the materials of both tool and work, have
been screened by making use of the Taguchi Method on Design of Experiment [21]. The experi-
mental data based upon DOE have later been used for training the various neural-networks models.
Finally, more experimental verifications on the established models have been conducted; and,
comparisons among the models have been analyzed.
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2. Neural networks

In the past decades, numerous studies have been reported on the development of neural net-
works based on different architectures [1,2,22–24]. Basically, one can characterize neural net-
works by its important features, such as the architecture, the activation functions, and the learning
algorithms [2]. Each category of the neural networks would have its own input–output character-
istics, and therefore it can only be applied for modeling some specific processes. On the other
hand, if we look at the recent development on fuzzy theory, one also can observe that a fuzzy
inference system could map a single given input to multi-outputs in a nonlinear domain similar
to characteristics of the neural networks. Comparing to the neural networks, the fuzzy inference
system mainly consists of membership functions, fuzzy logic operators, and prescribed if–then
rules as described in the literatures. In 1993, Jang [25] first introduced the Adaptive Neuro-Fuzzy
Inference System (ANFIS), which was reported as a very efficient system for solving the ill-
defined equations involving the automatic elicitation of knowledge expressed only by the if–then
rules. Based on our experiences, the ANFIS system seems can only be applied to the cases with
seven inputs (or less) and one output. Therefore, it is still a valid candidate for the models in
this paper.

As a result, six neural networks and a neuro-fuzzy network are employed for modeling the
surface finish in the EDM process in this study. All the models are verbally defined as follows
with equivalent abbreviations.

1. Logistic Sigmoid Multi-layered Perceptron (LOGMLP).
2. Hyperbolic Tangent Sigmoid Multi-layered Perceptron (TANMLP).
3. Radial Basis Function Network (RBFN).
4. Fast Error Back-Propagation Multi-layered Perceptron with Hyperbolic Tangent Functions

(Error TANMLP).
5. Hyperbolic Tangent Sigmoid Multi-layered Perceptron with Adaptive Learning Rate

(Adaptive TANMLP).
6. Radial Basis Function Network with Adaptive Learning Rate (Adaptive RBFN).
7. Adaptive Neuro-Fuzzy Inference System (ANFIS).

2.1. Architectures

As explained in the previous section, neural networks are in general categorized by their archi-
tecture. In Figs. 1 and 2, the architecture of the Multi-layered Perceptron Networks and the RBFN
are shown schematically. In the two figures it should be noted that the number of hidden layers
is critical for the convergence rate at the stage of training the network parameters. Empirically
speaking, one hidden layer should be sufficient in the Multi-layered Perceptron Networks because
the number of neurons is typically assumed to be dominant in the networks. In other words, the
number of neurons must be determined by an optimization method. Furthermore, the architecture
of the ANFIS has been selected based upon a first-order Sugeno fuzzy inference model, as shown
in Fig. 3. The advantages of the Sugeno inference mechanism are the high computational
efficiency, the built-in optimal and adaptive sheme, and the guaranteed continuity on the output
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Fig. 1. Architecture of the Multi-layered Perceptron Networks.

Fig. 2. Architecture of the RBFN.

surfaces [26]. In addition, a hybrid-learning algorithm for identifying of the quasi-optimal mem-
bership functions and other rule-based parameters has also been employed in this study.

2.2. Activation functions

For the neural networks shown in Figs. 1 and 2, there are many neurons in the hidden layers.
The connections among the neurons are made by signal links designated by corresponding weight-
ings. Each individual neuron is represented an internal state, namely the activation, which is
functionally dependent of the inputs. In general, the Sigmoid functions (S-shaped curves), such
as logistic functions and hyperbolic tangent functions, are adopted for representing the activation.
In the networks, a neuron sends its activation to the other neurons for information exchange
via signal links. In this paper, several different functions for activation have been employed for
comparisons. And, they are described in the following paragraphs.
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Fig. 3. Architecture of the ANFIS networks with multi-input Sugeno fuzzy model plus multi-rule; i.e. two membership
functions for each input.

The activation function for the LOGMLP model is a continuous logistic function given as fol-
lows:

f(net)�
1

1+exp(−lnet)
(1)

where l�0 is proportional to the gain which determines the steepest direction of the continuous
function f(net) near net=0. Similarly, for the TANMLP model and the Error TANMLP model,
continuous hyperbolic tangent functions are employed and defined as follows:

f(net)�tanh�lnet
2 ��

1−exp(−lnet)
1+exp(−lnet)

(2)

where l is the same as in Eq. (1). For the RBFN model, the Gaussian distribution functions are
used and defined as follows:

f(net)�f(X; Ci; si)�exp��
|X−Ci|2

2s2
i
� (3)

where the Ci is the center of the Gaussian distribution, and si is the standard deviation.
For the ANFIS model, one of the membership functions has been chosen as the Gaussian

functions, but the others have been the bell-shape functions defined as follows:

f(net)�f(X; ai, bi, c1)�
1

1+|X−ci

ai |
2bi

(4)

where the {ai, bi, ci} is a parameter set for the function. Because the parameter set determines
the X coordinates of the two corners represented by the bell-shape functions, the parameter bi is
usually positive. If bi is negative, then the shape of the functions becomes upside-down.
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2.3. Algorithms

At the stage of training the neural networks, it is critical to select an appropriate algorithm
because the efficiency and the convergence of the training are the primary issue at this stage.
That means the algorithm is for determining the weightings in order to accomplish the desired
mapping between the inputs and the outputs. Based on a least-square approach, the quadratic
error function E between the actual outputs and the network outputs is expressed by:

E��
p

Ep��
p

1
2
(Tp�Yp)2 (5)

where Tp is target values and Yp is outputs of neural networks.
In this paper, only supervised algorithms, such as the delta learning rule (or namely the gradient

descent) with momentum, the fast error back-propagation learning rule with momentum, and
hybrid of the delta learning and the least square estimator have been employed. In Figs. 4–6, the
three algorithms are shown, respectively. Meanwhile, the ANFIS model has used a special hybrid-
learning algorithm for updating its parameters. Considering the convergence criteria, both the
least-squares method and the back-propagation gradient descent method have been employed for
the linear and the nonlinear parameters, respectively. In all the above algorithms, an error measure
for final check, which is a normalized root-mean-square of error (RMSE), is defined as follows:

RMSE�
1

Length(Tp−Yp)��
p

1
2

(Tp−Yp)2 (6)

where Tp is the actual target vector (i.e. experimental values) and Yp is the predicted vector

Fig. 4. Mathematical algorithms based upon the Gradient Descent Method adopted in the LOGMLP, TANMLP, and
Adaptive TANMLP networks.
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Fig. 5. Mathematical algorithm based upon the Fast Error Back-Propagation adopted in the Error TANMLP networks.

(training values). As for the adaptive algorithms, the values of the learning coefficients have to
be adequately increased when the RMSE of current epoch is smaller than the RMSE of previous
epoch. Otherwise, the values have to be adaptively decreased when the RMSE of current epoch
is larger than the RMSE of previous epoch.

3. Experimental verifications

A schematic drawing of the experimental apparatus and a photograph of the EDM machine
attached with a personal computer for data-acquisition are shown in Fig. 7. All the experiments
have been conducted on a Model Mold Maker III CNC EDM machine, made by Sodick Inc. in
Japan. The EDM machine was attached with a MARK XI pulse charge generator and a computer-
based controller to generate rectangular-shaped current pulses during discharging. Throughout the
experiments, the dielectric fluid has been the SPE oil produced by Castrol Inc. In particular, for
better control of the environment, the dielectric fluid was kept in a stainless steel container during
each run of the experiments. The surface finish data were later measured by a Hommel Tester
T1000 profilemeter, made by Hommelwerke Inc. in Germany.

In this study, three different virgin metals were employed for the experimentation. While copper
was used as the tool (upper electrode), aluminum and iron were used as the work (lower electrode).
In all experiments, the pertinent process parameters and their levels for each set of the experiments
are listed in Table 1. Also, the physical characteristics together with the mechanical dimensions
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Fig. 6. Mathematical algorithm based upon both the Gradient Descent Method and the Least-Square Estimator adopted
in the RBFN and Adaptive RBFN networks.

Fig. 7. Schematic drawing and photograph of the experimental equipment; (a) shows the schematic, and (b) shows
the EDM machine and the personal computer.

of the tool and the works are tabulated in Table 2. In order to produce adequate data for model
training, eighty sets of experimental conditions were arranged on the EDM machine. And, each
set of the conditions was measured by running forty consecutive tests both on the case of copper–
aluminum and copper–iron run.

Known for its capabilities on establishing the neural-networks models, MATLAB with associate
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Table 1
Pertinent process parameters and values for the experiments

Symbol Factor Level

1 2 3 4 5

PL Polarity of upper electrode � +
ON Discharge time (µs) 20 30 60 100
Ip Main power peak current (A) 12 22.5 30 39 48
An Tool material (upper electrode) Cu
Ca Work material (lower electrode) Al Fe
OFF Quiescent time (µs) 60
V Main power voltage (V) 90
SV Servo standard voltage 2

Table 2
Physical characteristics and mechanical dimensions of the tool and the work

Materials Composition Density (kg/m3) Machined roughness Dimensions
Rmax (µm)

Tool
Cu �99.95% 8896.6 4.02 φ9.5×50 mm
Work
Fe �99.9% 7870 1.08 �20×12 mm
Al �99.5% 2,699 2.76 �20×12 mm

toolboxes, copyrighted by the MathWork Inc. in USA, was used for coding the algorithms. Also,
with the help of Pentium III processors on a personal computer, the programs could be executed
and finished in a few minutes.

4. Results and discussions

Before applying the neural networks for modeling the EDM process, we first need to decide
the architecture and the topology of the networks; e.g. the number of hidden layers and the number
of neurons in each layer in the networks. Based on the previous experiences from the work on
semi-empirical model [27], five inputs and one output in the networks would be sufficient for
this study. Therefore, the number of neurons in the input and output layer should be set to five
and one, respectively. Also, the back-propagation architecture with one hidden layer is enough
for the majority of applications, because it can form arbitrary mapping between a set of given
inputs and outputs [2]. Therefore, one hidden layer for the neural networks was adopted. For
determining the optimal number of neurons in hidden layer, a procedure was employed for optim-
izing the number of neurons in the hidden layer for the neural networks based on the results from
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5000 epochs as shown in Fig. 8. By comparing the results, the number of hidden neurons was
found to be 10 for the LOGMLP model, 12 for the TANMLP model, nine for the RBFN model,
20 for the Error TANMLP model, 50 for the Adaptive TANMLP model, and nine for the Adaptive
RBFN model, respectively. It is noted that the TANMLP, RBFN and the Adaptive RBFN models
have smaller check error than the others. And, the final results for the three networks versus

Fig. 8. Plots of comparison on average model error among the various models versus numbers of hidden nodes.
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Table 3
Final comparison results on surface finish based upon the TANMLP model with the number of hidden nodes as the vari-
able

Hidden nodes 6 9 12 15

Epoch in optimal 5000 5000 5000 5000
RMSE 0.03290 0.03699 0.03384 0.03393
Running time (s) 386 399 414 426
Average training error (%) 5.97 6.52 5.39 5.53
R2 0.9632 0.9535 0.9611 0.9609
Average checking error (%) 8.87 9.70 7.60 9.35

Table 4
Same as Table 3 except for the RBFN

Hidden nodes 3 6 9 12

Epoch in optimal 5000 5000 5000 5000
RMSE 0.03183 0.01887 0.01809 0.01916
Running time (s) 199 223 250 276
Average training error (%) 7.45 4.38 4.01 4.21
R2 0.9656 0.9879 0.9889 0.9875
Average checking error (%) 13.28 12.08 8.00 9.16

various numbers of hidden neurons are shown and compared in Tables 3–5. In these three tables,
the prediction, the training and the check errors, are defined as follows,

Error in %�|Experimental Results−Predictions
Experimental Results |�100(%). (7)

It should be noted that the check errors of the best cases are 7.60% for the TANMLP model,
8.00% for the RBFN model, and 7.29% for the Adaptive RBFN model, respectively.

Based on the MATLAB user’s guide, there are eight different membership functions supported

Table 5
Same as Table 3 except for the adaptive RBFN

Hidden nodes 3 6 9 12

Epoch in optimal 5000 5000 5000 5000
RMSE 0.03814 0.02449 0.01725 0.01452
Running time (s) 199 224 248 275
Average training error (%) 9.40 3.56 3.68 3.29
R2 0.9506 0.9796 0.9899 0.9928
Average checking error (%) 14.25 9.50 7.29 11.69
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Table 6
Number of intrinsic parameters required for the ANFIS with various membership functions

Membership function 2 Bell MFs 2 Gaussian MFs 3 Bell MFs 3 Gaussian MFs

Number of inputs 5 5 5 5
Number of nodes 92 92 524 524
Number of linear parameters 192 192 1458 1458
Number of nonlinear

30 20 45 30
parameters
Total number of parameters 222 212 1503 1488
Number of training data pairs 80 80 80 80
Number of checking data

10 10 10 10
pairs
Number of fuzzy rules 32 32 243 243

in the MATLAB Fuzzy Logic toolbox [26]. In this paper, two and three of both the Bell and the
Gaussian membership functions were employed. The characteristics of these types of membership
functions are shown in Table 6. Evidently, the run-time of the computer will increase as the
number of the membership function increases because number of the nodes, the parameters, and
the if–then rules grows exponentially. From Tables 7–10, the final results of the ANFIS model
versus various epochs corresponding to each of the cases are tabulated with bold-faced columns
indicating the best one. They are one epoch for the two Bell MFs and the two Gaussian MFs,
300 epochs for the three Bell MFs, and five epochs for the three Gaussian MFs, respectively. As
a result, the best model can be obtained after only one epoch when using two Bell MFs. Also,
the convergence rate is higher than all the others. It is shown that advantage of quick convergence
characteristic for ANFIS model has been observed when the supervised data are adequately con-
sistent. This case was later used for predictions on the surface finish together with the three neural-
network models (i.e. TANMLP, RBFN, and Adaptive RBFN) and the semi-empirical model [26]
shown as follows:

Table 7
Final comparison results on the ANFIS model with two Bell-shape membership functions; the bold-faced column
indicates the best case

Epochs 1 20 40 60 120 250 350 450

Final RMSE 0.01312 0.01152 0.00959 0.00891 0.00856 0.00850 0.00846 0.00843
Running time (s) 1.16 22 43 65 131 268 396 505
Average training

2.51 2.18 2.06 1.89 1.83 1.81 1.80 1.79
error (%)
R2 0.9942 0.9955 0.9969 0.9973 0.9975 0.9975 0.9976 0.9976
Average
checking error 8.19 12.58 25.72 20.78 17.29 17.48 16.88 17.22
(%)
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Table 8
Same as in Table 7 except with two Gaussian membership functions

Epochs 1 20 40 60 120 250 350 450

Final RMSE 0.01147 0.00977 0.00922 0.00909 0.00890 0.00861 0.00859 0.00858
Running time (s) 1.17 22 44 64 128 271 386 495
Average training

2.34 2.05 1.97 1.93 1.88 1.84 1.83 1.83
error (%)
R2 0.9955 0.9968 0.9971 0.9972 0.9973 0.9975 0.9975 0.9975
Average
checking error 11.85 21.52 21.31 20.68 19.56 18.64 18.23 17.87
(%)

Table 9
Same as in Table 7 except with three Bell-shape membership functions

Epochs 1 20 80 100 200 300 350 450

Final RMSE 0.00983 0.00646 0.00216 0.00216 0.00205 0.00204 0.00203 0.00202
Running time (s) 119 2247 8966 11213 22358 33461 39038 50213
Average training

2.03 1.32 0.32 0.29 0.29 0.29 0.29 0.28
error (%)
R2 0.9967 0.9986 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
Average
checking error 36.03 23.93 11.52 11.28 11.28 11.22 11.25 11.30
(%)

Table 10
Same as in Table 7 except with three Gaussian membership functions

Epochs 1 5 11 20 120 250 350 450

Final RMSE 0.00852 0.00805 0.00727 0.00596 0.00394 0.00348 0.00346 0.00346
Running time (s) 132 575 1264 2293 13717 28553 39901 51343
Average training

1.78 1.70 1.55 1.33 0.90 0.73 0.72 0.72
error (%)
R2 0.9975 0.9978 0.9982 0.9988 0.9995 0.9996 0.9996 0.9996
Average
checking error 18.85 18.07 19.39 18.90 20.71 24.37 25.75 25.83
(%)

Ra�A1� aHv1/2
�� Ip

a1/2r1/2a3/2�a1�tonHv

a �b1� E
ra2Hv1/2

�c1

(Ja)d1 (8)

where Ra is the surface finish of work, A1 being a constant dependent of work materials, a=�/rCp

being the thermal diffusivity, and Hv being the latent heat of evaporation. In the thermal diffusivity
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of the work materials, � is the thermal conductivity and Cp is the specific heat capacity with ρ
being the density. As for the electrical energy, E is the input energy to work and Ip is the peak
current together with ton being the discharge time; while s is the electric conductivity of the
work. Being defined by Ja=TvCp/Hv, Ja is the Jacob number of the work materials with Tv being
the vaporization temperature. This semi-empirical model has been established by employing
dimensional analysis based upon pertinent process parameters screened by the Design of Experi-
ment Method [26].

Together with all the models, Table 11 shows the final results for modeling the surface finish
in EDM process. It is noted that the best one is the Adaptive RBFN model. Compared to the
TANMLP model and RBFN model, Adaptive RBFN model has faster convergence and better
performance based on the 5000 epochs case as shown in Fig. 9. For detail illustrations, the final
parametric results of the Adaptive RBFN model are shown in Figs. 10 and 11. In these figures,
the minimum average check error has been 7.29%. In Fig. 11, the training differences are less
than 0.5 µm for surface finish on the work.

As a further step for verifications, experiments were scheduled with process parameters set to
the border on the training process window. The comparisons among all the models are shown in
Table 12. In particular, the semi-empirical model, the TANMLP model, the RBFN model, the
adaptive RBFN model, and the ANFIS model with two Bell membership functions are plotted

Table 11
Final comparison results on surface finish based upon various models; Cu–Al, Fe are employed for the tool and work
materials in the table, respectively

LOGMLP TANMLP RBFN ERROR Adaptive
TANMLP TANMLP

Hidden nodes 10 12 9 20 50
Epochs 5000 5000 5000 5000 5000
Final RMSE 0.04840 0.03384 0.01809 0.05812 0.04472
Running time (s) 363 414 250 462 599
Average training error 10.4274 5.394 4.01 8.8153 7.6571
(%)
R2 0.9204 0.9611 0.9889 0.8853 0.9321
Average checking error 13.19 7.60 8.00 11.12 9.86
(%)

Adaptive RBFN ANFIS (2 Bell ANFIS (2 ANFIS (3 Bell ANFIS (3
MF) Gaussian) MF) Gaussian)

Hidden nodes 9
Epochs 5000 1 1 300 5
Final RMSE 0.01725 0.01312 0.01147 0.00204 0.00805
Running time (s) 248 1.19 1.17 33461 575
Average training error 3.68 2.51 2.34 0.29 1.70
(%)
R2 0.9899 0.9942 0.9955 0.9999 0.9978
Average checking error 7.29 8.19 11.85 11.22 18.07
(%)
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Fig. 9. Plots of comparison on training errors between the TANMLP, the RBFN, and the Adaptive RBFN; the Adapt-
ive RBFN model is better than the other models.

Fig. 10. Plots of comparison results between the measured and predicted surface finish based upon the Adaptive
RBFN model.
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Fig. 11. Plots of differences in surface finish calculated based upon Fig. 10 versus the number of training data after
completing the training procedure.

on the same scale as shown in Fig. 12. Although the TANMLP model is the best one with 8.58%
check error both shown in Table 12 and Fig. 12, the other models have the same percentage of
check error except for the semi-empirical model. That means the predictions of surface finish in
EDM process by making use of the TANMLP model, the RBFN model, the Adaptive RBFN
model, and the ANFIS model have all shown in good agreement with the experimental results;
but, the convergence rate of the ANFIS method is obviously better than the other methods.

5. Conclusions

In this paper, seven models for predictions of surface finish of work in EDM process have
been established and compared based upon six neural networks and a neuro-fuzzy network with
pertinent machine process parameters given by the DOE method. The networks, namely the
LOGMLP, the TANMLP, the RBFN, the Error TANMLP, the Adaptive TANMLP, the Adaptive
RBFN, and the ANFIS have been trained and compared by the same experimental data together
with the change of electrode polarity condition. According to the comparisons on the training
results, it has been shown that the TANMLP, the RBFN, the Adaptive RBFN, and the ANFIS
models are more accurate than the other models. Also, further experimental verifications have
shown that the predictions on the surface finish have gone down to 8.58% average error on the
TANMLP model. Also, the other models such as the RBFN, the Adaptive RBFN, and the ANFIS
have the same magnitude of average error. Conclusively speaking, the surface finish of work in
the EDM process can be predicted by the above models with reasonable accuracy.

Based on authors’ previous experiences with semi-empirical models, it is comfortable to con-
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Fig. 12. Plots of comparison on surface finish among the measured data and predictions based upon various models;
the TANMLP model shows better predictions than the other models.

clude that the surface finish of work in EDM process can be successfully modeled based on the
neural networks even though the EDM process has been known for its stochastic nature. This
paper has successfully established some new process models, which consist of the pertinent pro-
cess parameters, for predicting the surface finish of work. For practical applications, exact machin-
ing time and values of process parameters could be better controlled on the shop floor if the
process models are employed in the industry.
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